Created
October 2, 2019 10:46
-
-
Save anthonydouc/97a0295a244a49b26f10d12193bd8cde to your computer and use it in GitHub Desktop.
Simple script using pymc3 and stats models libraries
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pymc3 import * | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import statsmodels.api as sm | |
size = 200 | |
true_intercept = 1 | |
true_slope = 2 | |
x = np.linspace(0, 1, size) | |
# y = a + b*x | |
true_regression_line = true_intercept + true_slope * x | |
# add noise | |
y = true_regression_line + np.random.normal(scale=.5, size=size) | |
data = dict(x=x, y=y) | |
# ols | |
model = sm.OLS(y, sm.add_constant(x)) | |
params = model.fit().params | |
fig = plt.figure(figsize=(7, 7)) | |
ax = fig.add_subplot(111, xlabel='x', ylabel='y', title='Generated data and underlying model') | |
ax.plot(x, y, 'x', label='sampled data') | |
ax.plot(x, true_regression_line, label='true regression line', lw=2.) | |
plt.legend(loc=0); | |
with Model() as model: # model specifications in PyMC3 are wrapped in a with-statement | |
# Define priors | |
sigma = HalfCauchy('sigma', beta=10, testval=1.) | |
intercept = Normal('Intercept', 0, sigma=20) | |
x_coeff = Normal('x', 0, sigma=20) | |
# Define likelihood | |
likelihood = Normal('y', mu=intercept + x_coeff * x, | |
sigma=sigma, observed=y) | |
# Inference! | |
trace = sample(3000, cores=1) # draw 3000 posterior samples using NUTS sampling | |
#plot_posterior_predictive_glm(trace, samples=100, | |
# label='posterior predictive regression lines') | |
ax.plot(x, params[0]+params[1]*x, label='OLS', lw=2.) | |
ax.plot(x, trace.get_values('Intercept').mean()+trace.get_values('x').mean()*x, label='Bayesian mean', lw=2.) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment