Created
January 22, 2014 18:56
-
-
Save anonymous/8564995 to your computer and use it in GitHub Desktop.
Pasted from IPython
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
import sys | |
sys.version_info | |
print sys.version_info | |
pd.version | |
pd.__version__ | |
t = np.linspace(1,27,27).reshape(3,3,3) | |
pan = pd.Panel(t) | |
print pan | |
np.linspace?? | |
np.linspace? | |
np.linspace(1,27,27) | |
np.linspace(1,27,27).reshape(3,3,3) | |
np.linspace(1,27,27).reshape(3,3,3)[0] | |
np.linspace(1,27,27).reshape(3,3,3)[0][0] | |
np.linspace(1,27,27).reshape(3,3,3)[0][0][0] | |
print pan | |
pan | |
t | |
pan.ix[0,:,:] | |
pan.ix[:,:,:] | |
pan.ix[:,0,:] | |
pan.ix[:,:,0] | |
pan.ix[1,:,:] | |
pan.ix? | |
pan.ix?? | |
pan.ix[0,:,:] | |
type(pan.ix[0,:,:]) | |
print pan.ix[0,:,:] | |
print pan.ix[0,0,0] | |
type(pan.ix[0,0,0]) | |
df1 = pd.read_csv('data.csv') #no index | |
touch data.csv | |
ls | |
cd .. | |
cd .. | |
cd .. | |
cd scripts_temp/ | |
df1 = pd.read_csv('data.csv') #no index | |
df1 = pd.read_csv('emacs_shortcuts.csv') #no index | |
df1 = pd.read_csv('emacs_shortcuts.csv') | |
ls *.csv | |
cat namebench_2013-12-27_0028.csv | |
df1 = pd.read_csv('namebench_2013-12-27_0028.csv') | |
df1.index | |
df1.keys | |
df1.values | |
df1.keys | |
pan1 = df1.to_panel() | |
ls | |
cd .. | |
cd temp/codeRiddles/gramener/ | |
ls | |
df1 = pd.read_csv('salaries.csv') | |
pan1 = df1.to_panel() | |
df1 | |
ls | |
df1.set_index(['City','Job']) | |
df1 = df1.set_index(['City','Job']) | |
df2 = pd.read_csv('salaries.csv', index_cols=[0,1]) | |
df2 = pd.read_csv('salaries.csv', index_col=[0,1]) | |
df1.swaplevel('Job','City') | |
pan1 = df1.to_panel() | |
pan1 | |
%pastebin 1-65 | |
dt_idx = pd.DatetimeIndex(start='2014-01-01', end='2014-02-28', freq='D') | |
dt_series = pd.Series(range(len(dt_idx)), index = dt_idx) | |
dt_series.groupby(lambda x: x.month).sum() | |
pd.DatetimeIndex?? | |
df1.unstack(level=1) | |
df1.unstack(level=1)..columns | |
df1.unstack(level=1).columns | |
df1.unstack(level=2).columns | |
df1.unstack(level=0).columns | |
df1.unstack(level=0) | |
df1.unstack(level=1) | |
df1.unstack(level=2) | |
df1.unstack(level=0) | |
df1.unstack(level=2) | |
df1.unstack(level=0) | |
df1.unstack(level=1) | |
df1 | |
df1.unstack(level=1).columns | |
%pastebin 1-65 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment