Created
June 28, 2015 11:47
-
-
Save arasharchor/8c10ad881bbb5a1a7a36 to your computer and use it in GitHub Desktop.
k nearest neighbor classifier
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
class KNearestNeighbor: | |
""" a kNN classifier with L2 distance """ | |
def __init__(self): | |
pass | |
def train(self, X, y): | |
""" | |
Train the classifier. For k-nearest neighbors this is just | |
memorizing the training data. | |
Input: | |
X - A num_train x dimension array where each row is a training point. | |
y - A vector of length num_train, where y[i] is the label for X[i, :] | |
""" | |
self.X_train = X | |
self.y_train = y | |
def predict(self, X, k=1, num_loops=0): | |
""" | |
Predict labels for test data using this classifier. | |
Input: | |
X - A num_test x dimension array where each row is a test point. | |
k - The number of nearest neighbors that vote for predicted label | |
num_loops - Determines which method to use to compute distances | |
between training points and test points. | |
Output: | |
y - A vector of length num_test, where y[i] is the predicted label for the | |
test point X[i, :]. | |
""" | |
if num_loops == 0: | |
dists = self.compute_distances_no_loops(X) | |
elif num_loops == 1: | |
dists = self.compute_distances_one_loop(X) | |
elif num_loops == 2: | |
dists = self.compute_distances_two_loops(X) | |
else: | |
raise ValueError('Invalid value %d for num_loops' % num_loops) | |
return self.predict_labels(dists, k=k) | |
def compute_distances_two_loops(self, X): | |
""" | |
Compute the distance between each test point in X and each training point | |
in self.X_train using a nested loop over both the training data and the | |
test data. | |
Input: | |
X - An num_test x dimension array where each row is a test point. | |
Output: | |
dists - A num_test x num_train array where dists[i, j] is the distance | |
between the ith test point and the jth training point. | |
""" | |
num_test = X.shape[0] | |
num_train = self.X_train.shape[0] | |
dists = np.zeros((num_test, num_train)) | |
for i in xrange(num_test): | |
for j in xrange(num_train): | |
##################################################################### | |
# TODO: # | |
# Compute the l2 distance between the ith test point and the jth # | |
# training point, and store the result in dists[i, j] # | |
##################################################################### | |
dists[i,j] = np.sqrt(np.sum(np.square(X[i]-self.X_train[j]))) #usere loesung | |
# dists[i,j] = np.sqrt(np.sum((X[i] - self.X_train[j]) ** 2)) #erste loesung | |
# dists[i,j] = np.sqrt(((X[i,:]-self.X_train[j,:])**2).sum(axis=0)) | |
# dists[i,j] = np.sqrt(np.sum((X[i,:]-self.X_train[j,:])**2,axis=0)) | |
# dists[i,j] = np.sqrt(np.sum(np.square(X[i,:]-self.X_train[j,:]),axis=1)) | |
##################################################################### | |
# END OF YOUR CODE # | |
##################################################################### | |
return dists | |
def compute_distances_one_loop(self, X): | |
""" | |
Compute the distance between each test point in X and each training point | |
in self.X_train using a single loop over the test data. | |
Input / Output: Same as compute_distances_two_loops | |
""" | |
num_test = X.shape[0] | |
num_train = self.X_train.shape[0] | |
dists = np.zeros((num_test, num_train)) | |
for i in xrange(num_test): | |
####################################################################### | |
# TODO: # | |
# Compute the l2 distance between the ith test point and all training # | |
# points, and store the result in dists[i, :]. # | |
####################################################################### | |
#dists[i,:] = np.linalg.norm(X[i,:]-self.X_train,axis = 1) | |
dists[i,:]= np.sqrt(np.sum(np.square(X[i,:]-self.X_train),axis=1)) #unsere loesung | |
####### | |
# X[i].shape = (3072,) -> broadcast to fit X_train shape. erste loesung | |
#dists[i] = np.sqrt(np.sum((X[i] - self.X_train) ** 2, axis=1)) | |
####################################################################### | |
# END OF YOUR CODE # | |
####################################################################### | |
return dists | |
def compute_distances_no_loops(self, X): | |
""" | |
Compute the distance between each test point in X and each training point | |
in self.X_train using no explicit loops. | |
Input / Output: Same as compute_distances_two_loops | |
""" | |
num_test = X.shape[0] | |
num_train = self.X_train.shape[0] | |
dists = np.zeros((num_test, num_train)) | |
######################################################################### | |
# TODO: # | |
# Compute the l2 distance between all test points and all training # | |
# points without using any explicit loops, and store the result in # | |
# dists. # | |
# HINT: Try to formulate the l2 distance using matrix multiplication # | |
# and two broadcast sums. # | |
######################################################################### | |
#X1 = np.zeros((X.shape[0],1,X.shape[1])) | |
#X1[:,0,:] = X | |
#X_train1 = np.zeros((1,self.X_train.shape[0],self.X_train.shape[1])) | |
#X_train1[0,:,:] = self.X_train | |
#dists = np.linalg.norm(X_train1-X1,axis = 2) | |
dists = np.sqrt((X**2).sum(axis=1)[:, np.newaxis] + (self.X_train**2).sum(axis=1) - 2 * X.dot(self.X_train.T)) | |
##### | |
## from scipy.spatial.distance import cdist | |
## dists = cdist(X, self.X_train, metric='euclidean') | |
## to fully vectorize, use of the formula: (a-b)^2 = a^2 + b^2 -2ab | |
## (a-b)^2 = quadra -2 * prod | |
## with quadra = a^2 + b^2; and prod = ab | |
#a2 = np.sum(X ** 2, axis=1) # shape: (500,) | |
#b2 = np.sum(self.X_train ** 2, axis=1) # shape: (5000,) | |
#print a2.shape | |
#aa2 = a2.reshape(a2.shape[0], 1) # reshape a2 to (500,1) to be able to broadcast a2 and sum to b2 | |
#print aa2.shape | |
#quadra = aa2 + b2 # shape = (500, 5000) | |
#prod = np.dot(X, self.X_train.T) # shape = (500, 5000) | |
#dists = np.sqrt(aa2 + b2 -2 * np.dot(X, self.X_train.T)) # shape = (500, 5000) | |
######################################################################### | |
# END OF YOUR CODE # | |
######################################################################### | |
return dists | |
def predict_labels(self, dists, k=1): | |
""" | |
Given a matrix of distances between test points and training points, | |
predict a label for each test point. | |
Input: | |
dists - A num_test x num_train array where dists[i, j] gives the distance | |
between the ith test point and the jth training point. | |
Output: | |
y - A vector of length num_test where y[i] is the predicted label for the | |
ith test point. | |
""" | |
num_test = dists.shape[0] | |
y_pred = np.zeros(num_test) | |
for i in xrange(num_test): | |
# A list of length k storing the labels of the k nearest neighbors to | |
# the ith test point. | |
closest_y = [] | |
######################################################################### | |
# TODO: # | |
# Use the distance matrix to find the k nearest neighbors of the ith # | |
# training point, and use self.y_train to find the labels of these # | |
# neighbors. Store these labels in closest_y. # | |
# Hint: Look up the function numpy.argsort. # | |
######################################################################### | |
closest_y = np.array(self.y_train[np.argsort(dists[i,:],axis=0)[:k]]) #unsere loesung | |
#closest_y = np.array(self.y_train[np.argsort(dists[i,:],axis=0)[:k]],dtype=float) #unsere loesung | |
#### | |
#ind = np.argsort(dists[i, :], axis=0) #erste loesung | |
#closest_y = self.y_train[ind[:k]] | |
######################################################################### | |
# TODO: # | |
# Now that you have found the labels of the k nearest neighbors, you # | |
# need to find the most common label in the list closest_y of labels. # | |
# Store this label in y_pred[i]. Break ties by choosing the smaller # | |
# label. # | |
######################################################################### | |
#d = {x:closest_y.count(x) for x in closest_y} | |
#c, b = d.keys(), d.values() | |
#e=c[b.index(max(b))] | |
#y_pred[i] = self.y_train[closest_y] | |
y_pred[i] = np.bincount(closest_y).argmax() # meine loesung worked | |
########### worked | |
#from scipy.stats import mode # zweite loesung meine loesong | |
#y_pred[i] = mode(closest_y)[0][0] | |
############### zweite loesung worked but the accuracy is a disaster | |
#from collections import Counter | |
## pick nearest neighbors | |
#closest_y = self.y_train[np.argsort(dists[i]) < k] | |
## count which class appears most | |
#y_pred[i] = Counter(closest_y).most_common(1)[0][0] | |
############## erste loesung worked | |
#types = np.unique(closest_y) | |
## print 'types', types | |
#closest_y_list = closest_y.tolist() | |
#occ = [closest_y_list.count(lab) for lab in types] | |
## print 'occ:', occ | |
#y_pred[i] = types[np.argmax(occ)] | |
## print 'pred: ', y_pred[i] | |
######################################################################### | |
# END OF YOUR CODE # | |
######################################################################### | |
return y_pred | |
# with the CIFAR dataset | |
# Two loop version took 80.492011 seconds | |
# One loop version took 112.854208 seconds | |
# No loop version took 13.636812 seconds | |
# accuracy with k=10: | |
# Got 141 / 500 correct => accuracy: 0.282000 | |
# Final accuracy, after 5-fold cross-validation to choose best_k=50: | |
# Got 293 / 500 correct => accuracy: 0.586000 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thank you for your code, nice implementation with multiple choices.