Last active
February 25, 2016 01:15
-
-
Save anselm/fd67c609e00f5862a970 to your computer and use it in GitHub Desktop.
a unity3d c# port of the threejs tube renderer
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using UnityEngine; | |
using System.Collections; | |
using System.Collections.Generic; | |
using System.Collections.Specialized; | |
/** | |
* @author zz85 / http://www.lab4games.net/zz85/blog | |
* Extensible curve object | |
**/ | |
abstract class Curve { | |
// Get point at relative position in curve according to arc length | |
// - u [0 .. 1] | |
public abstract Vector3 getPoint(float u); | |
public Vector3 getPointAt(float u) { | |
float t = this.getUtoTmapping( u ); | |
return this.getPoint( t ); | |
} | |
// Get sequence of points using getPoint( t ) | |
List<Vector3> getPoints(float divisions = 0) { | |
if ( divisions == 0 ) divisions = 5; | |
List<Vector3> pts = new List<Vector3>(); | |
for (float d = 0; d <= divisions; d ++ ) { | |
pts.Add( this.getPoint( d / divisions ) ); | |
} | |
return pts; | |
} | |
// Get sequence of points using getPointAt( u ) | |
List<Vector3> getSpacedPoints(float divisions = 0) { | |
if ( divisions == 0 ) divisions = 5; | |
List<Vector3> pts = new List<Vector3>(); | |
for (float d = 0; d <= divisions; d ++ ) { | |
pts.Add( this.getPointAt( d / divisions ) ); | |
} | |
return pts; | |
} | |
// Get total curve arc length | |
float getLength() { | |
List<float> lengths = this.getLengths(); | |
return lengths[ lengths.Count - 1 ]; | |
} | |
// Get list of cumulative segment lengths | |
int __arcLengthDivisions = 0; // anselm TODO examine xxx | |
List<float> cacheArcLengths = null; | |
bool needsUpdate = true; | |
List<float> getLengths(int divisions = 0) { | |
if ( divisions == 0 ) divisions = this.__arcLengthDivisions > 0 ? this.__arcLengthDivisions : 200; | |
if ( this.cacheArcLengths != null | |
&& ( this.cacheArcLengths.Count == divisions + 1 ) | |
&& ! this.needsUpdate) { | |
return this.cacheArcLengths; | |
} | |
this.needsUpdate = false; | |
List<float> cache = new List<float>(); | |
Vector3 current, last = this.getPoint(0); | |
float sum = 0; | |
cache.Add( 0 ); | |
for (float p = 1; p <= divisions; p ++ ) { | |
current = this.getPoint ( p / divisions ); | |
sum += Vector3.Distance(current,last); | |
cache.Add( sum ); | |
last = current; | |
} | |
this.cacheArcLengths = cache; | |
return cache; // { sums: cache, sum:sum }; Sum is in the last element. | |
} | |
void updateArcLengths() { | |
this.needsUpdate = true; | |
this.getLengths(); | |
} | |
// Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equi distance | |
float getUtoTmapping(float u,float distance = 0) { | |
List<float> arcLengths = this.getLengths(); | |
int i = 0, il = arcLengths.Count; | |
float targetArcLength; // The targeted u distance value to get | |
if ( distance != 0 ) { | |
targetArcLength = distance; | |
} else { | |
targetArcLength = u * arcLengths[ il - 1 ]; | |
} | |
//var time = Date.now(); | |
// binary search for the index with largest value smaller than target u distance | |
int low = 0, high = il - 1; | |
while ( low <= high ) { | |
i = (int)Mathf.Floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats | |
float comparison = arcLengths[ i ] - targetArcLength; | |
if ( comparison < 0 ) { | |
low = i + 1; | |
} else if ( comparison > 0 ) { | |
high = i - 1; | |
} else { | |
high = i; | |
break; | |
} | |
} | |
i = high; | |
//console.log('b' , i, low, high, Date.now()- time); | |
if ( arcLengths[ i ] == targetArcLength ) { | |
float t = ((float)i) / ( ((float)il) - 1.0f ); | |
return t; | |
} | |
// we could get finer grain at lengths, or use simple interpolatation between two points | |
float lengthBefore = arcLengths[ i ]; | |
float lengthAfter = arcLengths[ i + 1 ]; | |
float segmentLength = lengthAfter - lengthBefore; | |
// determine where we are between the 'before' and 'after' points | |
float segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength; | |
// add that fractional amount to t | |
float t2 = ( ((float)i) + ((float)segmentFraction) ) / ( ((float)il) - 1.0f ); | |
return t2; | |
} | |
// Returns a unit vector tangent at t | |
// In case any sub curve does not implement its tangent derivation, | |
// 2 points a small delta apart will be used to find its gradient | |
// which seems to give a reasonable approximation | |
Vector3 getTangent(float t ) { | |
float delta = 0.0001f; | |
float t1 = t - delta; | |
float t2 = t + delta; | |
// Capping in case of danger | |
if ( t1 < 0 ) t1 = 0; | |
if ( t2 > 1 ) t2 = 1; | |
Vector3 pt1 = this.getPoint( t1 ); | |
Vector3 pt2 = this.getPoint( t2 ); | |
Vector3 vec = pt2 - pt1; // anselm | |
vec.Normalize(); | |
return vec; | |
} | |
public Vector3 getTangentAt(float u) { | |
float t = this.getUtoTmapping( u ); | |
return this.getTangent( t ); | |
} | |
/* | |
float tangentQuadraticBezier(float t,float p0,float p1,float p2 ) { | |
return 2 * ( 1 - t ) * ( p1 - p0 ) + 2 * t * ( p2 - p1 ); | |
} | |
// Puay Bing, thanks for helping with this derivative! | |
float tangentCubicBezier(float t, float p0, float p1, float p2, float p3 ) { | |
return - 3 * p0 * (1 - t) * (1 - t) + | |
3 * p1 * (1 - t) * (1 - t) - 6 * t * p1 * (1 - t) + | |
6 * t * p2 * (1 - t) - 3 * t * t * p2 + | |
3 * t * t * p3; | |
} | |
float tangentSpline(float t,float p0,float p1,float p2,float p3 ) { | |
// To check if my formulas are correct | |
float h00 = 6 * t * t - 6 * t; // derived from 2t^3 − 3t^2 + 1 | |
float h10 = 3 * t * t - 4 * t + 1; // t^3 − 2t^2 + t | |
float h01 = - 6 * t * t + 6 * t; // − 2t3 + 3t2 | |
float h11 = 3 * t * t - 2 * t; // t3 − t2 | |
return h00 + h10 + h01 + h11; | |
} | |
*/ | |
// Catmull-Rom | |
public float interpolate(float p0,float p1,float p2,float p3,float t ) { | |
float v0 = ( p2 - p0 ) * 0.5f; | |
float v1 = ( p3 - p1 ) * 0.5f; | |
float t2 = t * t; | |
float t3 = t * t2; | |
return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1; | |
} | |
} | |
class SplineCurve3: Curve { | |
List<Vector3> points = null; | |
public SplineCurve3(List<Vector3> points = null) { | |
this.points = points != null ? points : new List<Vector3>(); | |
} | |
public override Vector3 getPoint(float t) { | |
int length = points.Count; | |
float point = ( length - 1 ) * t; | |
int intPoint = (int)Mathf.Floor( point ); | |
float weight = point - intPoint; | |
Vector3 point0 = points[ intPoint == 0 ? intPoint : intPoint - 1 ]; | |
Vector3 point1 = points[ intPoint ]; | |
Vector3 point2 = points[ intPoint > length - 2 ? length - 1 : intPoint + 1 ]; | |
Vector3 point3 = points[ intPoint > length - 3 ? length - 1 : intPoint + 2 ]; | |
return new Vector3( | |
this.interpolate( point0.x, point1.x, point2.x, point3.x, weight ), | |
this.interpolate( point0.y, point1.y, point2.y, point3.y, weight ), | |
this.interpolate( point0.z, point1.z, point2.z, point3.z, weight ) ); | |
} | |
} | |
public class Tubular : MonoBehaviour { | |
public Material mainMaterial; | |
public Material shadowMaterial; | |
public enum STYLE { | |
NONE, | |
RIBBON, | |
SWATCH, | |
TUBE, | |
//GLOW, | |
//SPARKLE, | |
//BLOCK, | |
//PUTTY, | |
//MAGNETIC | |
}; | |
public STYLE style = STYLE.NONE; | |
GameObject main; | |
GameObject bottom; | |
GameObject shadow; | |
Mesh mainMesh; | |
Mesh bottomMesh; | |
Mesh shadowMesh; | |
int totalCount = 0; | |
void Start () { | |
//focus = Instantiate(prefabSwatch) as GameObject; | |
//focus.transform.parent = this.transform; | |
//Swatch3d art = focus.GetComponent<Swatch3d>() as Swatch3d; | |
Setup(Color.green,STYLE.TUBE); | |
} | |
void Update () { | |
} | |
public void Setup(Color _color, STYLE _style = STYLE.NONE, Material _material = null, Material _shadowMaterial = null) { | |
style = _style; | |
// Set materials supplied else use default else crash | |
if(_material != null) mainMaterial = _material; | |
if(_shadowMaterial !=null) shadowMaterial = _material; | |
// Always clone the main material so we can modify it without affecting other swatches | |
mainMaterial = Object.Instantiate(mainMaterial) as Material; | |
mainMaterial.color = _color; | |
// Basic mesh | |
if(true) { | |
main = gameObject; | |
main.name = "Draw"+totalCount; totalCount++; | |
//gameObject.GetComponent<Renderer>().material = mainMaterial; | |
GetComponent<Renderer>().material = new Material(Shader.Find("Diffuse")); | |
MeshFilter meshFilter = gameObject.GetComponent<MeshFilter>(); | |
mainMesh = meshFilter.mesh = new Mesh(); | |
} | |
List<Vector3> points = new List<Vector3>(); | |
points.Add ( new Vector3(-1000, 0, 0) ); | |
for(int i = 0; i < 10 ; i++ ) { | |
points.Add ( new Vector3( Random.Range (-1000,1000), Random.Range (-1000,1000), Random.Range(-1000,1000) ) ); | |
} | |
points.Add ( new Vector3( 1000, 0, 0) ); | |
var path = new SplineCurve3(points); | |
TubeGeometry(path, 500, 100, 3 ); | |
} | |
Matrix4x4 makeRotationAxis(Vector3 axis, float angle) { // XXX ANSELM TODO - implication of NEW? also row/order? | |
Matrix4x4 mat = new Matrix4x4(); | |
float c = Mathf.Cos( angle ); | |
float s = Mathf.Sin( angle ); | |
float t = 1 - c; | |
float x = axis.x, y = axis.y, z = axis.z; | |
float tx = t * x, ty = t * y; | |
mat.SetRow (0,new Vector3(tx * x + c , tx * y - s * z, tx * z + s * y )); | |
mat.SetRow (1,new Vector3(tx * y + s * z, ty * y + c, ty * z - s * x )); | |
mat.SetRow (2,new Vector3(tx * z - s * y, ty * z + s * x, t * z * z + c )); | |
mat.SetRow (3,new Vector4(0,0,0,1)); | |
return mat; | |
} | |
// For computing of Frenet frames, exposing the tangents, normals and binormals the spline | |
void FrenetFrames(Curve path,float segments,Vector3[] tangents, Vector3[] normals, Vector3[] binormals) { | |
Vector3 normal = new Vector3(); | |
Vector3 vec; | |
float numpoints = segments + 1; | |
float epsilon = 0.0001f; | |
float smallest; | |
float tx, ty, tz; | |
int i; | |
float u; | |
// compute the tangent vectors for each segment on the path | |
for ( i = 0; i < numpoints; i ++ ) { | |
u = ((float)i) / ( ((float)numpoints) - 1.0f ); | |
tangents[ i ] = path.getTangentAt( u ); | |
tangents[ i ].Normalize(); | |
} | |
{ | |
// select an initial normal vector perpenicular to the first tangent vector, | |
// and in the direction of the smallest tangent xyz component | |
normals[ 0 ] = new Vector3(); | |
binormals[ 0 ] = new Vector3(); | |
smallest = float.MaxValue; //Number.MAX_VALUE; | |
tx = Mathf.Abs( tangents[ 0 ].x ); | |
ty = Mathf.Abs( tangents[ 0 ].y ); | |
tz = Mathf.Abs( tangents[ 0 ].z ); | |
if ( tx <= smallest ) { | |
smallest = tx; | |
normal.Set( 1, 0, 0 ); | |
} | |
if ( ty <= smallest ) { | |
smallest = ty; | |
normal.Set( 0, 1, 0 ); | |
} | |
if ( tz <= smallest ) { | |
normal.Set( 0, 0, 1 ); | |
} | |
vec = Vector3.Cross (tangents[0],normal).normalized; | |
normals[0] = Vector3.Cross (tangents[0],vec); | |
binormals[0] = Vector3.Cross (tangents[0],normals[0]); | |
} | |
// compute the slowly-varying normal and binormal vectors for each segment on the path | |
for ( i = 1; i < numpoints; i ++ ) { | |
normals[ i ] = normals[ i - 1 ]; | |
binormals[ i ] = binormals[ i - 1 ]; | |
vec = Vector3.Cross( tangents[ i - 1 ], tangents[ i ] ); | |
if ( vec.magnitude > epsilon ) { | |
vec.Normalize(); | |
float dot = Vector3.Dot(tangents[i-1],tangents[i]); | |
if(dot<-1)dot=-1; | |
if(dot>1)dot=1; | |
float theta = Mathf.Acos(dot); | |
// anselm normals[ i ].applyMatrix4( makeRotationAxis( vec, theta ) ); | |
normals[ i ] = makeRotationAxis(vec,theta).MultiplyVector ( normals[i] ); | |
} | |
binormals[i] = Vector3.Cross (tangents[i],normals[i]); | |
} | |
} | |
/** | |
* @author WestLangley / https://github.com/WestLangley | |
* @author zz85 / https://github.com/zz85 | |
* @author miningold / https://github.com/miningold | |
* @author jonobr1 / https://github.com/jonobr1 | |
* | |
* Modified from the TorusKnotGeometry by @oosmoxiecode | |
* | |
* Creates a tube which extrudes along a 3d spline | |
* | |
* Uses parallel transport frames as described in | |
* http://www.cs.indiana.edu/pub/techreports/TR425.pdf | |
*/ | |
void TubeGeometry(Curve path, int segments = 0, float radius = 0, int radialSegments = 0 ) { | |
if(segments == 0) segments = 64; | |
if(radius == 0) radius = 1; | |
if(radialSegments == 0) radialSegments = 8; | |
int numpoints = segments + 1; | |
int i, j; | |
Vector3[] tangents = new Vector3[numpoints]; | |
Vector3[] normals = new Vector3[numpoints]; | |
Vector3[] binormals = new Vector3[numpoints]; | |
FrenetFrames( path, segments, tangents, normals, binormals ); | |
// generate smooth UV along entire length | |
// TODO later it would be nice to have a non linear distortion for ribbons so that textured ends wouldn't stretch out so far | |
Vector2[] uv = new Vector2[numpoints*radialSegments]; | |
for( i = 0; i < numpoints; i++ ) { | |
float p2 = (float)i/(float)(numpoints-1); | |
for( j = 0; j < radialSegments; j++ ) { | |
float p1 = (float)j/(float)(((float)radialSegments)-1); | |
uv[i*radialSegments+j] = new Vector2(p1,p2); | |
Debug.Log ("Made UVS " + uv[i*radialSegments+j] ); | |
} | |
} | |
// construct the grid | |
Vector3[] v = new Vector3[numpoints*radialSegments]; | |
for ( i = 0; i < numpoints; i ++ ) { | |
Vector3 pos = path.getPointAt( ((float)i) / (numpoints-1) ); | |
//Vector3 tangent = tangents[ i ]; | |
Vector3 normal = normals[ i ]; | |
Vector3 binormal = binormals[ i ]; | |
for ( j = 0; j < radialSegments; j ++ ) { | |
float vi = ((float)j) / ((float)radialSegments) * 2.0f * Mathf.PI; | |
float cx = - radius * Mathf.Cos( vi ); // Hack: Negating it so it faces outside. | |
float cy = radius * Mathf.Sin( vi ); | |
v[i*radialSegments+j] = new Vector3( | |
pos.x + cx*normal.x + cy*binormal.x, | |
pos.y + cx*normal.y + cy*binormal.y, | |
pos.z + cx*normal.z + cy*binormal.z | |
); | |
Debug.Log ("Made Vertex " + v[i*radialSegments+j] + " " + radius + " " + vi + " " + cx + " " + cy + " " + normal + " " + binormal ); | |
} | |
} | |
// construct the mesh | |
int[] tri = new int[segments*radialSegments*2*3]; | |
for ( i = 0; i < segments; i ++ ) { | |
for ( j = 0; j < radialSegments; j ++ ) { | |
int ip = i + 1; | |
int jp = (j + 1) % radialSegments; | |
int a = i * radialSegments + j; // *** NOT NECESSARILY PLANAR ! *** | |
int b = ip * radialSegments + j; | |
int c = ip * radialSegments + jp; | |
int d = i * radialSegments + jp; | |
tri[i*radialSegments*2*3+j*2*3+0] = a; | |
tri[i*radialSegments*2*3+j*2*3+1] = b; | |
tri[i*radialSegments*2*3+j*2*3+2] = d; | |
tri[i*radialSegments*2*3+j*2*3+3] = b; | |
tri[i*radialSegments*2*3+j*2*3+4] = c; | |
tri[i*radialSegments*2*3+j*2*3+5] = d; | |
//Vector2 uva = new Vector2( i / segments, j / radialSegments ); | |
//Vector2 uvb = new Vector2( ( i + 1 ) / segments, j / radialSegments ); | |
//Vector2 uvc = new Vector2( ( i + 1 ) / segments, ( j + 1 ) / radialSegments ); | |
//Vector2 uvd = new Vector2( i / segments, ( j + 1 ) / radialSegments ); | |
//this.faceVertexUvs[ 0 ].push( [ uva, uvb, uvd ] ); | |
//this.faceVertexUvs[ 0 ].push( [ uvb.clone(), uvc, uvd.clone() ] ); | |
Debug.Log ("Tri " + tri[i*radialSegments+j*2*3] ); | |
} | |
} | |
if(true) { | |
// Promote geometry to unity - for ribbons, swatches and tubes | |
mainMesh.Clear(); | |
mainMesh.vertices = v; | |
mainMesh.uv = uv; | |
mainMesh.triangles = tri; | |
//mainMesh.vertices = new Vector3[] { new Vector3(0,1,0), new Vector3(1,1,0), new Vector3(1,1,1) }; | |
//mainMesh.triangles = new int[3] { 1,0,2 }; | |
//mainMesh.uv = new Vector2[3] { new Vector2(0,0), new Vector2(0,1), new Vector2(1,1) }; | |
mainMesh.RecalculateNormals(); | |
mainMesh.RecalculateBounds(); | |
} | |
//this.computeFaceNormals(); | |
//this.computeVertexNormals(); | |
// todo | |
} | |
//-------------------------------------------------------------------------------------------------------------------------- | |
// douglas peucker - utility | |
// https://github.com/mourner/simplify-js/blob/3d/simplify.js | |
//-------------------------------------------------------------------------------------------------------------------------- | |
float getSquareSegmentDistance(Vector3 p, Vector3 p1, Vector3 p2) { | |
float x = p1.x, y = p1.y, z = p1.z, dx = p2.x - x, dy = p2.y - y, dz = p2.z - z; | |
if (dx != 0 || dy != 0 || dz != 0) { | |
float t = ((p.x - x) * dx + (p.y - y) * dy + (p.z - z) * dz) / (dx * dx + dy * dy + dz * dz); | |
if (t > 1) { | |
x = p2.x; | |
y = p2.y; | |
z = p2.z; | |
} else if (t > 0) { | |
x += dx * t; | |
y += dy * t; | |
z += dz * t; | |
} | |
} | |
dx = p.x - x; | |
dy = p.y - y; | |
dz = p.z - z; | |
return dx * dx + dy * dy + dz * dz; | |
} | |
List<Vector3> simplifyRadialDistance(List<Vector3> points, float sqTolerance) { | |
Vector3 p1 = points[0]; | |
List<Vector3> newPoints = new List<Vector3>(); | |
newPoints.Add(p1); | |
Vector3 p2 = p1; | |
for (int i = 1, len = points.Count; i < len; i++) { | |
p2 = points[i]; | |
float dx=p1.x-p2.x, dy=p1.y-p2.y, dz=p1.z-p2.z; | |
if(dx*dx + dy*dy + dz*dz > sqTolerance) { | |
newPoints.Add(p2); | |
p1 = p2; | |
} | |
} | |
if (p2 != p1) { | |
newPoints.Add(p2); // might as well keep where the player is currently focused | |
} | |
return newPoints; | |
} | |
/* | |
const float sqrToleranceMin = 0.1f; | |
const float sqrToleranceQuick = 3 * 3; | |
public bool simplifyDouglasPeucker(float Tolerance = sqrToleranceMin) { | |
if (points.Count < 4) return false; | |
List<int> pointIndexsToKeep = new List<int>(); | |
int firstPoint = 0; | |
int lastPoint = points.Count - 1; | |
pointIndexsToKeep.Add(firstPoint); | |
pointIndexsToKeep.Add(lastPoint); | |
while (points[firstPoint].Equals(points[lastPoint])) { | |
lastPoint--; | |
} | |
DouglasPeuckerReduction(firstPoint, lastPoint, Tolerance, ref pointIndexsToKeep); | |
if(pointIndexsToKeep.Count == points.Count) return false; | |
//Debug.Log ("Number of points coming into the system was " + points.Count ); | |
pointIndexsToKeep.Sort(); | |
List<Vector3> points2 = new List<Vector3>(); | |
List<Vector3> rights2 = new List<Vector3>(); | |
List<Vector3> forwards2 = new List<Vector3>(); | |
List<float> velocities2 = new List<float>(); | |
foreach (int i in pointIndexsToKeep) { | |
points2.Add(points[i]); | |
rights2.Add(rights[i]); | |
forwards2.Add(forwards[i]); | |
velocities2.Add(velocities[i]); | |
} | |
points = points2; | |
rights = rights2; | |
forwards = forwards2; | |
velocities = velocities2; | |
//Debug.Log ("Number of points after system was " + points.Count ); | |
return true; | |
} | |
private void DouglasPeuckerReduction(int firstPoint, int lastPoint, float tolerance, ref List<int> pointIndexsToKeep) { | |
float maxDistance = 0; | |
int indexFarthest = 0; | |
// find the biggest bump | |
for (int index = firstPoint; index < lastPoint; index++) { | |
float distance = getSquareSegmentDistance(points[index], points[firstPoint], points[lastPoint]); | |
//float distance = PerpendicularDistance(points[firstPoint], points[lastPoint], points[index]); | |
if (distance > maxDistance) { | |
maxDistance = distance; | |
indexFarthest = index; | |
} | |
} | |
// keep it | |
if (maxDistance > tolerance && indexFarthest != 0) { | |
pointIndexsToKeep.Add(indexFarthest); | |
DouglasPeuckerReduction(firstPoint, indexFarthest, tolerance, ref pointIndexsToKeep); | |
DouglasPeuckerReduction(indexFarthest, lastPoint, tolerance, ref pointIndexsToKeep); | |
} | |
} | |
*/ | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment