Created
September 16, 2024 11:33
-
-
Save antferdom/f7874ab68f4c1183d2b8196d2ace3ffc to your computer and use it in GitHub Desktop.
FlashAttention v3 within torch.compile compatible
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from typing import Any, Iterable, List, Optional, Sequence, Set, Tuple | |
import torch | |
try: | |
from flash_attn_interface import flashattn_hopper_cuda as _C_flashattention3 | |
except ImportError: | |
# We end up here is arch is not 90a | |
_C_flashattention3 = None | |
if _C_flashattention3 is not None: | |
# returns: out, q_padded, k_padded, v_padded, out_padded, softmax_lse, p | |
@torch.library.custom_op( | |
"hopper_flash3::flash_fwd", mutates_args=(), device_types=["cuda"] | |
) | |
def mha_fwd( | |
query: torch.Tensor, | |
key: torch.Tensor, | |
value: torch.Tensor, | |
softmax_scale: Optional[float], | |
is_causal: bool, | |
) -> Tuple[torch.Tensor, torch.Tensor,]: | |
if softmax_scale is None: | |
softmax_scale = query.shape[-1] ** (-0.5) | |
( | |
out, | |
q_padded, | |
k_padded, | |
v_padded, | |
out_padded, | |
softmax_lse, | |
p, | |
) = _C_flashattention3.fwd( | |
query, key, value, None, softmax_scale, None, None, None, is_causal | |
) | |
return out, softmax_lse | |
class HopperMHA(torch.autograd.Function): | |
@staticmethod | |
def forward( | |
query: torch.Tensor, | |
key: torch.Tensor, | |
value: torch.Tensor, | |
softmax_scale: float, | |
is_causal: bool,): | |
return torch.ops.hopper_flash3.flash_fwd( | |
query, | |
key, | |
value, | |
softmax_scale, | |
is_causal, | |
) | |
@staticmethod | |
def setup_context(ctx, inputs, output): | |
pass | |
@staticmethod | |
def backward(ctx, grad_output): | |
pass | |
hopper_mha = HopperMHA.apply | |
torch.manual_seed(0) | |
repeats = 10 | |
dropout_p = 0.0 | |
causal = False | |
dtype = torch.float16 | |
device = "cuda" | |
verbose = False | |
batch_size = 1 | |
seqlen = 512 | |
dim = 2048 | |
head_dim = 256 | |
n_heads = dim // head_dim | |
n_heads_kv = n_heads | |
qkv = torch.randn(batch_size, seqlen, 3, n_heads, head_dim, device=device, dtype=dtype, | |
requires_grad=True) | |
q = torch.randn(batch_size, seqlen, n_heads, head_dim, device=device, dtype=dtype, requires_grad=True) | |
k = torch.randn(batch_size, seqlen, n_heads_kv, head_dim, device=device, dtype=dtype, requires_grad=True) | |
v = torch.randn(batch_size, seqlen, n_heads_kv, head_dim, device=device, dtype=dtype, requires_grad=True) | |
q_t = q.transpose(1, 2).contiguous().detach().requires_grad_() | |
k_t = k.transpose(1, 2).contiguous().detach().requires_grad_() | |
v_t = k.transpose(1, 2).contiguous().detach().requires_grad_() | |
ref_o = hopper_mha(q, k, v, None, causal) | |
print(ref_o) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment