Created
February 19, 2013 17:41
-
-
Save anonymous/4988103 to your computer and use it in GitHub Desktop.
A Toy implementation of MapReduce to practice thinking of problems in a Hadoop compatible way.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/bin/sh | |
exec scala -savecompiled "$0" "$@" | |
!# | |
// Toy Map Reduce framework: | |
class MapReduce[T,K,V,R](flatMapFn: (T) => Iterable[(K,V)], reduceFn: ((K,Iterable[V])) => R) { | |
def apply(input: Iterable[T]): Map[K,R] = { | |
// Apply the flatMap function: | |
val mapped: Iterable[(K,V)] = input.flatMap(flatMapFn) | |
// do the shuffle (in distributed systems, sets of keys are handled by different workers | |
val shuffled: Map[K,Iterable[(K,V)]] = mapped.groupBy { _._1 } | |
// Just keep the V values in the second part of the Map (to clean up the function we pass in) | |
val values: Map[K, (K,Iterable[V])] = shuffled.map { case (k,kvs) => (k, (k, kvs.map { _._2 })) } | |
// apply reduce: | |
values.mapValues(reduceFn) | |
} | |
} | |
/* | |
* Now let's use our MapReduce framework to do wordcount | |
*/ | |
// Map onto (Key, Value) | |
def mapFunction(line: String): Iterable[(String,Int)] = | |
line.split("""\s+""") | |
.map { word => (word, 1) } | |
def reduceFunction(groupedWords: (String, Iterable[Int])): Int = | |
groupedWords._2.sum | |
// Pass these functions to our job: | |
val myWordCountJob = new MapReduce(mapFunction _, reduceFunction _) | |
// Run the job: | |
val input: Iterable[String] = scala.io.Source.stdin.getLines.toIterable | |
val result = myWordCountJob.apply(input) | |
//print it out: | |
result | |
.toList | |
.sortBy { -_._2 } | |
.foreach { println(_) } | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment