Created
November 15, 2016 15:00
-
-
Save anton-trunov/84b63d4ca28c2698ed87b5c680974506 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Require Import Arith. | |
Fixpoint fib_v1 (n : nat) : nat := | |
match n with | |
| 0 => O | |
| S n' => match n' with | |
| O => 1 | |
| S n'' => (fib_v1 n') + (fib_v1 n'') | |
end | |
end. | |
Fixpoint visit_fib_v2 (n a1 a2 : nat) : nat := | |
match n with | |
| 0 => a1 | |
| S n' => (visit_fib_v2 n' a2 (a1 + a2)) | |
end. | |
Lemma visit_fib_v2_SS : forall n a0 a1, | |
visit_fib_v2 (S (S n)) a0 a1 = | |
visit_fib_v2 (S n) a1 (a0 + a1). | |
Proof. reflexivity. Qed. | |
Lemma fib_v1_SS : forall n, | |
fib_v1 (S (S n)) = fib_v1 (S n) + fib_v1 n. | |
Proof. reflexivity. Qed. | |
Lemma fib_v1_eq_fib2_generalized : forall n a0 a1, | |
visit_fib_v2 (S n) a0 a1 = a0 * fib_v1 n + a1 * fib_v1 (S n). | |
Proof. | |
intro n. induction n. | |
(* The `-` symbols can be deleted they indicate a new subgoal *) | |
- intros a0 a1. | |
(* `simpl` can be replaced by several helper lemmas, all of which can be proved by `reflexivity`. *) | |
simpl. | |
(* the `Search` commands show how to search for lemmas in Coq; we can get rid of them *) | |
Search (_ * 0 = 0). | |
rewrite Nat.mul_0_r. | |
Search (0 + ?x = ?x). | |
rewrite Nat.add_0_l. | |
Search (?x * 1 = ?x). | |
rewrite Nat.mul_1_r. | |
reflexivity. | |
- intros a0 a1. | |
rewrite visit_fib_v2_SS, IHn, fib_v1_SS. | |
Search (?x + ?y = ?y + ?x). | |
rewrite Nat.add_comm. | |
Search (?a * (?x + ?y) = ?a*?x + ?a*?y). | |
rewrite Nat.mul_add_distr_l. | |
Search (?x + (?y + ?z) = (?x + ?y) + ?z). | |
rewrite Nat.add_assoc. | |
rewrite Nat.mul_add_distr_r. | |
reflexivity. | |
Qed. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment