Skip to content

Instantly share code, notes, and snippets.

@apatil
Created March 31, 2011 11:47
Show Gist options
  • Save apatil/896227 to your computer and use it in GitHub Desktop.
Save apatil/896227 to your computer and use it in GitHub Desktop.
from scipy.sparse import linalg
import numpy as np
import map_utils
def dim2w(dim):
return np.arange(-np.ceil((dim-1)/2.), np.floor((dim-1)/2.)+1)
class fractional_modified_laplacian(linalg.LinearOperator):
def __init__(self, dims, kappa, alpha):
# Remember the size of the grid, kappa, and alpha.
self.dims = dims
self.kappa = kappa
self.alpha = alpha
self.xsize = np.prod(dims)
self.wsq = dim2w(dims[0])**2
for d in self.dims[1:]:
self.wsq = np.add.outer(self.wsq, dim2w(d)**2)
self.wsq = np.fft.ifftshift(self.wsq)
# let the LinearOperator class do whatever it needs to do to initialize.
linalg.LinearOperator.__init__(self, (self.xsize,self.xsize), None, dtype='float')
def __call__(self, x):
return self.matvec(x.ravel()).reshape(self.dims)
def matvec(self, x):
"Matvec computes Lx for given input x."
# x is coming in as a vector, reshape it to an n-dimensional array.
x_ = x.reshape(self.dims)
# Apply an n-dimensional fft.
k = np.fft.fftn(x_)
# Apply the fractional modified Laplacian in Fourier space.
# The fractional modified Laplacian is (\kappa^2 - \Delta)^{\alpha/2}
k_trans = (self.kappa**2+self.wsq)**(self.alpha/2.)*k
# Apply an n-dimensional inverse fft, reshape to a vector and return.
y_ = np.fft.ifftn(k_trans).real
return y_.ravel()
def expand_matrix(op):
out = np.empty((op.xsize, op.xsize))
x = np.zeros(op.xsize)
for i in xrange(op.xsize):
x[i] = 1
out[i] = op.matvec(x)
x[i] = 0
out[np.where(np.abs(out)<1.e-10)]=0
return out
def genfield(L):
"""
Solves the system Lx = W using the gmres method, see
http://docs.scipy.org/doc/scipy/reference/sparse.linalg.html#scipy.sparse.linalg.gmres
"""
w = np.random.normal(size=L.dims)
return linalg.lgmres(L, w.ravel())[0].reshape(L.dims)
if __name__ == '__main__':
import euclidean
n = 101
L = euclidean.fractional_modified_laplacian((n,n), 10, 2)
import pylab as pl
# x = np.cos(np.linspace(-1,1,n)*np.pi)
# x = np.add.outer(x,x)
pl.clf()
# pl.subplot(1,2,1)
# pl.imshow(x,interpolation='nearest')
# pl.colorbar()
# pl.subplot(1,2,2)
# Lx = L(x)
# pl.imshow(Lx,interpolation='nearest')
# pl.colorbar()
# Get L as a full matrix
# A = expand_matrix(L)
# e,v = np.linalg.eigh(A)
# Number of zero eigenvalues.
# print (np.abs(e)<1.e-10).sum()
f = genfield(L)
pl.imshow(f,interpolation='nearest')
@apatil
Copy link
Author

apatil commented Mar 31, 2011

The new version illustrates that the operator has one zero eigenvalue, which makes sense because constants are in the nullspace and satisfy the periodic boundary conditions. Also making sense, that zero eigenvalue goes away when kappa is nonzero.

@apatil
Copy link
Author

apatil commented Mar 31, 2011

The new version seems to work, broadly speaking, in spite of the boundary effects. However, it's really slow for smooth fields: small kappa, large alpha, high resolution. Can the method be improved?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment