To generate a pom.xml file just run gradle writeNewPom
If you want to generate it as pom.xml in the root of the project, replace writeTo("$buildDir/newpom.xml") with writeTo("pom.xml")
| resource "aws_ecs_service" "ignore_changes_task_definition" { | |
| count = var.enabled && var.ignore_changes_task_definition ? 1 : 0 | |
| name = module.default_label.id | |
| task_definition = "${join("", aws_ecs_task_definition.default.*.family)}:${join("", aws_ecs_task_definition.default.*.revision)}" | |
| desired_count = var.desired_count | |
| deployment_maximum_percent = var.deployment_maximum_percent | |
| deployment_minimum_healthy_percent = var.deployment_minimum_healthy_percent | |
| health_check_grace_period_seconds = var.health_check_grace_period_seconds | |
| launch_type = var.launch_type | |
| platform_version = var.launch_type == "FARGATE" ? var.platform_version : null |
| package org.archenroot.integration.commons.archive_service.app; | |
| import org.archenroot.integration.commons.archive_service.app.security.SecurityConfig; | |
| import org.archenroot.integration.commons.archive_service.backend.domain.entity.GlobalConfiguration; | |
| import org.archenroot.integration.commons.archive_service.backend.service.UserAccountService; | |
| import org.archenroot.integration.commons.archive_service.backend.util.LocalDateJpaConverter; | |
| import org.archenroot.integration.commons.archive_service.ui.AppUI; | |
| import org.springframework.boot.SpringApplication; | |
| import org.springframework.boot.autoconfigure.SpringBootApplication; | |
| import org.springframework.boot.autoconfigure.domain.EntityScan; |
To generate a pom.xml file just run gradle writeNewPom
If you want to generate it as pom.xml in the root of the project, replace writeTo("$buildDir/newpom.xml") with writeTo("pom.xml")
In order to clone the TVN application from sourceforge to github I performed the following steps.
rsync -av rsync://tnv.cvs.sourceforge.net/cvsroot/tnv/* .
svn export --username=guest http://cvs2svn.tigris.org/svn/cvs2svn/trunk cvs2svn-trunk
cp ./cvs2svn-trunk/cvs2git-example.options ./cvs2git.options
vim cvs2git.options
cvs2svn-trunk/cvs2git --options=cvs2git.options --fallback-encoding utf-8
[email protected]:binarytemple/tnv.git tnv-github
git clone [email protected]:binarytemple/tnv.git tnv-github
| # cat /etc/logrotate.d/mysqld | |
| # This logname can be set in /etc/my.cnf | |
| # by setting the variable "err-log" | |
| # in the [safe_mysqld] section as follows: | |
| # | |
| # [safe_mysqld] | |
| # err-log=/var/log/mysqld.log | |
| # | |
| # If the root user has a password you have to create a |
| docker network ls | |
| docker network create --driver bridge isolated_network ## create ~ create custom network, bridge ~ use a bridge network, isolated_network ~ name of the custom network | |
| docker network isolated_network | |
| docker network inspect isolated_network | |
| docker run -d --net=isolated_network --name nodeapp -p 3000:3000 abhinavkorpal/node ## net ~ run container in network, mongodb ~ link to this containe by name |
Probably the most straight forward way to start generating Point Clouds from a set of pictures.
VisualSFM is a GUI application for 3D reconstruction using structure from motion (SFM). The reconstruction system integrates several of my previous projects: SIFT on GPU(SiftGPU), Multicore Bundle Adjustment, and Towards Linear-time Incremental Structure from Motion. VisualSFM runs fast by exploiting multicore parallelism for feature detection, feature matching, and bundle adjustment.
For dense reconstruction, this program supports Yasutaka Furukawa's PMVS/CMVS tool chain, and can prepare data for Michal Jancosek's CMP-MVS. In addition, the output of VisualSFM is natively supported by Mathias Rothermel and Konrad Wenzel's [SURE]
Probably the most straight forward way to start generating Point Clouds from a set of pictures.
VisualSFM is a GUI application for 3D reconstruction using structure from motion (SFM). The reconstruction system integrates several of my previous projects: SIFT on GPU(SiftGPU), Multicore Bundle Adjustment, and Towards Linear-time Incremental Structure from Motion. VisualSFM runs fast by exploiting multicore parallelism for feature detection, feature matching, and bundle adjustment.
For dense reconstruction, this program supports Yasutaka Furukawa's PMVS/CMVS tool chain, and can prepare data for Michal Jancosek's CMP-MVS. In addition, the output of VisualSFM is natively supported by Mathias Rothermel and Konrad Wenzel's [SURE]
| #!/bin/bash | |
| #title :mkscript.sh | |
| #description :This script will make a header for a bash script. | |
| #author :bgw | |
| #date :20111101 | |
| #version :0.4 | |
| #usage :bash mkscript.sh | |
| #notes :Install Vim and Emacs to use this script. | |
| #bash_version :4.1.5(1)-release | |
| #============================================================================== |
This gist is an implementation of http://sirile.github.io/2015/05/18/using-haproxy-and-consul-for-dynamic-service-discovery-on-docker.html on top of Docker Machine and Docker Swarm.