Created
March 6, 2025 07:39
-
-
Save ariG23498/daa15a3066223981543027975d779841 to your computer and use it in GitHub Desktop.
QWQ 32B NF4 Inference
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
!pip install -Uq transformers bitsandbytes | |
import torch | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
) | |
model_name = "ariG23498/QwQ-32B-nf4" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype="auto", | |
device_map="auto", | |
) | |
prompt = "How many r's are in the word \"strawberry\"" | |
messages = [ | |
{"role": "user", "content": prompt} | |
] | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) | |
with torch.no_grad(): | |
generated_ids = model.generate( | |
**model_inputs, | |
max_new_tokens=32768, | |
) | |
generated_ids = [ | |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
] | |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
print(response) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
To create the quantized model