// Our first program will print the classic "hello world"
// message. Here's the full source code.
package main
import "fmt"
func main() {
fmt.Println("hello world")
}
# To run the program, put the code in `hello-world.go` and
# use `go run`.
$ go run hello-world.go
hello world
# Sometimes we'll want to build our programs into
# binaries. We can do this using `go build`.
$ go build hello-world.go
$ ls
hello-world hello-world.go
# We can then execute the built binary directly.
$ ./hello-world
hello world
# Now that we can run and build basic Go programs, let's
# learn more about the language.
// Go has various value types including strings,
// integers, floats, booleans, etc. Here are a few
// basic examples.
package main
import "fmt"
func main() {
// Strings, which can be added together with `+`.
fmt.Println("go" + "lang")
// Integers and floats.
fmt.Println("1+1 =", 1+1)
fmt.Println("7.0/3.0 =", 7.0/3.0)
// Booleans, with boolean operators as you'd expect.
fmt.Println(true && false)
fmt.Println(true || false)
fmt.Println(!true)
}
$ go run values.go
golang
1+1 = 2
7.0/3.0 = 2.3333333333333335
false
true
false
// In Go, _variables_ are explicitly declared and used by
// the compiler to e.g. check type-correctness of function
// calls.
package main
import "fmt"
func main() {
// `var` declares 1 or more variables.
var a string = "initial"
fmt.Println(a)
// You can declare multiple variables at once.
var b, c int = 1, 2
fmt.Println(b, c)
// Go will infer the type of initialized variables.
var d = true
fmt.Println(d)
// Variables declared without a corresponding
// initialization are _zero-valued_. For example, the
// zero value for an `int` is `0`.
var e int
fmt.Println(e)
// The `:=` syntax is shorthand for declaring and
// initializing a variable, e.g. for
// `var f string = "short"` in this case.
f := "short"
fmt.Println(f)
}
$ go run variables.go
initial
1 2
true
0
short
// Go supports _constants_ of character, string, boolean,
// and numeric values.
package main
import "fmt"
import "math"
// `const` declares a constant value.
const s string = "constant"
func main() {
fmt.Println(s)
// A `const` statement can appear anywhere a `var`
// statement can.
const n = 500000000
// Constant expressions perform arithmetic with
// arbitrary precision.
const d = 3e20 / n
fmt.Println(d)
// A numeric constant has no type until it's given
// one, such as by an explicit cast.
fmt.Println(int64(d))
// A number can be given a type by using it in a
// context that requires one, such as a variable
// assignment or function call. For example, here
// `math.Sin` expects a `float64`.
fmt.Println(math.Sin(n))
}
$ go run constant.go
constant
6e+11
600000000000
-0.28470407323754404
// `for` is Go's only looping construct. Here are
// three basic types of `for` loops.
package main
import "fmt"
func main() {
// The most basic type, with a single condition.
i := 1
for i <= 3 {
fmt.Println(i)
i = i + 1
}
// A classic initial/condition/after `for` loop.
for j := 7; j <= 9; j++ {
fmt.Println(j)
}
// `for` without a condition will loop repeatedly
// until you `break` out of the loop or `return` from
// the enclosing function.
for {
fmt.Println("loop")
break
}
// You can also `continue` to the next iteration of
// the loop.
for n := 0; n <= 5; n++ {
if n%2 == 0 {
continue
}
fmt.Println(n)
}
}
$ go run for.go
1
2
3
7
8
9
loop
1
3
5
# We'll see some other `for` forms later when we look at
# `range` statements, channels, and other data
# structures.
// Branching with `if` and `else` in Go is
// straight-forward.
package main
import "fmt"
func main() {
// Here's a basic example.
if 7%2 == 0 {
fmt.Println("7 is even")
} else {
fmt.Println("7 is odd")
}
// You can have an `if` statement without an else.
if 8%4 == 0 {
fmt.Println("8 is divisible by 4")
}
// A statement can precede conditionals; any variables
// declared in this statement are available in all
// branches.
if num := 9; num < 0 {
fmt.Println(num, "is negative")
} else if num < 10 {
fmt.Println(num, "has 1 digit")
} else {
fmt.Println(num, "has multiple digits")
}
}
// Note that you don't need parentheses around conditions
// in Go, but that the braces are required.
$ go run if-else.go
7 is odd
8 is divisible by 4
9 has 1 digit
# There is no [ternary if](http://en.wikipedia.org/wiki/%3F:)
# in Go, so you'll need to use a full `if` statement even
# for basic conditions.
// _Switch statements_ express conditionals across many
// branches.
package main
import "fmt"
import "time"
func main() {
// Here's a basic `switch`.
i := 2
fmt.Print("Write ", i, " as ")
switch i {
case 1:
fmt.Println("one")
case 2:
fmt.Println("two")
case 3:
fmt.Println("three")
}
// You can use commas to separate multiple expressions
// in the same `case` statement. We use the optional
// `default` case in this example as well.
switch time.Now().Weekday() {
case time.Saturday, time.Sunday:
fmt.Println("It's the weekend")
default:
fmt.Println("It's a weekday")
}
// `switch` without an expression is an alternate way
// to express if/else logic. Here we also show how the
// `case` expressions can be non-constants.
t := time.Now()
switch {
case t.Hour() < 12:
fmt.Println("It's before noon")
default:
fmt.Println("It's after noon")
}
// A type `switch` compares types instead of values. You
// can use this to discover the the type of an interface
// value. In this example, the variable `t` will have the
// type corresponding to its clause.
whatAmI := func(i interface{}) {
switch t := i.(type) {
case bool:
fmt.Println("I'm a bool")
case int:
fmt.Println("I'm an int")
default:
fmt.Printf("Don't know type %T\n", t)
}
}
whatAmI(true)
whatAmI(1)
whatAmI("hey")
}
$ go run switch.go
Write 2 as two
It's a weekday
It's after noon
I'm a bool
I'm an int
Don't know type string
// In Go, an _array_ is a numbered sequence of elements of a
// specific length.
package main
import "fmt"
func main() {
// Here we create an array `a` that will hold exactly
// 5 `int`s. The type of elements and length are both
// part of the array's type. By default an array is
// zero-valued, which for `int`s means `0`s.
var a [5]int
fmt.Println("emp:", a)
// We can set a value at an index using the
// `array[index] = value` syntax, and get a value with
// `array[index]`.
a[4] = 100
fmt.Println("set:", a)
fmt.Println("get:", a[4])
// The builtin `len` returns the length of an array.
fmt.Println("len:", len(a))
// Use this syntax to declare and initialize an array
// in one line.
b := [5]int{1, 2, 3, 4, 5}
fmt.Println("dcl:", b)
// Array types are one-dimensional, but you can
// compose types to build multi-dimensional data
// structures.
var twoD [2][3]int
for i := 0; i < 2; i++ {
for j := 0; j < 3; j++ {
twoD[i][j] = i + j
}
}
fmt.Println("2d: ", twoD)
}
# Note that arrays appear in the form `[v1 v2 v3 ...]`
# when printed with `fmt.Println`.
$ go run arrays.go
emp: [0 0 0 0 0]
set: [0 0 0 0 100]
get: 100
len: 5
dcl: [1 2 3 4 5]
2d: [[0 1 2] [1 2 3]]
# You'll see _slices_ much more often than arrays in
# typical Go. We'll look at slices next.
// _Slices_ are a key data type in Go, giving a more
// powerful interface to sequences than arrays.
package main
import "fmt"
func main() {
// Unlike arrays, slices are typed only by the
// elements they contain (not the number of elements).
// To create an empty slice with non-zero length, use
// the builtin `make`. Here we make a slice of
// `string`s of length `3` (initially zero-valued).
s := make([]string, 3)
fmt.Println("emp:", s)
// We can set and get just like with arrays.
s[0] = "a"
s[1] = "b"
s[2] = "c"
fmt.Println("set:", s)
fmt.Println("get:", s[2])
// `len` returns the length of the slice as expected.
fmt.Println("len:", len(s))
// In addition to these basic operations, slices
// support several more that make them richer than
// arrays. One is the builtin `append`, which
// returns a slice containing one or more new values.
// Note that we need to accept a return value from
// append as we may get a new slice value.
s = append(s, "d")
s = append(s, "e", "f")
fmt.Println("apd:", s)
// Slices can also be `copy`'d. Here we create an
// empty slice `c` of the same length as `s` and copy
// into `c` from `s`.
c := make([]string, len(s))
copy(c, s)
fmt.Println("cpy:", c)
// Slices support a "slice" operator with the syntax
// `slice[low:high]`. For example, this gets a slice
// of the elements `s[2]`, `s[3]`, and `s[4]`.
l := s[2:5]
fmt.Println("sl1:", l)
// This slices up to (but excluding) `s[5]`.
l = s[:5]
fmt.Println("sl2:", l)
// And this slices up from (and including) `s[2]`.
l = s[2:]
fmt.Println("sl3:", l)
// We can declare and initialize a variable for slice
// in a single line as well.
t := []string{"g", "h", "i"}
fmt.Println("dcl:", t)
// Slices can be composed into multi-dimensional data
// structures. The length of the inner slices can
// vary, unlike with multi-dimensional arrays.
twoD := make([][]int, 3)
for i := 0; i < 3; i++ {
innerLen := i + 1
twoD[i] = make([]int, innerLen)
for j := 0; j < innerLen; j++ {
twoD[i][j] = i + j
}
}
fmt.Println("2d: ", twoD)
}
# Note that while slices are different types than arrays,
# they are rendered similarly by `fmt.Println`.
$ go run slices.go
emp: [ ]
set: [a b c]
get: c
len: 3
apd: [a b c d e f]
cpy: [a b c d e f]
sl1: [c d e]
sl2: [a b c d e]
sl3: [c d e f]
dcl: [g h i]
2d: [[0] [1 2] [2 3 4]]
# Check out this [great blog post](http://blog.golang.org/2011/01/go-slices-usage-and-internals.html)
# by the Go team for more details on the design and
# implementation of slices in Go.
# Now that we've seen arrays and slices we'll look at
# Go's other key builtin data structure: maps.
// _Maps_ are Go's built-in [associative data type](http://en.wikipedia.org/wiki/Associative_array)
// (sometimes called _hashes_ or _dicts_ in other languages).
package main
import "fmt"
func main() {
// To create an empty map, use the builtin `make`:
// `make(map[key-type]val-type)`.
m := make(map[string]int)
// Set key/value pairs using typical `name[key] = val`
// syntax.
m["k1"] = 7
m["k2"] = 13
// Printing a map with e.g. `Println` will show all of
// its key/value pairs.
fmt.Println("map:", m)
// Get a value for a key with `name[key]`.
v1 := m["k1"]
fmt.Println("v1: ", v1)
// The builtin `len` returns the number of key/value
// pairs when called on a map.
fmt.Println("len:", len(m))
// The builtin `delete` removes key/value pairs from
// a map.
delete(m, "k2")
fmt.Println("map:", m)
// The optional second return value when getting a
// value from a map indicates if the key was present
// in the map. This can be used to disambiguate
// between missing keys and keys with zero values
// like `0` or `""`. Here we didn't need the value
// itself, so we ignored it with the _blank identifier_
// `_`.
_, prs := m["k2"]
fmt.Println("prs:", prs)
// You can also declare and initialize a new map in
// the same line with this syntax.
n := map[string]int{"foo": 1, "bar": 2}
fmt.Println("map:", n)
}
# Note that maps appear in the form `map[k:v k:v]` when
# printed with `fmt.Println`.
$ go run maps.go
map: map[k1:7 k2:13]
v1: 7
len: 2
map: map[k1:7]
prs: false
map: map[foo:1 bar:2]
// _range_ iterates over elements in a variety of data
// structures. Let's see how to use `range` with some
// of the data structures we've already learned.
package main
import "fmt"
func main() {
// Here we use `range` to sum the numbers in a slice.
// Arrays work like this too.
nums := []int{2, 3, 4}
sum := 0
for _, num := range nums {
sum += num
}
fmt.Println("sum:", sum)
// `range` on arrays and slices provides both the
// index and value for each entry. Above we didn't
// need the index, so we ignored it with the
// blank identifier `_`. Sometimes we actually want
// the indexes though.
for i, num := range nums {
if num == 3 {
fmt.Println("index:", i)
}
}
// `range` on map iterates over key/value pairs.
kvs := map[string]string{"a": "apple", "b": "banana"}
for k, v := range kvs {
fmt.Printf("%s -> %s\n", k, v)
}
// `range` can also iterate over just the keys of a map.
for k := range kvs {
fmt.Println("key:", k)
}
// `range` on strings iterates over Unicode code
// points. The first value is the starting byte index
// of the `rune` and the second the `rune` itself.
for i, c := range "go" {
fmt.Println(i, c)
}
}
$ go run range.go
sum: 9
index: 1
a -> apple
b -> banana
key: a
key: b
0 103
1 111
// _Functions_ are central in Go. We'll learn about
// functions with a few different examples.
package main
import "fmt"
// Here's a function that takes two `int`s and returns
// their sum as an `int`.
func plus(a int, b int) int {
// Go requires explicit returns, i.e. it won't
// automatically return the value of the last
// expression.
return a + b
}
// When you have multiple consecutive parameters of
// the same type, you may omit the type name for the
// like-typed parameters up to the final parameter that
// declares the type.
func plusPlus(a, b, c int) int {
return a + b + c
}
func main() {
// Call a function just as you'd expect, with
// `name(args)`.
res := plus(1, 2)
fmt.Println("1+2 =", res)
res = plusPlus(1, 2, 3)
fmt.Println("1+2+3 =", res)
}
$ go run functions.go
1+2 = 3
1+2+3 = 6
# There are several other features to Go functions. One is
# multiple return values, which we'll look at next.
// Go has built-in support for _multiple return values_.
// This feature is used often in idiomatic Go, for example
// to return both result and error values from a function.
package main
import "fmt"
// The `(int, int)` in this function signature shows that
// the function returns 2 `int`s.
func vals() (int, int) {
return 3, 7
}
func main() {
// Here we use the 2 different return values from the
// call with _multiple assignment_.
a, b := vals()
fmt.Println(a)
fmt.Println(b)
// If you only want a subset of the returned values,
// use the blank identifier `_`.
_, c := vals()
fmt.Println(c)
}
$ go run multiple-return-values.go
3
7
7
# Accepting a variable number of arguments is another nice
# feature of Go functions; we'll look at this next.
// [_Variadic functions_](http://en.wikipedia.org/wiki/Variadic_function)
// can be called with any number of trailing arguments.
// For example, `fmt.Println` is a common variadic
// function.
package main
import "fmt"
// Here's a function that will take an arbitrary number
// of `ints` as arguments.
func sum(nums ...int) {
fmt.Print(nums, " ")
total := 0
for _, num := range nums {
total += num
}
fmt.Println(total)
}
func main() {
// Variadic functions can be called in the usual way
// with individual arguments.
sum(1, 2)
sum(1, 2, 3)
// If you already have multiple args in a slice,
// apply them to a variadic function using
// `func(slice...)` like this.
nums := []int{1, 2, 3, 4}
sum(nums...)
}
$ go run variadic-functions.go
[1 2] 3
[1 2 3] 6
[1 2 3 4] 10
# Another key aspect of functions in Go is their ability
# to form closures, which we'll look at next.
// Go supports [_anonymous functions_](http://en.wikipedia.org/wiki/Anonymous_function),
// which can form <a href="http://en.wikipedia.org/wiki/Closure_(computer_science)"><em>closures</em></a>.
// Anonymous functions are useful when you want to define
// a function inline without having to name it.
package main
import "fmt"
// This function `intSeq` returns another function, which
// we define anonymously in the body of `intSeq`. The
// returned function _closes over_ the variable `i` to
// form a closure.
func intSeq() func() int {
i := 0
return func() int {
i += 1
return i
}
}
func main() {
// We call `intSeq`, assigning the result (a function)
// to `nextInt`. This function value captures its
// own `i` value, which will be updated each time
// we call `nextInt`.
nextInt := intSeq()
// See the effect of the closure by calling `nextInt`
// a few times.
fmt.Println(nextInt())
fmt.Println(nextInt())
fmt.Println(nextInt())
// To confirm that the state is unique to that
// particular function, create and test a new one.
newInts := intSeq()
fmt.Println(newInts())
}
$ go run closures.go
1
2
3
1
# The last feature of functions we'll look at for now is
# recursion.
// Go supports
// <a href="http://en.wikipedia.org/wiki/Recursion_(computer_science)"><em>recursive functions</em></a>.
// Here's a classic factorial example.
package main
import "fmt"
// This `fact` function calls itself until it reaches the
// base case of `fact(0)`.
func fact(n int) int {
if n == 0 {
return 1
}
return n * fact(n-1)
}
func main() {
fmt.Println(fact(7))
}
$ go run recursion.go
5040
// Go supports <em><a href="http://en.wikipedia.org/wiki/Pointer_(computer_programming)">pointers</a></em>,
// allowing you to pass references to values and records
// within your program.
package main
import "fmt"
// We'll show how pointers work in contrast to values with
// 2 functions: `zeroval` and `zeroptr`. `zeroval` has an
// `int` parameter, so arguments will be passed to it by
// value. `zeroval` will get a copy of `ival` distinct
// from the one in the calling function.
func zeroval(ival int) {
ival = 0
}
// `zeroptr` in contrast has an `*int` parameter, meaning
// that it takes an `int` pointer. The `*iptr` code in the
// function body then _dereferences_ the pointer from its
// memory address to the current value at that address.
// Assigning a value to a dereferenced pointer changes the
// value at the referenced address.
func zeroptr(iptr *int) {
*iptr = 0
}
func main() {
i := 1
fmt.Println("initial:", i)
zeroval(i)
fmt.Println("zeroval:", i)
// The `&i` syntax gives the memory address of `i`,
// i.e. a pointer to `i`.
zeroptr(&i)
fmt.Println("zeroptr:", i)
// Pointers can be printed too.
fmt.Println("pointer:", &i)
}
# `zeroval` doesn't change the `i` in `main`, but
# `zeroptr` does because it has a reference to
# the memory address for that variable.
$ go run pointers.go
initial: 1
zeroval: 1
zeroptr: 0
pointer: 0x42131100
// Go's _structs_ are typed collections of fields.
// They're useful for grouping data together to form
// records.
package main
import "fmt"
// This `person` struct type has `name` and `age` fields.
type person struct {
name string
age int
}
func main() {
// This syntax creates a new struct.
fmt.Println(person{"Bob", 20})
// You can name the fields when initializing a struct.
fmt.Println(person{name: "Alice", age: 30})
// Omitted fields will be zero-valued.
fmt.Println(person{name: "Fred"})
// An `&` prefix yields a pointer to the struct.
fmt.Println(&person{name: "Ann", age: 40})
// Access struct fields with a dot.
s := person{name: "Sean", age: 50}
fmt.Println(s.name)
// You can also use dots with struct pointers - the
// pointers are automatically dereferenced.
sp := &s
fmt.Println(sp.age)
// Structs are mutable.
sp.age = 51
fmt.Println(sp.age)
}
$ go run structs.go
{Bob 20}
{Alice 30}
{Fred 0}
&{Ann 40}
Sean
50
51
// Go supports _methods_ defined on struct types.
package main
import "fmt"
type rect struct {
width, height int
}
// This `area` method has a _receiver type_ of `*rect`.
func (r *rect) area() int {
return r.width * r.height
}
// Methods can be defined for either pointer or value
// receiver types. Here's an example of a value receiver.
func (r rect) perim() int {
return 2*r.width + 2*r.height
}
func main() {
r := rect{width: 10, height: 5}
// Here we call the 2 methods defined for our struct.
fmt.Println("area: ", r.area())
fmt.Println("perim:", r.perim())
// Go automatically handles conversion between values
// and pointers for method calls. You may want to use
// a pointer receiver type to avoid copying on method
// calls or to allow the method to mutate the
// receiving struct.
rp := &r
fmt.Println("area: ", rp.area())
fmt.Println("perim:", rp.perim())
}
$ go run methods.go
area: 50
perim: 30
area: 50
perim: 30
# Next we'll look at Go's mechanism for grouping and
# naming related sets of methods: interfaces.
// _Interfaces_ are named collections of method
// signatures.
package main
import "fmt"
import "math"
// Here's a basic interface for geometric shapes.
type geometry interface {
area() float64
perim() float64
}
// For our example we'll implement this interface on
// `rect` and `circle` types.
type rect struct {
width, height float64
}
type circle struct {
radius float64
}
// To implement an interface in Go, we just need to
// implement all the methods in the interface. Here we
// implement `geometry` on `rect`s.
func (r rect) area() float64 {
return r.width * r.height
}
func (r rect) perim() float64 {
return 2*r.width + 2*r.height
}
// The implementation for `circle`s.
func (c circle) area() float64 {
return math.Pi * c.radius * c.radius
}
func (c circle) perim() float64 {
return 2 * math.Pi * c.radius
}
// If a variable has an interface type, then we can call
// methods that are in the named interface. Here's a
// generic `measure` function taking advantage of this
// to work on any `geometry`.
func measure(g geometry) {
fmt.Println(g)
fmt.Println(g.area())
fmt.Println(g.perim())
}
func main() {
r := rect{width: 3, height: 4}
c := circle{radius: 5}
// The `circle` and `rect` struct types both
// implement the `geometry` interface so we can use
// instances of
// these structs as arguments to `measure`.
measure(r)
measure(c)
}
$ go run interfaces.go
{3 4}
12
14
{5}
78.53981633974483
31.41592653589793
# To learn more about Go's interfaces, check out this
# [great blog post](http://jordanorelli.tumblr.com/post/32665860244/how-to-use-interfaces-in-go).
// In Go it's idiomatic to communicate errors via an
// explicit, separate return value. This contrasts with
// the exceptions used in languages like Java and Ruby and
// the overloaded single result / error value sometimes
// used in C. Go's approach makes it easy to see which
// functions return errors and to handle them using the
// same language constructs employed for any other,
// non-error tasks.
package main
import "errors"
import "fmt"
// By convention, errors are the last return value and
// have type `error`, a built-in interface.
func f1(arg int) (int, error) {
if arg == 42 {
// `errors.New` constructs a basic `error` value
// with the given error message.
return -1, errors.New("can't work with 42")
}
// A nil value in the error position indicates that
// there was no error.
return arg + 3, nil
}
// It's possible to use custom types as `error`s by
// implementing the `Error()` method on them. Here's a
// variant on the example above that uses a custom type
// to explicitly represent an argument error.
type argError struct {
arg int
prob string
}
func (e *argError) Error() string {
return fmt.Sprintf("%d - %s", e.arg, e.prob)
}
func f2(arg int) (int, error) {
if arg == 42 {
// In this case we use `&argError` syntax to build
// a new struct, supplying values for the two
// fields `arg` and `prob`.
return -1, &argError{arg, "can't work with it"}
}
return arg + 3, nil
}
func main() {
// The two loops below test out each of our
// error-returning functions. Note that the use of an
// inline error check on the `if` line is a common
// idiom in Go code.
for _, i := range []int{7, 42} {
if r, e := f1(i); e != nil {
fmt.Println("f1 failed:", e)
} else {
fmt.Println("f1 worked:", r)
}
}
for _, i := range []int{7, 42} {
if r, e := f2(i); e != nil {
fmt.Println("f2 failed:", e)
} else {
fmt.Println("f2 worked:", r)
}
}
// If you want to programmatically use the data in
// a custom error, you'll need to get the error as an
// instance of the custom error type via type
// assertion.
_, e := f2(42)
if ae, ok := e.(*argError); ok {
fmt.Println(ae.arg)
fmt.Println(ae.prob)
}
}
$ go run errors.go
f1 worked: 10
f1 failed: can't work with 42
f2 worked: 10
f2 failed: 42 - can't work with it
42
can't work with it
# See this [great post](http://blog.golang.org/2011/07/error-handling-and-go.html)
# on the Go blog for more on error handling.
// A _goroutine_ is a lightweight thread of execution.
package main
import "fmt"
func f(from string) {
for i := 0; i < 3; i++ {
fmt.Println(from, ":", i)
}
}
func main() {
// Suppose we have a function call `f(s)`. Here's how
// we'd call that in the usual way, running it
// synchronously.
f("direct")
// To invoke this function in a goroutine, use
// `go f(s)`. This new goroutine will execute
// concurrently with the calling one.
go f("goroutine")
// You can also start a goroutine for an anonymous
// function call.
go func(msg string) {
fmt.Println(msg)
}("going")
// Our two function calls are running asynchronously in
// separate goroutines now, so execution falls through
// to here. This `Scanln` code requires we press a key
// before the program exits.
var input string
fmt.Scanln(&input)
fmt.Println("done")
}
# When we run this program, we see the output of the
# blocking call first, then the interleaved output of the
# two gouroutines. This interleaving reflects the
# goroutines being run concurrently by the Go runtime.
$ go run goroutines.go
direct : 0
direct : 1
direct : 2
goroutine : 0
going
goroutine : 1
goroutine : 2
<enter>
done
# Next we'll look at a complement to goroutines in
# concurrent Go programs: channels.
// _Channels_ are the pipes that connect concurrent
// goroutines. You can send values into channels from one
// goroutine and receive those values into another
// goroutine.
package main
import "fmt"
func main() {
// Create a new channel with `make(chan val-type)`.
// Channels are typed by the values they convey.
messages := make(chan string)
// _Send_ a value into a channel using the `channel <-`
// syntax. Here we send `"ping"` to the `messages`
// channel we made above, from a new goroutine.
go func() { messages <- "ping" }()
// The `<-channel` syntax _receives_ a value from the
// channel. Here we'll receive the `"ping"` message
// we sent above and print it out.
msg := <-messages
fmt.Println(msg)
}
# When we run the program the `"ping"` message is
# successfully passed from one goroutine to another via
# our channel.
$ go run channels.go
ping
# By default sends and receives block until both the
# sender and receiver are ready. This property allowed
# us to wait at the end of our program for the `"ping"`
# message without having to use any other synchronization.
// By default channels are _unbuffered_, meaning that they
// will only accept sends (`chan <-`) if there is a
// corresponding receive (`<- chan`) ready to receive the
// sent value. _Buffered channels_ accept a limited
// number of values without a corresponding receiver for
// those values.
package main
import "fmt"
func main() {
// Here we `make` a channel of strings buffering up to
// 2 values.
messages := make(chan string, 2)
// Because this channel is buffered, we can send these
// values into the channel without a corresponding
// concurrent receive.
messages <- "buffered"
messages <- "channel"
// Later we can receive these two values as usual.
fmt.Println(<-messages)
fmt.Println(<-messages)
}
$ go run channel-buffering.go
buffered
channel
// We can use channels to synchronize execution
// across goroutines. Here's an example of using a
// blocking receive to wait for a goroutine to finish.
package main
import "fmt"
import "time"
// This is the function we'll run in a goroutine. The
// `done` channel will be used to notify another
// goroutine that this function's work is done.
func worker(done chan bool) {
fmt.Print("working...")
time.Sleep(time.Second)
fmt.Println("done")
// Send a value to notify that we're done.
done <- true
}
func main() {
// Start a worker goroutine, giving it the channel to
// notify on.
done := make(chan bool, 1)
go worker(done)
// Block until we receive a notification from the
// worker on the channel.
<-done
}
$ go run channel-synchronization.go
working...done
# If you removed the `<- done` line from this program, the
# program would exit before the `worker` even
# started.
// When using channels as function parameters, you can
// specify if a channel is meant to only send or receive
// values. This specificity increases the type-safety of
// the program.
package main
import "fmt"
// This `ping` function only accepts a channel for sending
// values. It would be a compile-time error to try to
// receive on this channel.
func ping(pings chan<- string, msg string) {
pings <- msg
}
// The `pong` function accepts one channel for receives
// (`pings`) and a second for sends (`pongs`).
func pong(pings <-chan string, pongs chan<- string) {
msg := <-pings
pongs <- msg
}
func main() {
pings := make(chan string, 1)
pongs := make(chan string, 1)
ping(pings, "passed message")
pong(pings, pongs)
fmt.Println(<-pongs)
}
$ go run channel-directions.go
passed message
// Go's _select_ lets you wait on multiple channel
// operations. Combining goroutines and channels with
// select is a powerful feature of Go.
package main
import "time"
import "fmt"
func main() {
// For our example we'll select across two channels.
c1 := make(chan string)
c2 := make(chan string)
// Each channel will receive a value after some amount
// of time, to simulate e.g. blocking RPC operations
// executing in concurrent goroutines.
go func() {
time.Sleep(time.Second * 1)
c1 <- "one"
}()
go func() {
time.Sleep(time.Second * 2)
c2 <- "two"
}()
// We'll use `select` to await both of these values
// simultaneously, printing each one as it arrives.
for i := 0; i < 2; i++ {
select {
case msg1 := <-c1:
fmt.Println("received", msg1)
case msg2 := <-c2:
fmt.Println("received", msg2)
}
}
}
# We receive the values `"one"` and then `"two"` as
# expected.
$ time go run select.go
received one
received two
# Note that the total execution time is only ~2 seconds
# since both the 1 and 2 second `Sleeps` execute
# concurrently.
real 0m2.245s
// _Timeouts_ are important for programs that connect to
// external resources or that otherwise need to bound
// execution time. Implementing timeouts in Go is easy and
// elegant thanks to channels and `select`.
package main
import "time"
import "fmt"
func main() {
// For our example, suppose we're executing an external
// call that returns its result on a channel `c1`
// after 2s.
c1 := make(chan string, 1)
go func() {
time.Sleep(time.Second * 2)
c1 <- "result 1"
}()
// Here's the `select` implementing a timeout.
// `res := <-c1` awaits the result and `<-Time.After`
// awaits a value to be sent after the timeout of
// 1s. Since `select` proceeds with the first
// receive that's ready, we'll take the timeout case
// if the operation takes more than the allowed 1s.
select {
case res := <-c1:
fmt.Println(res)
case <-time.After(time.Second * 1):
fmt.Println("timeout 1")
}
// If we allow a longer timeout of 3s, then the receive
// from `c2` will succeed and we'll print the result.
c2 := make(chan string, 1)
go func() {
time.Sleep(time.Second * 2)
c2 <- "result 2"
}()
select {
case res := <-c2:
fmt.Println(res)
case <-time.After(time.Second * 3):
fmt.Println("timeout 2")
}
}
# Running this program shows the first operation timing
# out and the second succeeding.
$ go run timeouts.go
timeout 1
result 2
# Using this `select` timeout pattern requires
# communicating results over channels. This is a good
# idea in general because other important Go features are
# based on channels and `select`. We'll look at two
# examples of this next: timers and tickers.
// Basic sends and receives on channels are blocking.
// However, we can use `select` with a `default` clause to
// implement _non-blocking_ sends, receives, and even
// non-blocking multi-way `select`s.
package main
import "fmt"
func main() {
messages := make(chan string)
signals := make(chan bool)
// Here's a non-blocking receive. If a value is
// available on `messages` then `select` will take
// the `<-messages` `case` with that value. If not
// it will immediately take the `default` case.
select {
case msg := <-messages:
fmt.Println("received message", msg)
default:
fmt.Println("no message received")
}
// A non-blocking send works similarly.
msg := "hi"
select {
case messages <- msg:
fmt.Println("sent message", msg)
default:
fmt.Println("no message sent")
}
// We can use multiple `case`s above the `default`
// clause to implement a multi-way non-blocking
// select. Here we attempt non-blocking receives
// on both `messages` and `signals`.
select {
case msg := <-messages:
fmt.Println("received message", msg)
case sig := <-signals:
fmt.Println("received signal", sig)
default:
fmt.Println("no activity")
}
}
$ go run non-blocking-channel-operations.go
no message received
no message sent
no activity
// _Closing_ a channel indicates that no more values
// will be sent on it. This can be useful to communicate
// completion to the channel's receivers.
package main
import "fmt"
// In this example we'll use a `jobs` channel to
// communicate work to be done from the `main()` goroutine
// to a worker goroutine. When we have no more jobs for
// the worker we'll `close` the `jobs` channel.
func main() {
jobs := make(chan int, 5)
done := make(chan bool)
// Here's the worker goroutine. It repeatedly receives
// from `jobs` with `j, more := <-jobs`. In this
// special 2-value form of receive, the `more` value
// will be `false` if `jobs` has been `close`d and all
// values in the channel have already been received.
// We use this to notify on `done` when we've worked
// all our jobs.
go func() {
for {
j, more := <-jobs
if more {
fmt.Println("received job", j)
} else {
fmt.Println("received all jobs")
done <- true
return
}
}
}()
// This sends 3 jobs to the worker over the `jobs`
// channel, then closes it.
for j := 1; j <= 3; j++ {
jobs <- j
fmt.Println("sent job", j)
}
close(jobs)
fmt.Println("sent all jobs")
// We await the worker using the
// [synchronization](channel-synchronization) approach
// we saw earlier.
<-done
}
$ go run closing-channels.go
sent job 1
received job 1
sent job 2
received job 2
sent job 3
received job 3
sent all jobs
received all jobs
# The idea of closed channels leads naturally to our next
# example: `range` over channels.
// In a [previous](range) example we saw how `for` and
// `range` provide iteration over basic data structures.
// We can also use this syntax to iterate over
// values received from a channel.
package main
import "fmt"
func main() {
// We'll iterate over 2 values in the `queue` channel.
queue := make(chan string, 2)
queue <- "one"
queue <- "two"
close(queue)
// This `range` iterates over each element as it's
// received from `queue`. Because we `close`d the
// channel above, the iteration terminates after
// receiving the 2 elements.
for elem := range queue {
fmt.Println(elem)
}
}
$ go run range-over-channels.go
one
two
# This example also showed that it's possible to close
# a non-empty channel but still have the remaining
# values be received.
// We often want to execute Go code at some point in the
// future, or repeatedly at some interval. Go's built-in
// _timer_ and _ticker_ features make both of these tasks
// easy. We'll look first at timers and then
// at [tickers](tickers).
package main
import "time"
import "fmt"
func main() {
// Timers represent a single event in the future. You
// tell the timer how long you want to wait, and it
// provides a channel that will be notified at that
// time. This timer will wait 2 seconds.
timer1 := time.NewTimer(time.Second * 2)
// The `<-timer1.C` blocks on the timer's channel `C`
// until it sends a value indicating that the timer
// expired.
<-timer1.C
fmt.Println("Timer 1 expired")
// If you just wanted to wait, you could have used
// `time.Sleep`. One reason a timer may be useful is
// that you can cancel the timer before it expires.
// Here's an example of that.
timer2 := time.NewTimer(time.Second)
go func() {
<-timer2.C
fmt.Println("Timer 2 expired")
}()
stop2 := timer2.Stop()
if stop2 {
fmt.Println("Timer 2 stopped")
}
}
// The first timer will expire ~2s after we start the
// program, but the second should be stopped before it has
// a chance to expire.
$ go run timers.go
Timer 1 expired
Timer 2 stopped
// [Timers](timers) are for when you want to do
// something once in the future - _tickers_ are for when
// you want to do something repeatedly at regular
// intervals. Here's an example of a ticker that ticks
// periodically until we stop it.
package main
import "time"
import "fmt"
func main() {
// Tickers use a similar mechanism to timers: a
// channel that is sent values. Here we'll use the
// `range` builtin on the channel to iterate over
// the values as they arrive every 500ms.
ticker := time.NewTicker(time.Millisecond * 500)
go func() {
for t := range ticker.C {
fmt.Println("Tick at", t)
}
}()
// Tickers can be stopped like timers. Once a ticker
// is stopped it won't receive any more values on its
// channel. We'll stop ours after 1600ms.
time.Sleep(time.Millisecond * 1600)
ticker.Stop()
fmt.Println("Ticker stopped")
}
# When we run this program the ticker should tick 3 times
# before we stop it.
$ go run tickers.go
Tick at 2012-09-23 11:29:56.487625 -0700 PDT
Tick at 2012-09-23 11:29:56.988063 -0700 PDT
Tick at 2012-09-23 11:29:57.488076 -0700 PDT
Ticker stopped
// In this example we'll look at how to implement
// a _worker pool_ using goroutines and channels.
package main
import "fmt"
import "time"
// Here's the worker, of which we'll run several
// concurrent instances. These workers will receive
// work on the `jobs` channel and send the corresponding
// results on `results`. We'll sleep a second per job to
// simulate an expensive task.
func worker(id int, jobs <-chan int, results chan<- int) {
for j := range jobs {
fmt.Println("worker", id, "started job", j)
time.Sleep(time.Second)
fmt.Println("worker", id, "finished job", j)
results <- j * 2
}
}
func main() {
// In order to use our pool of workers we need to send
// them work and collect their results. We make 2
// channels for this.
jobs := make(chan int, 100)
results := make(chan int, 100)
// This starts up 3 workers, initially blocked
// because there are no jobs yet.
for w := 1; w <= 3; w++ {
go worker(w, jobs, results)
}
// Here we send 5 `jobs` and then `close` that
// channel to indicate that's all the work we have.
for j := 1; j <= 5; j++ {
jobs <- j
}
close(jobs)
// Finally we collect all the results of the work.
for a := 1; a <= 5; a++ {
<-results
}
}
# Our running program shows the 5 jobs being executed by
# various workers. The program only takes about 2 seconds
# despite doing about 5 seconds of total work because
# there are 3 workers operating concurrently.
$ time go run worker-pools.go
worker 1 started job 1
worker 2 started job 2
worker 3 started job 3
worker 1 finished job 1
worker 1 started job 4
worker 2 finished job 2
worker 2 started job 5
worker 3 finished job 3
worker 1 finished job 4
worker 2 finished job 5
real 0m2.358s
// _[Rate limiting](http://en.wikipedia.org/wiki/Rate_limiting)_
// is an important mechanism for controlling resource
// utilization and maintaining quality of service. Go
// elegantly supports rate limiting with goroutines,
// channels, and [tickers](tickers).
package main
import "time"
import "fmt"
func main() {
// First we'll look at basic rate limiting. Suppose
// we want to limit our handling of incoming requests.
// We'll serve these requests off a channel of the
// same name.
requests := make(chan int, 5)
for i := 1; i <= 5; i++ {
requests <- i
}
close(requests)
// This `limiter` channel will receive a value
// every 200 milliseconds. This is the regulator in
// our rate limiting scheme.
limiter := time.Tick(time.Millisecond * 200)
// By blocking on a receive from the `limiter` channel
// before serving each request, we limit ourselves to
// 1 request every 200 milliseconds.
for req := range requests {
<-limiter
fmt.Println("request", req, time.Now())
}
// We may want to allow short bursts of requests in
// our rate limiting scheme while preserving the
// overall rate limit. We can accomplish this by
// buffering our limiter channel. This `burstyLimiter`
// channel will allow bursts of up to 3 events.
burstyLimiter := make(chan time.Time, 3)
// Fill up the channel to represent allowed bursting.
for i := 0; i < 3; i++ {
burstyLimiter <- time.Now()
}
// Every 200 milliseconds we'll try to add a new
// value to `burstyLimiter`, up to its limit of 3.
go func() {
for t := range time.Tick(time.Millisecond * 200) {
burstyLimiter <- t
}
}()
// Now simulate 5 more incoming requests. The first
// 3 of these will benefit from the burst capability
// of `burstyLimiter`.
burstyRequests := make(chan int, 5)
for i := 1; i <= 5; i++ {
burstyRequests <- i
}
close(burstyRequests)
for req := range burstyRequests {
<-burstyLimiter
fmt.Println("request", req, time.Now())
}
}
# Running our program we see the first batch of requests
# handled once every ~200 milliseconds as desired.
$ go run rate-limiting.go
request 1 2012-10-19 00:38:18.687438 +0000 UTC
request 2 2012-10-19 00:38:18.887471 +0000 UTC
request 3 2012-10-19 00:38:19.087238 +0000 UTC
request 4 2012-10-19 00:38:19.287338 +0000 UTC
request 5 2012-10-19 00:38:19.487331 +0000 UTC
# For the second batch of requests we serve the first
# 3 immediately because of the burstable rate limiting,
# then serve the remaining 2 with ~200ms delays each.
request 1 2012-10-19 00:38:20.487578 +0000 UTC
request 2 2012-10-19 00:38:20.487645 +0000 UTC
request 3 2012-10-19 00:38:20.487676 +0000 UTC
request 4 2012-10-19 00:38:20.687483 +0000 UTC
request 5 2012-10-19 00:38:20.887542 +0000 UTC
// The primary mechanism for managing state in Go is
// communication over channels. We saw this for example
// with [worker pools](worker-pools). There are a few other
// options for managing state though. Here we'll
// look at using the `sync/atomic` package for _atomic
// counters_ accessed by multiple goroutines.
package main
import "fmt"
import "time"
import "sync/atomic"
func main() {
// We'll use an unsigned integer to represent our
// (always-positive) counter.
var ops uint64 = 0
// To simulate concurrent updates, we'll start 50
// goroutines that each increment the counter about
// once a millisecond.
for i := 0; i < 50; i++ {
go func() {
for {
// To atomically increment the counter we
// use `AddUint64`, giving it the memory
// address of our `ops` counter with the
// `&` syntax.
atomic.AddUint64(&ops, 1)
// Wait a bit between increments.
time.Sleep(time.Millisecond)
}
}()
}
// Wait a second to allow some ops to accumulate.
time.Sleep(time.Second)
// In order to safely use the counter while it's still
// being updated by other goroutines, we extract a
// copy of the current value into `opsFinal` via
// `LoadUint64`. As above we need to give this
// function the memory address `&ops` from which to
// fetch the value.
opsFinal := atomic.LoadUint64(&ops)
fmt.Println("ops:", opsFinal)
}
# Running the program shows that we executed about
# 40,000 operations.
$ go run atomic-counters.go
ops: 41419
# Next we'll look at mutexes, another tool for managing
# state.
// In the previous example we saw how to manage simple
// counter state using [atomic operations](atomic-counters).
// For more complex state we can use a _[mutex](http://en.wikipedia.org/wiki/Mutual_exclusion)_
// to safely access data across multiple goroutines.
package main
import (
"fmt"
"math/rand"
"sync"
"sync/atomic"
"time"
)
func main() {
// For our example the `state` will be a map.
var state = make(map[int]int)
// This `mutex` will synchronize access to `state`.
var mutex = &sync.Mutex{}
// We'll keep track of how many read and write
// operations we do.
var readOps uint64 = 0
var writeOps uint64 = 0
// Here we start 100 goroutines to execute repeated
// reads against the state, once per millisecond in
// each goroutine.
for r := 0; r < 100; r++ {
go func() {
total := 0
for {
// For each read we pick a key to access,
// `Lock()` the `mutex` to ensure
// exclusive access to the `state`, read
// the value at the chosen key,
// `Unlock()` the mutex, and increment
// the `readOps` count.
key := rand.Intn(5)
mutex.Lock()
total += state[key]
mutex.Unlock()
atomic.AddUint64(&readOps, 1)
// Wait a bit between reads.
time.Sleep(time.Millisecond)
}
}()
}
// We'll also start 10 goroutines to simulate writes,
// using the same pattern we did for reads.
for w := 0; w < 10; w++ {
go func() {
for {
key := rand.Intn(5)
val := rand.Intn(100)
mutex.Lock()
state[key] = val
mutex.Unlock()
atomic.AddUint64(&writeOps, 1)
time.Sleep(time.Millisecond)
}
}()
}
// Let the 10 goroutines work on the `state` and
// `mutex` for a second.
time.Sleep(time.Second)
// Take and report final operation counts.
readOpsFinal := atomic.LoadUint64(&readOps)
fmt.Println("readOps:", readOpsFinal)
writeOpsFinal := atomic.LoadUint64(&writeOps)
fmt.Println("writeOps:", writeOpsFinal)
// With a final lock of `state`, show how it ended up.
mutex.Lock()
fmt.Println("state:", state)
mutex.Unlock()
}
# Running the program shows that we executed about
# 90,000 total operations against our `mutex`-synchronized
# `state`.
$ go run mutexes.go
readOps: 83285
writeOps: 8320
state: map[1:97 4:53 0:33 2:15 3:2]
# Next we'll look at implementing this same state
# management task using only goroutines and channels.
// In the previous example we used explicit locking with
// [mutexes](mutexes) to synchronize access to shared state
// across multiple goroutines. Another option is to use the
// built-in synchronization features of goroutines and
// channels to achieve the same result. This channel-based
// approach aligns with Go's ideas of sharing memory by
// communicating and having each piece of data owned
// by exactly 1 goroutine.
package main
import (
"fmt"
"math/rand"
"sync/atomic"
"time"
)
// In this example our state will be owned by a single
// goroutine. This will guarantee that the data is never
// corrupted with concurrent access. In order to read or
// write that state, other goroutines will send messages
// to the owning goroutine and receive corresponding
// replies. These `readOp` and `writeOp` `struct`s
// encapsulate those requests and a way for the owning
// goroutine to respond.
type readOp struct {
key int
resp chan int
}
type writeOp struct {
key int
val int
resp chan bool
}
func main() {
// As before we'll count how many operations we perform.
var readOps uint64 = 0
var writeOps uint64 = 0
// The `reads` and `writes` channels will be used by
// other goroutines to issue read and write requests,
// respectively.
reads := make(chan *readOp)
writes := make(chan *writeOp)
// Here is the goroutine that owns the `state`, which
// is a map as in the previous example but now private
// to the stateful goroutine. This goroutine repeatedly
// selects on the `reads` and `writes` channels,
// responding to requests as they arrive. A response
// is executed by first performing the requested
// operation and then sending a value on the response
// channel `resp` to indicate success (and the desired
// value in the case of `reads`).
go func() {
var state = make(map[int]int)
for {
select {
case read := <-reads:
read.resp <- state[read.key]
case write := <-writes:
state[write.key] = write.val
write.resp <- true
}
}
}()
// This starts 100 goroutines to issue reads to the
// state-owning goroutine via the `reads` channel.
// Each read requires constructing a `readOp`, sending
// it over the `reads` channel, and the receiving the
// result over the provided `resp` channel.
for r := 0; r < 100; r++ {
go func() {
for {
read := &readOp{
key: rand.Intn(5),
resp: make(chan int)}
reads <- read
<-read.resp
atomic.AddUint64(&readOps, 1)
time.Sleep(time.Millisecond)
}
}()
}
// We start 10 writes as well, using a similar
// approach.
for w := 0; w < 10; w++ {
go func() {
for {
write := &writeOp{
key: rand.Intn(5),
val: rand.Intn(100),
resp: make(chan bool)}
writes <- write
<-write.resp
atomic.AddUint64(&writeOps, 1)
time.Sleep(time.Millisecond)
}
}()
}
// Let the goroutines work for a second.
time.Sleep(time.Second)
// Finally, capture and report the op counts.
readOpsFinal := atomic.LoadUint64(&readOps)
fmt.Println("readOps:", readOpsFinal)
writeOpsFinal := atomic.LoadUint64(&writeOps)
fmt.Println("writeOps:", writeOpsFinal)
}
# Running our program shows that the goroutine-based
# state management example completes about 80,000
# total operations.
$ go run stateful-goroutines.go
readOps: 71708
writeOps: 7177
# For this particular case the goroutine-based approach
# was a bit more involved than the mutex-based one. It
# might be useful in certain cases though, for example
# where you have other channels involved or when managing
# multiple such mutexes would be error-prone. You should
# use whichever approach feels most natural, especially
# with respect to understanding the correctness of your
# program.
// Go's `sort` package implements sorting for builtins
// and user-defined types. We'll look at sorting for
// builtins first.
package main
import "fmt"
import "sort"
func main() {
// Sort methods are specific to the builtin type;
// here's an example for strings. Note that sorting is
// in-place, so it changes the given slice and doesn't
// return a new one.
strs := []string{"c", "a", "b"}
sort.Strings(strs)
fmt.Println("Strings:", strs)
// An example of sorting `int`s.
ints := []int{7, 2, 4}
sort.Ints(ints)
fmt.Println("Ints: ", ints)
// We can also use `sort` to check if a slice is
// already in sorted order.
s := sort.IntsAreSorted(ints)
fmt.Println("Sorted: ", s)
}
# Running our program prints the sorted string and int
# slices and `true` as the result of our `AreSorted` test.
$ go run sorting.go
Strings: [a b c]
Ints: [2 4 7]
Sorted: true
// Sometimes we'll want to sort a collection by something
// other than its natural order. For example, suppose we
// wanted to sort strings by their length instead of
// alphabetically. Here's an example of custom sorts
// in Go.
package main
import "sort"
import "fmt"
// In order to sort by a custom function in Go, we need a
// corresponding type. Here we've created a `ByLength`
// type that is just an alias for the builtin `[]string`
// type.
type ByLength []string
// We implement `sort.Interface` - `Len`, `Less`, and
// `Swap` - on our type so we can use the `sort` package's
// generic `Sort` function. `Len` and `Swap`
// will usually be similar across types and `Less` will
// hold the actual custom sorting logic. In our case we
// want to sort in order of increasing string length, so
// we use `len(s[i])` and `len(s[j])` here.
func (s ByLength) Len() int {
return len(s)
}
func (s ByLength) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (s ByLength) Less(i, j int) bool {
return len(s[i]) < len(s[j])
}
// With all of this in place, we can now implement our
// custom sort by casting the original `fruits` slice to
// `ByLength`, and then use `sort.Sort` on that typed
// slice.
func main() {
fruits := []string{"peach", "banana", "kiwi"}
sort.Sort(ByLength(fruits))
fmt.Println(fruits)
}
# Running our program shows a list sorted by string
# length, as desired.
$ go run sorting-by-functions.go
[kiwi peach banana]
# By following this same pattern of creating a custom
# type, implementing the three `Interface` methods on that
# type, and then calling sort.Sort on a collection of that
# custom type, we can sort Go slices by arbitrary
# functions.
// A `panic` typically means something went unexpectedly
// wrong. Mostly we use it to fail fast on errors that
// shouldn't occur during normal operation, or that we
// aren't prepared to handle gracefully.
package main
import "os"
func main() {
// We'll use panic throughout this site to check for
// unexpected errors. This is the only program on the
// site designed to panic.
panic("a problem")
// A common use of panic is to abort if a function
// returns an error value that we don't know how to
// (or want to) handle. Here's an example of
// `panic`king if we get an unexpected error when creating a new file.
_, err := os.Create("/tmp/file")
if err != nil {
panic(err)
}
}
# Running this program will cause it to panic, print
# an error message and goroutine traces, and exit with
# a non-zero status.
$ go run panic.go
panic: a problem
goroutine 1 [running]:
main.main()
/.../panic.go:12 +0x47
...
exit status 2
# Note that unlike some languages which use exceptions
# for handling of many errors, in Go it is idiomatic
# to use error-indicating return values wherever possible.
// _Defer_ is used to ensure that a function call is
// performed later in a program's execution, usually for
// purposes of cleanup. `defer` is often used where e.g.
// `ensure` and `finally` would be used in other languages.
package main
import "fmt"
import "os"
// Suppose we wanted to create a file, write to it,
// and then close when we're done. Here's how we could
// do that with `defer`.
func main() {
// Immediately after getting a file object with
// `createFile`, we defer the closing of that file
// with `closeFile`. This will be executed at the end
// of the enclosing function (`main`), after
// `writeFile` has finished.
f := createFile("/tmp/defer.txt")
defer closeFile(f)
writeFile(f)
}
func createFile(p string) *os.File {
fmt.Println("creating")
f, err := os.Create(p)
if err != nil {
panic(err)
}
return f
}
func writeFile(f *os.File) {
fmt.Println("writing")
fmt.Fprintln(f, "data")
}
func closeFile(f *os.File) {
fmt.Println("closing")
f.Close()
}
# Running the program confirms that the file is closed
# after being written.
$ go run defer.go
creating
writing
closing
// We often need our programs to perform operations on
// collections of data, like selecting all items that
// satisfy a given predicate or mapping all items to a new
// collection with a custom function.
// In some languages it's idiomatic to use [generic](http://en.wikipedia.org/wiki/Generic_programming)
// data structures and algorithms. Go does not support
// generics; in Go it's common to provide collection
// functions if and when they are specifically needed for
// your program and data types.
// Here are some example collection functions for slices
// of `strings`. You can use these examples to build your
// own functions. Note that in some cases it may be
// clearest to just inline the collection-manipulating
// code directly, instead of creating and calling a
// helper function.
package main
import "strings"
import "fmt"
// Returns the first index of the target string `t`, or
// -1 if no match is found.
func Index(vs []string, t string) int {
for i, v := range vs {
if v == t {
return i
}
}
return -1
}
// Returns `true` if the target string t is in the
// slice.
func Include(vs []string, t string) bool {
return Index(vs, t) >= 0
}
// Returns `true` if one of the strings in the slice
// satisfies the predicate `f`.
func Any(vs []string, f func(string) bool) bool {
for _, v := range vs {
if f(v) {
return true
}
}
return false
}
// Returns `true` if all of the strings in the slice
// satisfy the predicate `f`.
func All(vs []string, f func(string) bool) bool {
for _, v := range vs {
if !f(v) {
return false
}
}
return true
}
// Returns a new slice containing all strings in the
// slice that satisfy the predicate `f`.
func Filter(vs []string, f func(string) bool) []string {
vsf := make([]string, 0)
for _, v := range vs {
if f(v) {
vsf = append(vsf, v)
}
}
return vsf
}
// Returns a new slice containing the results of applying
// the function `f` to each string in the original slice.
func Map(vs []string, f func(string) string) []string {
vsm := make([]string, len(vs))
for i, v := range vs {
vsm[i] = f(v)
}
return vsm
}
func main() {
// Here we try out our various collection functions.
var strs = []string{"peach", "apple", "pear", "plum"}
fmt.Println(Index(strs, "pear"))
fmt.Println(Include(strs, "grape"))
fmt.Println(Any(strs, func(v string) bool {
return strings.HasPrefix(v, "p")
}))
fmt.Println(All(strs, func(v string) bool {
return strings.HasPrefix(v, "p")
}))
fmt.Println(Filter(strs, func(v string) bool {
return strings.Contains(v, "e")
}))
// The above examples all used anonymous functions,
// but you can also use named functions of the correct
// type.
fmt.Println(Map(strs, strings.ToUpper))
}
$ go run collection-functions.go
2
false
true
false
[peach apple pear]
[PEACH APPLE PEAR PLUM]
// The standard library's `strings` package provides many
// useful string-related functions. Here are some examples
// to give you a sense of the package.
package main
import s "strings"
import "fmt"
// We alias `fmt.Println` to a shorter name as we'll use
// it a lot below.
var p = fmt.Println
func main() {
// Here's a sample of the functions available in
// `strings`. Since these are functions from the
// package, not methods on the string object itself,
// we need pass the string in question as the first
// argument to the function. You can find more
// functions in the [`strings`](http://golang.org/pkg/strings/)
// package docs.
p("Contains: ", s.Contains("test", "es"))
p("Count: ", s.Count("test", "t"))
p("HasPrefix: ", s.HasPrefix("test", "te"))
p("HasSuffix: ", s.HasSuffix("test", "st"))
p("Index: ", s.Index("test", "e"))
p("Join: ", s.Join([]string{"a", "b"}, "-"))
p("Repeat: ", s.Repeat("a", 5))
p("Replace: ", s.Replace("foo", "o", "0", -1))
p("Replace: ", s.Replace("foo", "o", "0", 1))
p("Split: ", s.Split("a-b-c-d-e", "-"))
p("ToLower: ", s.ToLower("TEST"))
p("ToUpper: ", s.ToUpper("test"))
p()
// Not part of `strings`, but worth mentioning here, are
// the mechanisms for getting the length of a string in
// bytes and getting a byte by index.
p("Len: ", len("hello"))
p("Char:", "hello"[1])
}
// Note that `len` and indexing above work at the byte level.
// Go uses UTF-8 encoded strings, so this is often useful
// as-is. If you're working with potentially multi-byte
// characters you'll want to use encoding-aware operations.
// See [strings, bytes, runes and characters in Go](https://blog.golang.org/strings)
// for more information.
$ go run string-functions.go
Contains: true
Count: 2
HasPrefix: true
HasSuffix: true
Index: 1
Join: a-b
Repeat: aaaaa
Replace: f00
Replace: f0o
Split: [a b c d e]
ToLower: test
ToUpper: TEST
Len: 5
Char: 101
// Go offers excellent support for string formatting in
// the `printf` tradition. Here are some examples of
// common string formatting tasks.
package main
import "fmt"
import "os"
type point struct {
x, y int
}
func main() {
// Go offers several printing "verbs" designed to
// format general Go values. For example, this prints
// an instance of our `point` struct.
p := point{1, 2}
fmt.Printf("%v\n", p)
// If the value is a struct, the `%+v` variant will
// include the struct's field names.
fmt.Printf("%+v\n", p)
// The `%#v` variant prints a Go syntax representation
// of the value, i.e. the source code snippet that
// would produce that value.
fmt.Printf("%#v\n", p)
// To print the type of a value, use `%T`.
fmt.Printf("%T\n", p)
// Formatting booleans is straight-forward.
fmt.Printf("%t\n", true)
// There are many options for formatting integers.
// Use `%d` for standard, base-10 formatting.
fmt.Printf("%d\n", 123)
// This prints a binary representation.
fmt.Printf("%b\n", 14)
// This prints the character corresponding to the
// given integer.
fmt.Printf("%c\n", 33)
// `%x` provides hex encoding.
fmt.Printf("%x\n", 456)
// There are also several formatting options for
// floats. For basic decimal formatting use `%f`.
fmt.Printf("%f\n", 78.9)
// `%e` and `%E` format the float in (slightly
// different versions of) scientific notation.
fmt.Printf("%e\n", 123400000.0)
fmt.Printf("%E\n", 123400000.0)
// For basic string printing use `%s`.
fmt.Printf("%s\n", "\"string\"")
// To double-quote strings as in Go source, use `%q`.
fmt.Printf("%q\n", "\"string\"")
// As with integers seen earlier, `%x` renders
// the string in base-16, with two output characters
// per byte of input.
fmt.Printf("%x\n", "hex this")
// To print a representation of a pointer, use `%p`.
fmt.Printf("%p\n", &p)
// When formatting numbers you will often want to
// control the width and precision of the resulting
// figure. To specify the width of an integer, use a
// number after the `%` in the verb. By default the
// result will be right-justified and padded with
// spaces.
fmt.Printf("|%6d|%6d|\n", 12, 345)
// You can also specify the width of printed floats,
// though usually you'll also want to restrict the
// decimal precision at the same time with the
// width.precision syntax.
fmt.Printf("|%6.2f|%6.2f|\n", 1.2, 3.45)
// To left-justify, use the `-` flag.
fmt.Printf("|%-6.2f|%-6.2f|\n", 1.2, 3.45)
// You may also want to control width when formatting
// strings, especially to ensure that they align in
// table-like output. For basic right-justified width.
fmt.Printf("|%6s|%6s|\n", "foo", "b")
// To left-justify use the `-` flag as with numbers.
fmt.Printf("|%-6s|%-6s|\n", "foo", "b")
// So far we've seen `Printf`, which prints the
// formatted string to `os.Stdout`. `Sprintf` formats
// and returns a string without printing it anywhere.
s := fmt.Sprintf("a %s", "string")
fmt.Println(s)
// You can format+print to `io.Writers` other than
// `os.Stdout` using `Fprintf`.
fmt.Fprintf(os.Stderr, "an %s\n", "error")
}
$ go run string-formatting.go
{1 2}
{x:1 y:2}
main.point{x:1, y:2}
main.point
true
123
1110
!
1c8
78.900000
1.234000e+08
1.234000E+08
"string"
"\"string\""
6865782074686973
0x42135100
| 12| 345|
| 1.20| 3.45|
|1.20 |3.45 |
| foo| b|
|foo |b |
a string
an error
// Go offers built-in support for [regular expressions](http://en.wikipedia.org/wiki/Regular_expression).
// Here are some examples of common regexp-related tasks
// in Go.
package main
import "bytes"
import "fmt"
import "regexp"
func main() {
// This tests whether a pattern matches a string.
match, _ := regexp.MatchString("p([a-z]+)ch", "peach")
fmt.Println(match)
// Above we used a string pattern directly, but for
// other regexp tasks you'll need to `Compile` an
// optimized `Regexp` struct.
r, _ := regexp.Compile("p([a-z]+)ch")
// Many methods are available on these structs. Here's
// a match test like we saw earlier.
fmt.Println(r.MatchString("peach"))
// This finds the match for the regexp.
fmt.Println(r.FindString("peach punch"))
// This also finds the first match but returns the
// start and end indexes for the match instead of the
// matching text.
fmt.Println(r.FindStringIndex("peach punch"))
// The `Submatch` variants include information about
// both the whole-pattern matches and the submatches
// within those matches. For example this will return
// information for both `p([a-z]+)ch` and `([a-z]+)`.
fmt.Println(r.FindStringSubmatch("peach punch"))
// Similarly this will return information about the
// indexes of matches and submatches.
fmt.Println(r.FindStringSubmatchIndex("peach punch"))
// The `All` variants of these functions apply to all
// matches in the input, not just the first. For
// example to find all matches for a regexp.
fmt.Println(r.FindAllString("peach punch pinch", -1))
// These `All` variants are available for the other
// functions we saw above as well.
fmt.Println(r.FindAllStringSubmatchIndex(
"peach punch pinch", -1))
// Providing a non-negative integer as the second
// argument to these functions will limit the number
// of matches.
fmt.Println(r.FindAllString("peach punch pinch", 2))
// Our examples above had string arguments and used
// names like `MatchString`. We can also provide
// `[]byte` arguments and drop `String` from the
// function name.
fmt.Println(r.Match([]byte("peach")))
// When creating constants with regular expressions
// you can use the `MustCompile` variation of
// `Compile`. A plain `Compile` won't work for
// constants because it has 2 return values.
r = regexp.MustCompile("p([a-z]+)ch")
fmt.Println(r)
// The `regexp` package can also be used to replace
// subsets of strings with other values.
fmt.Println(r.ReplaceAllString("a peach", "<fruit>"))
// The `Func` variant allows you to transform matched
// text with a given function.
in := []byte("a peach")
out := r.ReplaceAllFunc(in, bytes.ToUpper)
fmt.Println(string(out))
}
$ go run regular-expressions.go
true
true
peach
[0 5]
[peach ea]
[0 5 1 3]
[peach punch pinch]
[[0 5 1 3] [6 11 7 9] [12 17 13 15]]
[peach punch]
true
p([a-z]+)ch
a <fruit>
a PEACH
# For a complete reference on Go regular expressions check
# the [`regexp`](http://golang.org/pkg/regexp/) package docs.
// Go offers built-in support for JSON encoding and
// decoding, including to and from built-in and custom
// data types.
package main
import "encoding/json"
import "fmt"
import "os"
// We'll use these two structs to demonstrate encoding and
// decoding of custom types below.
type Response1 struct {
Page int
Fruits []string
}
type Response2 struct {
Page int `json:"page"`
Fruits []string `json:"fruits"`
}
func main() {
// First we'll look at encoding basic data types to
// JSON strings. Here are some examples for atomic
// values.
bolB, _ := json.Marshal(true)
fmt.Println(string(bolB))
intB, _ := json.Marshal(1)
fmt.Println(string(intB))
fltB, _ := json.Marshal(2.34)
fmt.Println(string(fltB))
strB, _ := json.Marshal("gopher")
fmt.Println(string(strB))
// And here are some for slices and maps, which encode
// to JSON arrays and objects as you'd expect.
slcD := []string{"apple", "peach", "pear"}
slcB, _ := json.Marshal(slcD)
fmt.Println(string(slcB))
mapD := map[string]int{"apple": 5, "lettuce": 7}
mapB, _ := json.Marshal(mapD)
fmt.Println(string(mapB))
// The JSON package can automatically encode your
// custom data types. It will only include exported
// fields in the encoded output and will by default
// use those names as the JSON keys.
res1D := &Response1{
Page: 1,
Fruits: []string{"apple", "peach", "pear"}}
res1B, _ := json.Marshal(res1D)
fmt.Println(string(res1B))
// You can use tags on struct field declarations
// to customize the encoded JSON key names. Check the
// definition of `Response2` above to see an example
// of such tags.
res2D := &Response2{
Page: 1,
Fruits: []string{"apple", "peach", "pear"}}
res2B, _ := json.Marshal(res2D)
fmt.Println(string(res2B))
// Now let's look at decoding JSON data into Go
// values. Here's an example for a generic data
// structure.
byt := []byte(`{"num":6.13,"strs":["a","b"]}`)
// We need to provide a variable where the JSON
// package can put the decoded data. This
// `map[string]interface{}` will hold a map of strings
// to arbitrary data types.
var dat map[string]interface{}
// Here's the actual decoding, and a check for
// associated errors.
if err := json.Unmarshal(byt, &dat); err != nil {
panic(err)
}
fmt.Println(dat)
// In order to use the values in the decoded map,
// we'll need to cast them to their appropriate type.
// For example here we cast the value in `num` to
// the expected `float64` type.
num := dat["num"].(float64)
fmt.Println(num)
// Accessing nested data requires a series of
// casts.
strs := dat["strs"].([]interface{})
str1 := strs[0].(string)
fmt.Println(str1)
// We can also decode JSON into custom data types.
// This has the advantages of adding additional
// type-safety to our programs and eliminating the
// need for type assertions when accessing the decoded
// data.
str := `{"page": 1, "fruits": ["apple", "peach"]}`
res := Response2{}
json.Unmarshal([]byte(str), &res)
fmt.Println(res)
fmt.Println(res.Fruits[0])
// In the examples above we always used bytes and
// strings as intermediates between the data and
// JSON representation on standard out. We can also
// stream JSON encodings directly to `os.Writer`s like
// `os.Stdout` or even HTTP response bodies.
enc := json.NewEncoder(os.Stdout)
d := map[string]int{"apple": 5, "lettuce": 7}
enc.Encode(d)
}
$ go run json.go
true
1
2.34
"gopher"
["apple","peach","pear"]
{"apple":5,"lettuce":7}
{"Page":1,"Fruits":["apple","peach","pear"]}
{"page":1,"fruits":["apple","peach","pear"]}
map[num:6.13 strs:[a b]]
6.13
a
{1 [apple peach]}
apple
{"apple":5,"lettuce":7}
# We've covered the basic of JSON in Go here, but check
# out the [JSON and Go](http://blog.golang.org/2011/01/json-and-go.html)
# blog post and [JSON package docs](http://golang.org/pkg/encoding/json/)
# for more.
// Go offers extensive support for times and durations;
// here are some examples.
package main
import "fmt"
import "time"
func main() {
p := fmt.Println
// We'll start by getting the current time.
now := time.Now()
p(now)
// You can build a `time` struct by providing the
// year, month, day, etc. Times are always associated
// with a `Location`, i.e. time zone.
then := time.Date(
2009, 11, 17, 20, 34, 58, 651387237, time.UTC)
p(then)
// You can extract the various components of the time
// value as expected.
p(then.Year())
p(then.Month())
p(then.Day())
p(then.Hour())
p(then.Minute())
p(then.Second())
p(then.Nanosecond())
p(then.Location())
// The Monday-Sunday `Weekday` is also available.
p(then.Weekday())
// These methods compare two times, testing if the
// first occurs before, after, or at the same time
// as the second, respectively.
p(then.Before(now))
p(then.After(now))
p(then.Equal(now))
// The `Sub` methods returns a `Duration` representing
// the interval between two times.
diff := now.Sub(then)
p(diff)
// We can compute the length of the duration in
// various units.
p(diff.Hours())
p(diff.Minutes())
p(diff.Seconds())
p(diff.Nanoseconds())
// You can use `Add` to advance a time by a given
// duration, or with a `-` to move backwards by a
// duration.
p(then.Add(diff))
p(then.Add(-diff))
}
$ go run time.go
2012-10-31 15:50:13.793654 +0000 UTC
2009-11-17 20:34:58.651387237 +0000 UTC
2009
November
17
20
34
58
651387237
UTC
Tuesday
true
false
false
25891h15m15.142266763s
25891.25420618521
1.5534752523711128e+06
9.320851514226677e+07
93208515142266763
2012-10-31 15:50:13.793654 +0000 UTC
2006-12-05 01:19:43.509120474 +0000 UTC
# Next we'll look at the related idea of time relative to
# the Unix epoch.
// A common requirement in programs is getting the number
// of seconds, milliseconds, or nanoseconds since the
// [Unix epoch](http://en.wikipedia.org/wiki/Unix_time).
// Here's how to do it in Go.
package main
import "fmt"
import "time"
func main() {
// Use `time.Now` with `Unix` or `UnixNano` to get
// elapsed time since the Unix epoch in seconds or
// nanoseconds, respectively.
now := time.Now()
secs := now.Unix()
nanos := now.UnixNano()
fmt.Println(now)
// Note that there is no `UnixMillis`, so to get the
// milliseconds since epoch you'll need to manually
// divide from nanoseconds.
millis := nanos / 1000000
fmt.Println(secs)
fmt.Println(millis)
fmt.Println(nanos)
// You can also convert integer seconds or nanoseconds
// since the epoch into the corresponding `time`.
fmt.Println(time.Unix(secs, 0))
fmt.Println(time.Unix(0, nanos))
}
$ go run epoch.go
2012-10-31 16:13:58.292387 +0000 UTC
1351700038
1351700038292
1351700038292387000
2012-10-31 16:13:58 +0000 UTC
2012-10-31 16:13:58.292387 +0000 UTC
# Next we'll look at another time-related task: time
# parsing and formatting.
// Go supports time formatting and parsing via
// pattern-based layouts.
package main
import "fmt"
import "time"
func main() {
p := fmt.Println
// Here's a basic example of formatting a time
// according to RFC3339, using the corresponding layout
// constant.
t := time.Now()
p(t.Format(time.RFC3339))
// Time parsing uses the same layout values as `Format`.
t1, e := time.Parse(
time.RFC3339,
"2012-11-01T22:08:41+00:00")
p(t1)
// `Format` and `Parse` use example-based layouts. Usually
// you'll use a constant from `time` for these layouts, but
// you can also supply custom layouts. Layouts must use the
// reference time `Mon Jan 2 15:04:05 MST 2006` to show the
// pattern with which to format/parse a given time/string.
// The example time must be exactly as shown: the year 2006,
// 15 for the hour, Monday for the day of the week, etc.
p(t.Format("3:04PM"))
p(t.Format("Mon Jan _2 15:04:05 2006"))
p(t.Format("2006-01-02T15:04:05.999999-07:00"))
form := "3 04 PM"
t2, e := time.Parse(form, "8 41 PM")
p(t2)
// For purely numeric representations you can also
// use standard string formatting with the extracted
// components of the time value.
fmt.Printf("%d-%02d-%02dT%02d:%02d:%02d-00:00\n",
t.Year(), t.Month(), t.Day(),
t.Hour(), t.Minute(), t.Second())
// `Parse` will return an error on malformed input
// explaining the parsing problem.
ansic := "Mon Jan _2 15:04:05 2006"
_, e = time.Parse(ansic, "8:41PM")
p(e)
}
$ go run time-formatting-parsing.go
2014-04-15T18:00:15-07:00
2012-11-01 22:08:41 +0000 +0000
6:00PM
Tue Apr 15 18:00:15 2014
2014-04-15T18:00:15.161182-07:00
0000-01-01 20:41:00 +0000 UTC
2014-04-15T18:00:15-00:00
parsing time "8:41PM" as "Mon Jan _2 15:04:05 2006": ...
// Go's `math/rand` package provides
// [pseudorandom number](http://en.wikipedia.org/wiki/Pseudorandom_number_generator)
// generation.
package main
import "time"
import "fmt"
import "math/rand"
func main() {
// For example, `rand.Intn` returns a random `int` n,
// `0 <= n < 100`.
fmt.Print(rand.Intn(100), ",")
fmt.Print(rand.Intn(100))
fmt.Println()
// `rand.Float64` returns a `float64` `f`,
// `0.0 <= f < 1.0`.
fmt.Println(rand.Float64())
// This can be used to generate random floats in
// other ranges, for example `5.0 <= f' < 10.0`.
fmt.Print((rand.Float64()*5)+5, ",")
fmt.Print((rand.Float64() * 5) + 5)
fmt.Println()
// The default number generator is deterministic, so it'll
// produce the same sequence of numbers each time by default.
// To produce varying sequences, give it a seed that changes.
// Note that this is not safe to use for random numbers you
// intend to be secret, use `crypto/rand` for those.
s1 := rand.NewSource(time.Now().UnixNano())
r1 := rand.New(s1)
// Call the resulting `rand.Rand` just like the
// functions on the `rand` package.
fmt.Print(r1.Intn(100), ",")
fmt.Print(r1.Intn(100))
fmt.Println()
// If you seed a source with the same number, it
// produces the same sequence of random numbers.
s2 := rand.NewSource(42)
r2 := rand.New(s2)
fmt.Print(r2.Intn(100), ",")
fmt.Print(r2.Intn(100))
fmt.Println()
s3 := rand.NewSource(42)
r3 := rand.New(s3)
fmt.Print(r3.Intn(100), ",")
fmt.Print(r3.Intn(100))
}
$ go run random-numbers.go
81,87
0.6645600532184904
7.123187485356329,8.434115364335547
0,28
5,87
5,87
# See the [`math/rand`](http://golang.org/pkg/math/rand/)
# package docs for references on other random quantities
# that Go can provide.
// Parsing numbers from strings is a basic but common task
// in many programs; here's how to do it in Go.
package main
// The built-in package `strconv` provides the number
// parsing.
import "strconv"
import "fmt"
func main() {
// With `ParseFloat`, this `64` tells how many bits of
// precision to parse.
f, _ := strconv.ParseFloat("1.234", 64)
fmt.Println(f)
// For `ParseInt`, the `0` means infer the base from
// the string. `64` requires that the result fit in 64
// bits.
i, _ := strconv.ParseInt("123", 0, 64)
fmt.Println(i)
// `ParseInt` will recognize hex-formatted numbers.
d, _ := strconv.ParseInt("0x1c8", 0, 64)
fmt.Println(d)
// A `ParseUint` is also available.
u, _ := strconv.ParseUint("789", 0, 64)
fmt.Println(u)
// `Atoi` is a convenience function for basic base-10
// `int` parsing.
k, _ := strconv.Atoi("135")
fmt.Println(k)
// Parse functions return an error on bad input.
_, e := strconv.Atoi("wat")
fmt.Println(e)
}
$ go run number-parsing.go
1.234
123
456
789
135
strconv.ParseInt: parsing "wat": invalid syntax
# Next we'll look at another common parsing task: URLs.
// URLs provide a [uniform way to locate resources](http://adam.heroku.com/past/2010/3/30/urls_are_the_uniform_way_to_locate_resources/).
// Here's how to parse URLs in Go.
package main
import "fmt"
import "net"
import "net/url"
func main() {
// We'll parse this example URL, which includes a
// scheme, authentication info, host, port, path,
// query params, and query fragment.
s := "postgres://user:[email protected]:5432/path?k=v#f"
// Parse the URL and ensure there are no errors.
u, err := url.Parse(s)
if err != nil {
panic(err)
}
// Accessing the scheme is straightforward.
fmt.Println(u.Scheme)
// `User` contains all authentication info; call
// `Username` and `Password` on this for individual
// values.
fmt.Println(u.User)
fmt.Println(u.User.Username())
p, _ := u.User.Password()
fmt.Println(p)
// The `Host` contains both the hostname and the port,
// if present. Use `SplitHostPort` to extract them.
fmt.Println(u.Host)
host, port, _ := net.SplitHostPort(u.Host)
fmt.Println(host)
fmt.Println(port)
// Here we extract the `path` and the fragment after
// the `#`.
fmt.Println(u.Path)
fmt.Println(u.Fragment)
// To get query params in a string of `k=v` format,
// use `RawQuery`. You can also parse query params
// into a map. The parsed query param maps are from
// strings to slices of strings, so index into `[0]`
// if you only want the first value.
fmt.Println(u.RawQuery)
m, _ := url.ParseQuery(u.RawQuery)
fmt.Println(m)
fmt.Println(m["k"][0])
}
# Running our URL parsing program shows all the different
# pieces that we extracted.
$ go run url-parsing.go
postgres
user:pass
user
pass
host.com:5432
host.com
5432
/path
f
k=v
map[k:[v]]
v
// [_SHA1 hashes_](http://en.wikipedia.org/wiki/SHA-1) are
// frequently used to compute short identities for binary
// or text blobs. For example, the [git revision control
// system](http://git-scm.com/) uses SHA1s extensively to
// identify versioned files and directories. Here's how to
// compute SHA1 hashes in Go.
package main
// Go implements several hash functions in various
// `crypto/*` packages.
import "crypto/sha1"
import "fmt"
func main() {
s := "sha1 this string"
// The pattern for generating a hash is `sha1.New()`,
// `sha1.Write(bytes)`, then `sha1.Sum([]byte{})`.
// Here we start with a new hash.
h := sha1.New()
// `Write` expects bytes. If you have a string `s`,
// use `[]byte(s)` to coerce it to bytes.
h.Write([]byte(s))
// This gets the finalized hash result as a byte
// slice. The argument to `Sum` can be used to append
// to an existing byte slice: it usually isn't needed.
bs := h.Sum(nil)
// SHA1 values are often printed in hex, for example
// in git commits. Use the `%x` format verb to convert
// a hash results to a hex string.
fmt.Println(s)
fmt.Printf("%x\n", bs)
}
# Running the program computes the hash and prints it in
# a human-readable hex format.
$ go run sha1-hashes.go
sha1 this string
cf23df2207d99a74fbe169e3eba035e633b65d94
# You can compute other hashes using a similar pattern to
# the one shown above. For example, to compute MD5 hashes
# import `crypto/md5` and use `md5.New()`.
# Note that if you need cryptographically secure hashes,
# you should carefully research
# [hash strength](http://en.wikipedia.org/wiki/Cryptographic_hash_function)!
// Go provides built-in support for [base64
// encoding/decoding](http://en.wikipedia.org/wiki/Base64).
package main
// This syntax imports the `encoding/base64` package with
// the `b64` name instead of the default `base64`. It'll
// save us some space below.
import b64 "encoding/base64"
import "fmt"
func main() {
// Here's the `string` we'll encode/decode.
data := "abc123!?$*&()'-=@~"
// Go supports both standard and URL-compatible
// base64. Here's how to encode using the standard
// encoder. The encoder requires a `[]byte` so we
// cast our `string` to that type.
sEnc := b64.StdEncoding.EncodeToString([]byte(data))
fmt.Println(sEnc)
// Decoding may return an error, which you can check
// if you don't already know the input to be
// well-formed.
sDec, _ := b64.StdEncoding.DecodeString(sEnc)
fmt.Println(string(sDec))
fmt.Println()
// This encodes/decodes using a URL-compatible base64
// format.
uEnc := b64.URLEncoding.EncodeToString([]byte(data))
fmt.Println(uEnc)
uDec, _ := b64.URLEncoding.DecodeString(uEnc)
fmt.Println(string(uDec))
}
# The string encodes to slightly different values with the
# standard and URL base64 encoders (trailing `+` vs `-`)
# but they both decode to the original string as desired.
$ go run base64-encoding.go
YWJjMTIzIT8kKiYoKSctPUB+
abc123!?$*&()'-=@~
YWJjMTIzIT8kKiYoKSctPUB-
abc123!?$*&()'-=@~
// Reading and writing files are basic tasks needed for
// many Go programs. First we'll look at some examples of
// reading files.
package main
import (
"bufio"
"fmt"
"io"
"io/ioutil"
"os"
)
// Reading files requires checking most calls for errors.
// This helper will streamline our error checks below.
func check(e error) {
if e != nil {
panic(e)
}
}
func main() {
// Perhaps the most basic file reading task is
// slurping a file's entire contents into memory.
dat, err := ioutil.ReadFile("/tmp/dat")
check(err)
fmt.Print(string(dat))
// You'll often want more control over how and what
// parts of a file are read. For these tasks, start
// by `Open`ing a file to obtain an `os.File` value.
f, err := os.Open("/tmp/dat")
check(err)
// Read some bytes from the beginning of the file.
// Allow up to 5 to be read but also note how many
// actually were read.
b1 := make([]byte, 5)
n1, err := f.Read(b1)
check(err)
fmt.Printf("%d bytes: %s\n", n1, string(b1))
// You can also `Seek` to a known location in the file
// and `Read` from there.
o2, err := f.Seek(6, 0)
check(err)
b2 := make([]byte, 2)
n2, err := f.Read(b2)
check(err)
fmt.Printf("%d bytes @ %d: %s\n", n2, o2, string(b2))
// The `io` package provides some functions that may
// be helpful for file reading. For example, reads
// like the ones above can be more robustly
// implemented with `ReadAtLeast`.
o3, err := f.Seek(6, 0)
check(err)
b3 := make([]byte, 2)
n3, err := io.ReadAtLeast(f, b3, 2)
check(err)
fmt.Printf("%d bytes @ %d: %s\n", n3, o3, string(b3))
// There is no built-in rewind, but `Seek(0, 0)`
// accomplishes this.
_, err = f.Seek(0, 0)
check(err)
// The `bufio` package implements a buffered
// reader that may be useful both for its efficiency
// with many small reads and because of the additional
// reading methods it provides.
r4 := bufio.NewReader(f)
b4, err := r4.Peek(5)
check(err)
fmt.Printf("5 bytes: %s\n", string(b4))
// Close the file when you're done (usually this would
// be scheduled immediately after `Open`ing with
// `defer`).
f.Close()
}
$ echo "hello" > /tmp/dat
$ echo "go" >> /tmp/dat
$ go run reading-files.go
hello
go
5 bytes: hello
2 bytes @ 6: go
2 bytes @ 6: go
5 bytes: hello
# Next we'll look at writing files.
// Writing files in Go follows similar patterns to the
// ones we saw earlier for reading.
package main
import (
"bufio"
"fmt"
"io/ioutil"
"os"
)
func check(e error) {
if e != nil {
panic(e)
}
}
func main() {
// To start, here's how to dump a string (or just
// bytes) into a file.
d1 := []byte("hello\ngo\n")
err := ioutil.WriteFile("/tmp/dat1", d1, 0644)
check(err)
// For more granular writes, open a file for writing.
f, err := os.Create("/tmp/dat2")
check(err)
// It's idiomatic to defer a `Close` immediately
// after opening a file.
defer f.Close()
// You can `Write` byte slices as you'd expect.
d2 := []byte{115, 111, 109, 101, 10}
n2, err := f.Write(d2)
check(err)
fmt.Printf("wrote %d bytes\n", n2)
// A `WriteString` is also available.
n3, err := f.WriteString("writes\n")
fmt.Printf("wrote %d bytes\n", n3)
// Issue a `Sync` to flush writes to stable storage.
f.Sync()
// `bufio` provides buffered writers in addition
// to the buffered readers we saw earlier.
w := bufio.NewWriter(f)
n4, err := w.WriteString("buffered\n")
fmt.Printf("wrote %d bytes\n", n4)
// Use `Flush` to ensure all buffered operations have
// been applied to the underlying writer.
w.Flush()
}
# Try running the file-writing code.
$ go run writing-files.go
wrote 5 bytes
wrote 7 bytes
wrote 9 bytes
# Then check the contents of the written files.
$ cat /tmp/dat1
hello
go
$ cat /tmp/dat2
some
writes
buffered
# Next we'll look at applying some of the file I/O ideas
# we've just seen to the `stdin` and `stdout` streams.
// A _line filter_ is a common type of program that reads
// input on stdin, processes it, and then prints some
// derived result to stdout. `grep` and `sed` are common
// line filters.
// Here's an example line filter in Go that writes a
// capitalized version of all input text. You can use this
// pattern to write your own Go line filters.
package main
import (
"bufio"
"fmt"
"os"
"strings"
)
func main() {
// Wrapping the unbuffered `os.Stdin` with a buffered
// scanner gives us a convenient `Scan` method that
// advances the scanner to the next token; which is
// the next line in the default scanner.
scanner := bufio.NewScanner(os.Stdin)
for scanner.Scan() {
// `Text` returns the current token, here the next line,
// from the input.
ucl := strings.ToUpper(scanner.Text())
// Write out the uppercased line.
fmt.Println(ucl)
}
// Check for errors during `Scan`. End of file is
// expected and not reported by `Scan` as an error.
if err := scanner.Err(); err != nil {
fmt.Fprintln(os.Stderr, "error:", err)
os.Exit(1)
}
}
# To try out our line filter, first make a file with a few
# lowercase lines.
$ echo 'hello' > /tmp/lines
$ echo 'filter' >> /tmp/lines
# Then use the line filter to get uppercase lines.
$ cat /tmp/lines | go run line-filters.go
HELLO
FILTER
// [_Command-line arguments_](http://en.wikipedia.org/wiki/Command-line_interface#Arguments)
// are a common way to parameterize execution of programs.
// For example, `go run hello.go` uses `run` and
// `hello.go` arguments to the `go` program.
package main
import "os"
import "fmt"
func main() {
// `os.Args` provides access to raw command-line
// arguments. Note that the first value in this slice
// is the path to the program, and `os.Args[1:]`
// holds the arguments to the program.
argsWithProg := os.Args
argsWithoutProg := os.Args[1:]
// You can get individual args with normal indexing.
arg := os.Args[3]
fmt.Println(argsWithProg)
fmt.Println(argsWithoutProg)
fmt.Println(arg)
}
# To experiment with command-line arguments it's best to
# build a binary with `go build` first.
$ go build command-line-arguments.go
$ ./command-line-arguments a b c d
[./command-line-arguments a b c d]
[a b c d]
c
# Next we'll look at more advanced command-line processing
# with flags.
// [_Command-line flags_](http://en.wikipedia.org/wiki/Command-line_interface#Command-line_option)
// are a common way to specify options for command-line
// programs. For example, in `wc -l` the `-l` is a
// command-line flag.
package main
// Go provides a `flag` package supporting basic
// command-line flag parsing. We'll use this package to
// implement our example command-line program.
import "flag"
import "fmt"
func main() {
// Basic flag declarations are available for string,
// integer, and boolean options. Here we declare a
// string flag `word` with a default value `"foo"`
// and a short description. This `flag.String` function
// returns a string pointer (not a string value);
// we'll see how to use this pointer below.
wordPtr := flag.String("word", "foo", "a string")
// This declares `numb` and `fork` flags, using a
// similar approach to the `word` flag.
numbPtr := flag.Int("numb", 42, "an int")
boolPtr := flag.Bool("fork", false, "a bool")
// It's also possible to declare an option that uses an
// existing var declared elsewhere in the program.
// Note that we need to pass in a pointer to the flag
// declaration function.
var svar string
flag.StringVar(&svar, "svar", "bar", "a string var")
// Once all flags are declared, call `flag.Parse()`
// to execute the command-line parsing.
flag.Parse()
// Here we'll just dump out the parsed options and
// any trailing positional arguments. Note that we
// need to dereference the pointers with e.g. `*wordPtr`
// to get the actual option values.
fmt.Println("word:", *wordPtr)
fmt.Println("numb:", *numbPtr)
fmt.Println("fork:", *boolPtr)
fmt.Println("svar:", svar)
fmt.Println("tail:", flag.Args())
}
# To experiment with the command-line flags program it's
# best to first compile it and then run the resulting
# binary directly.
$ go build command-line-flags.go
# Try out the built program by first giving it values for
# all flags.
$ ./command-line-flags -word=opt -numb=7 -fork -svar=flag
word: opt
numb: 7
fork: true
svar: flag
tail: []
# Note that if you omit flags they automatically take
# their default values.
$ ./command-line-flags -word=opt
word: opt
numb: 42
fork: false
svar: bar
tail: []
# Trailing positional arguments can be provided after
# any flags.
$ ./command-line-flags -word=opt a1 a2 a3
word: opt
...
tail: [a1 a2 a3]
# Note that the `flag` package requires all flags to
# appear before positional arguments (otherwise the flags
# will be interpreted as positional arguments).
$ ./command-line-flags -word=opt a1 a2 a3 -numb=7
word: opt
numb: 42
fork: false
svar: bar
tail: [a1 a2 a3 -numb=7]
# Use `-h` or `--help` flags to get automatically
# generated help text for the command-line program.
$ ./command-line-flags -h
Usage of ./command-line-flags:
-fork=false: a bool
-numb=42: an int
-svar="bar": a string var
-word="foo": a string
# If you provide a flag that wasn't specified to the
# `flag` package, the program will print an error message
# and show the help text again.
$ ./command-line-flags -wat
flag provided but not defined: -wat
Usage of ./command-line-flags:
...
# Next we'll look at environment variables, another common
# way to parameterize programs.
// [Environment variables](http://en.wikipedia.org/wiki/Environment_variable)
// are a universal mechanism for [conveying configuration
// information to Unix programs](http://www.12factor.net/config).
// Let's look at how to set, get, and list environment variables.
package main
import "os"
import "strings"
import "fmt"
func main() {
// To set a key/value pair, use `os.Setenv`. To get a
// value for a key, use `os.Getenv`. This will return
// an empty string if the key isn't present in the
// environment.
os.Setenv("FOO", "1")
fmt.Println("FOO:", os.Getenv("FOO"))
fmt.Println("BAR:", os.Getenv("BAR"))
// Use `os.Environ` to list all key/value pairs in the
// environment. This returns a slice of strings in the
// form `KEY=value`. You can `strings.Split` them to
// get the key and value. Here we print all the keys.
fmt.Println()
for _, e := range os.Environ() {
pair := strings.Split(e, "=")
fmt.Println(pair[0])
}
}
# Running the program shows that we pick up the value
# for `FOO` that we set in the program, but that
# `BAR` is empty.
$ go run environment-variables.go
FOO: 1
BAR:
# The list of keys in the environment will depend on your
# particular machine.
TERM_PROGRAM
PATH
SHELL
...
# If we set `BAR` in the environment first, the running
# program picks that value up.
$ BAR=2 go run environment-variables.go
FOO: 1
BAR: 2
...
// Sometimes our Go programs need to spawn other, non-Go
// processes. For example, the syntax highlighting on this
// site is [implemented](https://github.com/mmcgrana/gobyexample/blob/master/tools/generate.go)
// by spawning a [`pygmentize`](http://pygments.org/)
// process from a Go program. Let's look at a few examples
// of spawning processes from Go.
package main
import "fmt"
import "io/ioutil"
import "os/exec"
func main() {
// We'll start with a simple command that takes no
// arguments or input and just prints something to
// stdout. The `exec.Command` helper creates an object
// to represent this external process.
dateCmd := exec.Command("date")
// `.Output` is another helper that handles the common
// case of running a command, waiting for it to finish,
// and collecting its output. If there were no errors,
// `dateOut` will hold bytes with the date info.
dateOut, err := dateCmd.Output()
if err != nil {
panic(err)
}
fmt.Println("> date")
fmt.Println(string(dateOut))
// Next we'll look at a slightly more involved case
// where we pipe data to the external process on its
// `stdin` and collect the results from its `stdout`.
grepCmd := exec.Command("grep", "hello")
// Here we explicitly grab input/output pipes, start
// the process, write some input to it, read the
// resulting output, and finally wait for the process
// to exit.
grepIn, _ := grepCmd.StdinPipe()
grepOut, _ := grepCmd.StdoutPipe()
grepCmd.Start()
grepIn.Write([]byte("hello grep\ngoodbye grep"))
grepIn.Close()
grepBytes, _ := ioutil.ReadAll(grepOut)
grepCmd.Wait()
// We ommited error checks in the above example, but
// you could use the usual `if err != nil` pattern for
// all of them. We also only collect the `StdoutPipe`
// results, but you could collect the `StderrPipe` in
// exactly the same way.
fmt.Println("> grep hello")
fmt.Println(string(grepBytes))
// Note that when spawning commands we need to
// provide an explicitly delineated command and
// argument array, vs. being able to just pass in one
// command-line string. If you want to spawn a full
// command with a string, you can use `bash`'s `-c`
// option:
lsCmd := exec.Command("bash", "-c", "ls -a -l -h")
lsOut, err := lsCmd.Output()
if err != nil {
panic(err)
}
fmt.Println("> ls -a -l -h")
fmt.Println(string(lsOut))
}
# The spawned programs return output that is the same
# as if we had run them directly from the command-line.
$ go run spawning-processes.go
> date
Wed Oct 10 09:53:11 PDT 2012
> grep hello
hello grep
> ls -a -l -h
drwxr-xr-x 4 mark 136B Oct 3 16:29 .
drwxr-xr-x 91 mark 3.0K Oct 3 12:50 ..
-rw-r--r-- 1 mark 1.3K Oct 3 16:28 spawning-processes.go
// In the previous example we looked at
// [spawning external processes](spawning-processes). We
// do this when we need an external process accessible to
// a running Go process. Sometimes we just want to
// completely replace the current Go process with another
// (perhaps non-Go) one. To do this we'll use Go's
// implementation of the classic
// <a href="http://en.wikipedia.org/wiki/Exec_(operating_system)"><code>exec</code></a>
// function.
package main
import "syscall"
import "os"
import "os/exec"
func main() {
// For our example we'll exec `ls`. Go requires an
// absolute path to the binary we want to execute, so
// we'll use `exec.LookPath` to find it (probably
// `/bin/ls`).
binary, lookErr := exec.LookPath("ls")
if lookErr != nil {
panic(lookErr)
}
// `Exec` requires arguments in slice form (as
// apposed to one big string). We'll give `ls` a few
// common arguments. Note that the first argument should
// be the program name.
args := []string{"ls", "-a", "-l", "-h"}
// `Exec` also needs a set of [environment variables](environment-variables)
// to use. Here we just provide our current
// environment.
env := os.Environ()
// Here's the actual `syscall.Exec` call. If this call is
// successful, the execution of our process will end
// here and be replaced by the `/bin/ls -a -l -h`
// process. If there is an error we'll get a return
// value.
execErr := syscall.Exec(binary, args, env)
if execErr != nil {
panic(execErr)
}
}
# When we run our program it is replaced by `ls`.
$ go run execing-processes.go
total 16
drwxr-xr-x 4 mark 136B Oct 3 16:29 .
drwxr-xr-x 91 mark 3.0K Oct 3 12:50 ..
-rw-r--r-- 1 mark 1.3K Oct 3 16:28 execing-processes.go
# Note that Go does not offer a classic Unix `fork`
# function. Usually this isn't an issue though, since
# starting goroutines, spawning processes, and exec'ing
# processes covers most use cases for `fork`.
// Sometimes we'd like our Go programs to intelligently
// handle [Unix signals](http://en.wikipedia.org/wiki/Unix_signal).
// For example, we might want a server to gracefully
// shutdown when it receives a `SIGTERM`, or a command-line
// tool to stop processing input if it receives a `SIGINT`.
// Here's how to handle signals in Go with channels.
package main
import "fmt"
import "os"
import "os/signal"
import "syscall"
func main() {
// Go signal notification works by sending `os.Signal`
// values on a channel. We'll create a channel to
// receive these notifications (we'll also make one to
// notify us when the program can exit).
sigs := make(chan os.Signal, 1)
done := make(chan bool, 1)
// `signal.Notify` registers the given channel to
// receive notifications of the specified signals.
signal.Notify(sigs, syscall.SIGINT, syscall.SIGTERM)
// This goroutine executes a blocking receive for
// signals. When it gets one it'll print it out
// and then notify the program that it can finish.
go func() {
sig := <-sigs
fmt.Println()
fmt.Println(sig)
done <- true
}()
// The program will wait here until it gets the
// expected signal (as indicated by the goroutine
// above sending a value on `done`) and then exit.
fmt.Println("awaiting signal")
<-done
fmt.Println("exiting")
}
# When we run this program it will block waiting for a
# signal. By typing `ctrl-C` (which the
# terminal shows as `^C`) we can send a `SIGINT` signal,
# causing the program to print `interrupt` and then exit.
$ go run signals.go
awaiting signal
^C
interrupt
exiting
// Use `os.Exit` to immediately exit with a given
// status.
package main
import "fmt"
import "os"
func main() {
// `defer`s will _not_ be run when using `os.Exit`, so
// this `fmt.Println` will never be called.
defer fmt.Println("!")
// Exit with status 3.
os.Exit(3)
}
// Note that unlike e.g. C, Go does not use an integer
// return value from `main` to indicate exit status. If
// you'd like to exit with a non-zero status you should
// use `os.Exit`.
# If you run `exit.go` using `go run`, the exit
# will be picked up by `go` and printed.
$ go run exit.go
exit status 3
# By building and executing a binary you can see
# the status in the terminal.
$ go build exit.go
$ ./exit
$ echo $?
3
# Note that the `!` from our program never got printed.
17.08.14 01:10 Mon