Created
July 4, 2013 22:02
-
-
Save apskii/5930485 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| module KV where | |
| open import Data.Nat hiding (_⊔_) | |
| open import Data.Unit | |
| open import Data.List using (List; []; _∷_) | |
| open import Data.Empty | |
| open import Data.Maybe | |
| open import Data.Product | |
| open import Function | |
| open import Relation.Binary.Core | |
| open import Level as L using (Level; _⊔_) | |
| ⟨_⟩₃₋₁ : ∀ {a} {A B C : Set a} → (A × B × C) → A | |
| ⟨_⟩₃₋₁ (a , _ , _) = a | |
| ⟨_⟩₃₋₂ : ∀ {a} {A B C : Set a} → (A × B × C) → B | |
| ⟨_⟩₃₋₂ (_ , b , _) = b | |
| ⟨_⟩₃₋₃ : ∀ {a} {A B C : Set a} → (A × B × C) → C | |
| ⟨_⟩₃₋₃ (_ , _ , c) = c | |
| record KV-Storage : Set₁ where | |
| field | |
| Storage : Set → Set → Set | |
| new-key : ∀ {K V} → Storage K V → K × Storage K V | |
| -- Read / Write | |
| _[_] : ∀ {K V} → Storage K V → K → Maybe V | |
| _[_]=_ : ∀ {K V} → Storage K V → K → V → Storage K V | |
| -- Properties | |
| k-uniq : ∀ {K V} → {kvs : Storage K V} → {k : K} | |
| → Σ V (λ v → kvs [ k ] ≡ just v) → proj₁ (new-key kvs) ≢ k | |
| kv-overwrite : ∀ {K V} → {k1 k2 : K} → {v1 v2 : V} → {kvs : Storage K V} | |
| → (k1 ≡ k2) → ((kvs [ k1 ]= v1) [ k2 ]= v2) [ k1 ] ≡ just v2 | |
| add : ∀ {K E} → K → E → Storage K (E × ℕ × K) → Storage K (E × ℕ × K) | |
| add {K} {E} k e′ db = maybe′ (λ r → walk k db ⟨ r ⟩₃₋₂ r) db (db [ k ]) | |
| where | |
| DB = Storage K (E × ℕ × K) | |
| walk : K → DB → ℕ → (E × ℕ × K) → DB | |
| walk k db (suc m) (e , n , k′) = maybe′ (walk k′ (db [ k ]= (e , suc n , k′)) m) db (db [ k′ ]) | |
| walk k db zero (e , n , _ ) with new-key db | |
| ... | (k′ , db′) = (db′ [ k′ ]= (e′ , zero , k′)) [ k ]= (e , n , k′) | |
| to-list : ∀ {K E} → K → Storage K (E × ℕ × K) → List E | |
| to-list {K} {E} k db = maybe′ (λ r → walk ⟨ r ⟩₃₋₂ k) [] (db [ k ]) | |
| where | |
| walk : ℕ → K → List E | |
| walk zero _ = [] | |
| walk (suc n) k = maybe′ (λ r → ⟨ r ⟩₃₋₁ ∷ walk n ⟨ r ⟩₃₋₃) [] (db [ k ]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment