Created
March 12, 2016 00:04
-
-
Save anonymous/61c14df25027707f3e25 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
require 'xlua' | |
local grad = require 'autograd' | |
local tablex = require 'pl.tablex' | |
grad.optimize(true) | |
local function cast(x) | |
if type(x) == 'table' then | |
for k,v in pairs(x) do x[k] = cast(v) end | |
return x | |
else | |
return x:float() | |
end | |
end | |
local bs = 8 | |
local params = { | |
x = torch.randn(bs,28*28), | |
L1 = { | |
W = torch.randn(28*28,512), | |
b = torch.randn(512) | |
}, | |
L2 = { | |
W = torch.randn(512,10), | |
b = torch.randn(10), | |
}, | |
} | |
local L1, L2 | |
L1, params.L1 = grad.nn.Linear(28*28,512) | |
L2, params.L2 = grad.nn.Linear(512,10) | |
local nonlin = grad.nn.Tanh() | |
cast(params) | |
print(params) | |
local f = function(params, inputs, targets) | |
local x = params.x | |
local O1 = L1(params.L1, x) | |
local O2 = L2(params.L2, nonlin(O1)) | |
return O2 | |
end | |
local g = grad(function(params, inputs, targets) | |
local y = f(params) | |
return grad.loss.crossEntropy(y, targets) | |
end) | |
local provider = torch.load'../cifar2.torch/datasets/mnist.t7' | |
cast(provider) | |
print(provider) | |
local opt = { | |
learningRate = 1e-3, | |
momentum = 0.9, | |
weightDecay = 0.0005, | |
dampening = 0, | |
} | |
local states = { | |
L1 = { | |
tablex.deepcopy(opt), | |
tablex.deepcopy(opt), | |
}, | |
L2 = { | |
tablex.deepcopy(opt), | |
tablex.deepcopy(opt), | |
} | |
} | |
function train() | |
local loss = 0 | |
local targets = cast(torch.Tensor(bs,10)) | |
local indices = torch.randperm(provider.trainData.data:size(1)):long():split(bs) | |
indices[#indices] = nil | |
for t,v in ipairs(indices) do | |
xlua.progress(t,#indices) | |
local inputs = provider.trainData.data:index(1,v) | |
local target_idx = provider.trainData.labels:index(1,v) | |
targets:zero():scatter(2,target_idx:long():view(bs,1),1) | |
params.x:copy(inputs) | |
local grads, loss = g(params, inputs, targets) | |
for k,v in pairs(states) do | |
optim.sgd(function(x) return loss, grads[k][1] end, params[k][1], v[1]) | |
optim.sgd(function(x) return loss, grads[k][2] end, params[k][2], v[2]) | |
end | |
end | |
return loss | |
end | |
function test() | |
local confusion = optim.ConfusionMatrix(10) | |
for i=1,provider.testData.data:size(1),bs do | |
local inputs = provider.testData.data:narrow(1,i,bs) | |
local targets = provider.testData.labels:narrow(1,i,bs) | |
params.x:copy(inputs) | |
confusion:batchAdd(f(params), targets) | |
end | |
confusion:updateValids() | |
local test_acc = confusion.totalValid * 100 | |
print(confusion) | |
local outputs = f(params) | |
end | |
train() | |
test() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment