-
-
Save anuragvohraec/5d76186ae99183c3b4f2bb685a622b57 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/*! | |
* JavaScript function to calculate the destination point given start point latitude / longitude (numeric degrees), bearing (numeric degrees) and distance (in m). | |
* | |
* Original scripts by Chris Veness | |
* Taken from http://movable-type.co.uk/scripts/latlong-vincenty-direct.html and optimized / cleaned up by Mathias Bynens <http://mathiasbynens.be/> | |
* Based on the Vincenty direct formula by T. Vincenty, “Direct and Inverse Solutions of Geodesics on the Ellipsoid with application of nested equations”, Survey Review, vol XXII no 176, 1975 <http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf> | |
*/ | |
function toRad(n) { | |
return n * Math.PI / 180; | |
}; | |
function toDeg(n) { | |
return n * 180 / Math.PI; | |
}; | |
function destVincenty(lat1, lon1, brng, dist) { | |
var a = 6378137, | |
b = 6356752.3142, | |
f = 1 / 298.257223563, // WGS-84 ellipsiod | |
s = dist, | |
alpha1 = toRad(brng), | |
sinAlpha1 = Math.sin(alpha1), | |
cosAlpha1 = Math.cos(alpha1), | |
tanU1 = (1 - f) * Math.tan(toRad(lat1)), | |
cosU1 = 1 / Math.sqrt((1 + tanU1 * tanU1)), sinU1 = tanU1 * cosU1, | |
sigma1 = Math.atan2(tanU1, cosAlpha1), | |
sinAlpha = cosU1 * sinAlpha1, | |
cosSqAlpha = 1 - sinAlpha * sinAlpha, | |
uSq = cosSqAlpha * (a * a - b * b) / (b * b), | |
A = 1 + uSq / 16384 * (4096 + uSq * (-768 + uSq * (320 - 175 * uSq))), | |
B = uSq / 1024 * (256 + uSq * (-128 + uSq * (74 - 47 * uSq))), | |
sigma = s / (b * A), | |
sigmaP = 2 * Math.PI; | |
while (Math.abs(sigma - sigmaP) > 1e-12) { | |
var cos2SigmaM = Math.cos(2 * sigma1 + sigma), | |
sinSigma = Math.sin(sigma), | |
cosSigma = Math.cos(sigma), | |
deltaSigma = B * sinSigma * (cos2SigmaM + B / 4 * (cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM) - B / 6 * cos2SigmaM * (-3 + 4 * sinSigma * sinSigma) * (-3 + 4 * cos2SigmaM * cos2SigmaM))); | |
sigmaP = sigma; | |
sigma = s / (b * A) + deltaSigma; | |
}; | |
var tmp = sinU1 * sinSigma - cosU1 * cosSigma * cosAlpha1, | |
lat2 = Math.atan2(sinU1 * cosSigma + cosU1 * sinSigma * cosAlpha1, (1 - f) * Math.sqrt(sinAlpha * sinAlpha + tmp * tmp)), | |
lambda = Math.atan2(sinSigma * sinAlpha1, cosU1 * cosSigma - sinU1 * sinSigma * cosAlpha1), | |
C = f / 16 * cosSqAlpha * (4 + f * (4 - 3 * cosSqAlpha)), | |
L = lambda - (1 - C) * f * sinAlpha * (sigma + C * sinSigma * (cos2SigmaM + C * cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM))), | |
revAz = Math.atan2(sinAlpha, -tmp); // final bearing | |
return new LatLon(toDeg(lat2), lon1 + toDeg(L)); | |
}; |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/*! | |
* JavaScript function to calculate the geodetic distance between two points specified by latitude/longitude using the Vincenty inverse formula for ellipsoids. | |
* | |
* Original scripts by Chris Veness | |
* Taken from http://movable-type.co.uk/scripts/latlong-vincenty.html and optimized / cleaned up by Mathias Bynens <http://mathiasbynens.be/> | |
* Based on the Vincenty direct formula by T. Vincenty, “Direct and Inverse Solutions of Geodesics on the Ellipsoid with application of nested equations”, Survey Review, vol XXII no 176, 1975 <http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf> | |
* | |
* @param {Number} lat1, lon1: first point in decimal degrees | |
* @param {Number} lat2, lon2: second point in decimal degrees | |
* @returns {Number} distance in metres between points | |
*/ | |
function toRad(n) { | |
return n * Math.PI / 180; | |
}; | |
function distVincenty(lat1, lon1, lat2, lon2) { | |
var a = 6378137, | |
b = 6356752.3142, | |
f = 1 / 298.257223563, // WGS-84 ellipsoid params | |
L = toRad(lon2-lon1), | |
U1 = Math.atan((1 - f) * Math.tan(toRad(lat1))), | |
U2 = Math.atan((1 - f) * Math.tan(toRad(lat2))), | |
sinU1 = Math.sin(U1), | |
cosU1 = Math.cos(U1), | |
sinU2 = Math.sin(U2), | |
cosU2 = Math.cos(U2), | |
lambda = L, | |
lambdaP, | |
iterLimit = 100; | |
do { | |
var sinLambda = Math.sin(lambda), | |
cosLambda = Math.cos(lambda), | |
sinSigma = Math.sqrt((cosU2 * sinLambda) * (cosU2 * sinLambda) + (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda) * (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda)); | |
if (0 === sinSigma) { | |
return 0; // co-incident points | |
}; | |
var cosSigma = sinU1 * sinU2 + cosU1 * cosU2 * cosLambda, | |
sigma = Math.atan2(sinSigma, cosSigma), | |
sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma, | |
cosSqAlpha = 1 - sinAlpha * sinAlpha, | |
cos2SigmaM = cosSigma - 2 * sinU1 * sinU2 / cosSqAlpha, | |
C = f / 16 * cosSqAlpha * (4 + f * (4 - 3 * cosSqAlpha)); | |
if (isNaN(cos2SigmaM)) { | |
cos2SigmaM = 0; // equatorial line: cosSqAlpha = 0 (§6) | |
}; | |
lambdaP = lambda; | |
lambda = L + (1 - C) * f * sinAlpha * (sigma + C * sinSigma * (cos2SigmaM + C * cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM))); | |
} while (Math.abs(lambda - lambdaP) > 1e-12 && --iterLimit > 0); | |
if (!iterLimit) { | |
return NaN; // formula failed to converge | |
}; | |
var uSq = cosSqAlpha * (a * a - b * b) / (b * b), | |
A = 1 + uSq / 16384 * (4096 + uSq * (-768 + uSq * (320 - 175 * uSq))), | |
B = uSq / 1024 * (256 + uSq * (-128 + uSq * (74 - 47 * uSq))), | |
deltaSigma = B * sinSigma * (cos2SigmaM + B / 4 * (cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM) - B / 6 * cos2SigmaM * (-3 + 4 * sinSigma * sinSigma) * (-3 + 4 * cos2SigmaM * cos2SigmaM))), | |
s = b * A * (sigma - deltaSigma); | |
return s.toFixed(3); // round to 1mm precision | |
}; |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment