-
Star
(111)
You must be signed in to star a gist -
Fork
(41)
You must be signed in to fork a gist
-
-
Save ar-pa/957297fb3f88996ead11 to your computer and use it in GitHub Desktop.
// In the name of Allah. | |
// We're nothing and you're everything. | |
// Ya Ali! | |
#include <bits/stdc++.h> | |
using namespace std; | |
typedef long long ll; | |
const int maxn = 1e2 + 14, lg = 15; | |
/* | |
###################################################################### | |
####################### THE BIG INT ########################## | |
*/ | |
const int base = 1000000000; | |
const int base_digits = 9; | |
struct bigint { | |
vector<int> a; | |
int sign; | |
/*<arpa>*/ | |
int size(){ | |
if(a.empty())return 0; | |
int ans=(a.size()-1)*base_digits; | |
int ca=a.back(); | |
while(ca) | |
ans++,ca/=10; | |
return ans; | |
} | |
bigint operator ^(const bigint &v){ | |
bigint ans=1,a=*this,b=v; | |
while(!b.isZero()){ | |
if(b%2) | |
ans*=a; | |
a*=a,b/=2; | |
} | |
return ans; | |
} | |
bigint modPow(bigint base, bigint exp, const bigint &mod) { | |
bigint result = 1; | |
base %= mod; | |
while (!exp.isZero()) { | |
if (exp % 2) | |
result = (result * base) % mod; | |
base = (base * base) % mod; | |
exp /= 2; | |
} | |
return result; | |
} | |
string to_string(){ | |
stringstream ss; | |
ss << *this; | |
string s; | |
ss >> s; | |
return s; | |
} | |
int sumof(){ | |
string s = to_string(); | |
int ans = 0; | |
for(auto c : s) ans += c - '0'; | |
return ans; | |
} | |
/*</arpa>*/ | |
bigint() : | |
sign(1) { | |
} | |
bigint(long long v) { | |
*this = v; | |
} | |
bigint(const string &s) { | |
read(s); | |
} | |
void operator=(const bigint &v) { | |
sign = v.sign; | |
a = v.a; | |
} | |
void operator=(long long v) { | |
sign = 1; | |
a.clear(); | |
if (v < 0) | |
sign = -1, v = -v; | |
for (; v > 0; v = v / base) | |
a.push_back(v % base); | |
} | |
bigint operator+(const bigint &v) const { | |
if (sign == v.sign) { | |
bigint res = v; | |
for (int i = 0, carry = 0; i < (int) max(a.size(), v.a.size()) || carry; ++i) { | |
if (i == (int) res.a.size()) | |
res.a.push_back(0); | |
res.a[i] += carry + (i < (int) a.size() ? a[i] : 0); | |
carry = res.a[i] >= base; | |
if (carry) | |
res.a[i] -= base; | |
} | |
return res; | |
} | |
return *this - (-v); | |
} | |
bigint operator-(const bigint &v) const { | |
if (sign == v.sign) { | |
if (abs() >= v.abs()) { | |
bigint res = *this; | |
for (int i = 0, carry = 0; i < (int) v.a.size() || carry; ++i) { | |
res.a[i] -= carry + (i < (int) v.a.size() ? v.a[i] : 0); | |
carry = res.a[i] < 0; | |
if (carry) | |
res.a[i] += base; | |
} | |
res.trim(); | |
return res; | |
} | |
return -(v - *this); | |
} | |
return *this + (-v); | |
} | |
void operator*=(int v) { | |
if (v < 0) | |
sign = -sign, v = -v; | |
for (int i = 0, carry = 0; i < (int) a.size() || carry; ++i) { | |
if (i == (int) a.size()) | |
a.push_back(0); | |
long long cur = a[i] * (long long) v + carry; | |
carry = (int) (cur / base); | |
a[i] = (int) (cur % base); | |
//asm("divl %%ecx" : "=a"(carry), "=d"(a[i]) : "A"(cur), "c"(base)); | |
} | |
trim(); | |
} | |
bigint operator*(int v) const { | |
bigint res = *this; | |
res *= v; | |
return res; | |
} | |
void operator*=(long long v) { | |
if (v < 0) | |
sign = -sign, v = -v; | |
if(v > base){ | |
*this = *this * (v / base) * base + *this * (v % base); | |
return ; | |
} | |
for (int i = 0, carry = 0; i < (int) a.size() || carry; ++i) { | |
if (i == (int) a.size()) | |
a.push_back(0); | |
long long cur = a[i] * (long long) v + carry; | |
carry = (int) (cur / base); | |
a[i] = (int) (cur % base); | |
//asm("divl %%ecx" : "=a"(carry), "=d"(a[i]) : "A"(cur), "c"(base)); | |
} | |
trim(); | |
} | |
bigint operator*(long long v) const { | |
bigint res = *this; | |
res *= v; | |
return res; | |
} | |
friend pair<bigint, bigint> divmod(const bigint &a1, const bigint &b1) { | |
int norm = base / (b1.a.back() + 1); | |
bigint a = a1.abs() * norm; | |
bigint b = b1.abs() * norm; | |
bigint q, r; | |
q.a.resize(a.a.size()); | |
for (int i = a.a.size() - 1; i >= 0; i--) { | |
r *= base; | |
r += a.a[i]; | |
int s1 = r.a.size() <= b.a.size() ? 0 : r.a[b.a.size()]; | |
int s2 = r.a.size() <= b.a.size() - 1 ? 0 : r.a[b.a.size() - 1]; | |
int d = ((long long) base * s1 + s2) / b.a.back(); | |
r -= b * d; | |
while (r < 0) | |
r += b, --d; | |
q.a[i] = d; | |
} | |
q.sign = a1.sign * b1.sign; | |
r.sign = a1.sign; | |
q.trim(); | |
r.trim(); | |
return make_pair(q, r / norm); | |
} | |
bigint operator/(const bigint &v) const { | |
return divmod(*this, v).first; | |
} | |
bigint operator%(const bigint &v) const { | |
return divmod(*this, v).second; | |
} | |
void operator/=(int v) { | |
if (v < 0) | |
sign = -sign, v = -v; | |
for (int i = (int) a.size() - 1, rem = 0; i >= 0; --i) { | |
long long cur = a[i] + rem * (long long) base; | |
a[i] = (int) (cur / v); | |
rem = (int) (cur % v); | |
} | |
trim(); | |
} | |
bigint operator/(int v) const { | |
bigint res = *this; | |
res /= v; | |
return res; | |
} | |
int operator%(int v) const { | |
if (v < 0) | |
v = -v; | |
int m = 0; | |
for (int i = a.size() - 1; i >= 0; --i) | |
m = (a[i] + m * (long long) base) % v; | |
return m * sign; | |
} | |
void operator+=(const bigint &v) { | |
*this = *this + v; | |
} | |
void operator-=(const bigint &v) { | |
*this = *this - v; | |
} | |
void operator*=(const bigint &v) { | |
*this = *this * v; | |
} | |
void operator/=(const bigint &v) { | |
*this = *this / v; | |
} | |
void operator%=(const bigint &v){ | |
*this = *this % v; | |
} | |
bool operator<(const bigint &v) const { | |
if (sign != v.sign) | |
return sign < v.sign; | |
if (a.size() != v.a.size()) | |
return a.size() * sign < v.a.size() * v.sign; | |
for (int i = a.size() - 1; i >= 0; i--) | |
if (a[i] != v.a[i]) | |
return a[i] * sign < v.a[i] * sign; | |
return false; | |
} | |
bool operator>(const bigint &v) const { | |
return v < *this; | |
} | |
bool operator<=(const bigint &v) const { | |
return !(v < *this); | |
} | |
bool operator>=(const bigint &v) const { | |
return !(*this < v); | |
} | |
bool operator==(const bigint &v) const { | |
return !(*this < v) && !(v < *this); | |
} | |
bool operator!=(const bigint &v) const { | |
return *this < v || v < *this; | |
} | |
void trim() { | |
while (!a.empty() && !a.back()) | |
a.pop_back(); | |
if (a.empty()) | |
sign = 1; | |
} | |
bool isZero() const { | |
return a.empty() || (a.size() == 1 && !a[0]); | |
} | |
bigint operator-() const { | |
bigint res = *this; | |
res.sign = -sign; | |
return res; | |
} | |
bigint abs() const { | |
bigint res = *this; | |
res.sign *= res.sign; | |
return res; | |
} | |
long long longValue() const { | |
long long res = 0; | |
for (int i = a.size() - 1; i >= 0; i--) | |
res = res * base + a[i]; | |
return res * sign; | |
} | |
friend bigint gcd(const bigint &a, const bigint &b) { | |
return b.isZero() ? a : gcd(b, a % b); | |
} | |
friend bigint lcm(const bigint &a, const bigint &b) { | |
return a / gcd(a, b) * b; | |
} | |
void read(const string &s) { | |
sign = 1; | |
a.clear(); | |
int pos = 0; | |
while (pos < (int) s.size() && (s[pos] == '-' || s[pos] == '+')) { | |
if (s[pos] == '-') | |
sign = -sign; | |
++pos; | |
} | |
for (int i = s.size() - 1; i >= pos; i -= base_digits) { | |
int x = 0; | |
for (int j = max(pos, i - base_digits + 1); j <= i; j++) | |
x = x * 10 + s[j] - '0'; | |
a.push_back(x); | |
} | |
trim(); | |
} | |
friend istream& operator>>(istream &stream, bigint &v) { | |
string s; | |
stream >> s; | |
v.read(s); | |
return stream; | |
} | |
friend ostream& operator<<(ostream &stream, const bigint &v) { | |
if (v.sign == -1) | |
stream << '-'; | |
stream << (v.a.empty() ? 0 : v.a.back()); | |
for (int i = (int) v.a.size() - 2; i >= 0; --i) | |
stream << setw(base_digits) << setfill('0') << v.a[i]; | |
return stream; | |
} | |
static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits) { | |
vector<long long> p(max(old_digits, new_digits) + 1); | |
p[0] = 1; | |
for (int i = 1; i < (int) p.size(); i++) | |
p[i] = p[i - 1] * 10; | |
vector<int> res; | |
long long cur = 0; | |
int cur_digits = 0; | |
for (int i = 0; i < (int) a.size(); i++) { | |
cur += a[i] * p[cur_digits]; | |
cur_digits += old_digits; | |
while (cur_digits >= new_digits) { | |
res.push_back(int(cur % p[new_digits])); | |
cur /= p[new_digits]; | |
cur_digits -= new_digits; | |
} | |
} | |
res.push_back((int) cur); | |
while (!res.empty() && !res.back()) | |
res.pop_back(); | |
return res; | |
} | |
typedef vector<long long> vll; | |
static vll karatsubaMultiply(const vll &a, const vll &b) { | |
int n = a.size(); | |
vll res(n + n); | |
if (n <= 32) { | |
for (int i = 0; i < n; i++) | |
for (int j = 0; j < n; j++) | |
res[i + j] += a[i] * b[j]; | |
return res; | |
} | |
int k = n >> 1; | |
vll a1(a.begin(), a.begin() + k); | |
vll a2(a.begin() + k, a.end()); | |
vll b1(b.begin(), b.begin() + k); | |
vll b2(b.begin() + k, b.end()); | |
vll a1b1 = karatsubaMultiply(a1, b1); | |
vll a2b2 = karatsubaMultiply(a2, b2); | |
for (int i = 0; i < k; i++) | |
a2[i] += a1[i]; | |
for (int i = 0; i < k; i++) | |
b2[i] += b1[i]; | |
vll r = karatsubaMultiply(a2, b2); | |
for (int i = 0; i < (int) a1b1.size(); i++) | |
r[i] -= a1b1[i]; | |
for (int i = 0; i < (int) a2b2.size(); i++) | |
r[i] -= a2b2[i]; | |
for (int i = 0; i < (int) r.size(); i++) | |
res[i + k] += r[i]; | |
for (int i = 0; i < (int) a1b1.size(); i++) | |
res[i] += a1b1[i]; | |
for (int i = 0; i < (int) a2b2.size(); i++) | |
res[i + n] += a2b2[i]; | |
return res; | |
} | |
bigint operator*(const bigint &v) const { | |
vector<int> a6 = convert_base(this->a, base_digits, 6); | |
vector<int> b6 = convert_base(v.a, base_digits, 6); | |
vll a(a6.begin(), a6.end()); | |
vll b(b6.begin(), b6.end()); | |
while (a.size() < b.size()) | |
a.push_back(0); | |
while (b.size() < a.size()) | |
b.push_back(0); | |
while (a.size() & (a.size() - 1)) | |
a.push_back(0), b.push_back(0); | |
vll c = karatsubaMultiply(a, b); | |
bigint res; | |
res.sign = sign * v.sign; | |
for (int i = 0, carry = 0; i < (int) c.size(); i++) { | |
long long cur = c[i] + carry; | |
res.a.push_back((int) (cur % 1000000)); | |
carry = (int) (cur / 1000000); | |
} | |
res.a = convert_base(res.a, 6, base_digits); | |
res.trim(); | |
return res; | |
} | |
}; | |
/* | |
####################### THE BIG INT ########################## | |
###################################################################### | |
*/ | |
int main(){ | |
ios::sync_with_stdio(0), cin.tie(0); | |
bigint a=99999999; | |
a*=1000200000003000LL; | |
cout<<a<<'\n'; | |
} |
Hi, I want to use it on my library project, can I change some part and use it?
Hi, I want to use it on my library project, can I change some part and use it?
Yes. No problem.
Hi, I want to use it on my library project, can I change some part and use it?
Yes. No problem.
Thank you so much.
Program is not so good.
I had APPCRASH on sum with digits 2000 signs long. This calss not suitable for work applications.
Sexy!
Thank you so much!!!!
just a suggestion: if you could please add modular exponentiation function into the snippet needed in https://codeforces.com/contest/17/problem/D as (((b - 1) * (b ^ (n - 1))) % c) . Here, ^ is failing since we need modpow to do %c in each pow(^) step for optimizing time complexity. Adding needed snippet :
bigint modPow(bigint base, bigint exp, const bigint &mod) {
bigint result = 1;
base %= mod;
while (!exp.isZero()) {
if (exp % 2)
result = (result * base) % mod;
base = (base * base) % mod;
exp /= 2;
}
return result;
}
just a suggestion: if you could please add modular exponentiation function into the snippet needed in https://codeforces.com/contest/17/problem/D as (((b - 1) * (b ^ (n - 1))) % c) . Here, ^ is failing since we need modpow to do %c in each pow(^) step for optimizing time complexity. Adding needed snippet :
bigint modPow(bigint base, bigint exp, const bigint &mod) { bigint result = 1; base %= mod; while (!exp.isZero()) { if (exp % 2) result = (result * base) % mod; base = (base * base) % mod; exp /= 2; } return result; }
Added.
Thanks. Also, since you did use %= in modpow function, but its not defined here, please do also add in :
void operator%=(const bigint &v){
*this = *this % v;
}
it`s awsome, but what about logical operations, like &, >>, <<?