Created
September 24, 2020 20:09
-
-
Save ariseff/cbcfd58d05abe7ec388bb4bbc9914ad9 to your computer and use it in GitHub Desktop.
Visualizing KL divergence asymmetry with manim
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Source code for this visualization of KL divergence asymmetry: | |
https://twitter.com/ari_seff/status/1303741288911638530 | |
KL computation is based on | |
https://tuananhle.co.uk/notes/reverse-forward-kl.html | |
Install manim (https://github.com/3b1b/manim) and run with: | |
$ manim asymkl.py AsymKL -pl | |
""" | |
from copy import deepcopy | |
import numpy as np | |
import scipy as sp | |
from scipy.stats import norm as normal | |
import manimlib | |
from manimlib.imports import * | |
camera_config = { | |
'background_color': BLACK, | |
} | |
class Mixture: | |
def __init__(self, mixture_probs, means, stds): | |
if sum(mixture_probs) != 1: | |
raise ValueError('mixture_probs must sum to 1') | |
self.num_mixtures = len(mixture_probs) | |
self.mixture_probs = mixture_probs | |
self.means = means | |
self.stds = stds | |
def logpdf(self, xs): | |
if np.isscalar(xs): | |
xs = [xs] | |
mixture_logpdfs = np.zeros([len(xs), self.num_mixtures]) | |
for mixture_idx in range(self.num_mixtures): | |
mixture_logpdfs[:, mixture_idx] = normal.logpdf( | |
xs, | |
loc=self.means[mixture_idx], | |
scale=self.stds[mixture_idx] | |
) | |
res = sp.special.logsumexp( | |
mixture_logpdfs + np.log(self.mixture_probs), axis=1) | |
if len(res) == 1: | |
res = res[0] | |
return res | |
def pdf(self, xs): | |
res = np.exp(self.logpdf(xs)) | |
return res | |
def approx_kl(gmm_1, gmm_2, num_trapz_points=1000): | |
max_std = np.max(np.append(gmm_1.stds, gmm_2.stds)) | |
trapz_xs_min = np.min(np.append(gmm_1.means, gmm_2.means)) - 3 * max_std | |
trapz_xs_max = np.max(np.append(gmm_1.means, gmm_2.means)) + 3 * max_std | |
xs = np.linspace(trapz_xs_min, trapz_xs_max, num_trapz_points) | |
ys = gmm_1.pdf(xs) * (gmm_1.logpdf(xs) - gmm_2.logpdf(xs)) | |
return np.trapz(ys, xs) | |
class AsymKL(GraphScene): | |
CONFIG = { | |
'camera_config': camera_config, | |
'x_axis_label': None, | |
'y_axis_label': None, | |
'y_max': 1, | |
'y_min': -0.1, | |
'graph_origin': 2.5 * DOWN + 5.5 * LEFT | |
} | |
def construct(self): | |
self.setup_axes(animate=False) | |
# Initialize p | |
mu1_start = 4 | |
mu2_start = 6 | |
sigma = 0.75 | |
p_obj = Mixture( | |
[0.5, 0.5], [mu1_start, mu2_start], [sigma, sigma]) | |
last_p_obj = deepcopy(p_obj) | |
p_color = BLUE | |
p = self.get_graph(p_obj.pdf, p_color) | |
# Initialize q | |
q_mu = 5 | |
q_sigma = 1 | |
q_obj = Mixture([1.0], [q_mu], [q_sigma]) | |
last_q_obj = deepcopy(q_obj) | |
q_color = GREEN | |
q = self.get_graph(q_obj.pdf, q_color) | |
class TempRect(Rectangle): | |
"""Temperature-representing rectangle.""" | |
def __init__(self, height=1): | |
Rectangle.__init__(self, | |
height=height, width=0.7, color=ORANGE, | |
fill_color=ORANGE, fill_opacity=1) | |
rect = TempRect() | |
rect.move_to(1.7*DOWN + 4.7*RIGHT) | |
rkl_rect = TempRect() | |
rkl_rect.next_to(rect, 2.8*RIGHT) | |
kl_label = TexMobject(R'(', 'p', R'||', 'q', ')') | |
rkl_label = TexMobject(R'(', 'q', R'||', 'p', ')') | |
dkl_label = TexMobject(R'D_{\mathrm{KL}}') | |
label_size = 1.1 | |
for label in [kl_label, rkl_label, dkl_label]: | |
label.set_color_by_tex(R'p', p_color) | |
label.set_color_by_tex(R'q', q_color) | |
label.scale(label_size) | |
label_sep = 0.5*BOTTOM | |
kl_label.next_to(rect, label_sep) | |
rkl_label.next_to(rkl_rect, label_sep) | |
dkl_label.next_to(kl_label, 1.1*LEFT) | |
self.add(kl_label, rkl_label, dkl_label) | |
my_group = VGroup(*[p, q, rect, rkl_rect]) | |
def update_pq(group, alpha, distr): | |
"""Callback function to update p(x) and/or q(x)""" | |
nonlocal p_obj | |
nonlocal q_obj | |
if distr['p'] is not None: | |
# Update p | |
mu1_diff = distr['p'][0] - last_p_obj.means[0] | |
mu1_delta = interpolate(0, mu1_diff, alpha) | |
mu2_diff = distr['p'][1] - last_p_obj.means[1] | |
mu2_delta = interpolate(0, mu2_diff, alpha) | |
sigma_diff = distr['p'][2] - last_p_obj.stds[0] | |
sigma_delta = interpolate(0, sigma_diff, alpha) | |
new_p_obj = Mixture([0.5, 0.5], | |
[last_p_obj.means[0]+mu1_delta, last_p_obj.means[1]+mu2_delta], | |
[last_p_obj.stds[0]+sigma_delta, last_p_obj.stds[0]+sigma_delta]) | |
p_obj = new_p_obj | |
new_p = self.get_graph(new_p_obj.pdf, p_color) | |
else: | |
new_p = group[0] | |
if distr['q'] is not None: | |
# Update q | |
mu_diff = distr['q'][0] - last_q_obj.means[0] | |
mu_delta = interpolate(0, mu_diff, alpha) | |
sigma_diff = distr['q'][1] - last_q_obj.stds[0] | |
sigma_delta = interpolate(0, sigma_diff, alpha) | |
new_q_obj = Mixture([1.0], | |
[last_q_obj.means[0]+mu_delta], [last_q_obj.stds[0]+sigma_delta]) | |
q_obj = new_q_obj | |
new_q = self.get_graph(new_q_obj.pdf, q_color) | |
else: | |
new_q = group[1] | |
# New KL divergence | |
kl = approx_kl(p_obj, q_obj) | |
rkl = approx_kl(q_obj, p_obj) | |
# Rectangles | |
temp_scale = 0.25 | |
new_rect = TempRect(height=temp_scale*kl) | |
new_rect.move_to(rect, aligned_edge=BOTTOM) | |
new_rkl_rect = TempRect(height=temp_scale*rkl) | |
new_rkl_rect.move_to(rkl_rect, aligned_edge=BOTTOM) | |
group.become(VGroup( | |
*[new_p, new_q, new_rect, new_rkl_rect])) | |
distr_seq = [{'p': [2, 8, 0.75], 'q': None}, | |
{'p': None, 'q': [2, 1]}, | |
{'p': None, 'q': [2, 0.7]}, | |
{'p': None, 'q': [5, 0.7]}, | |
{'p': None, 'q': [5, 2]}, | |
{'p': [2, 8, 0.35], 'q': None}, | |
{'p': None, 'q': [5, 1]}, | |
{'p': [4, 6, 0.75], 'q': None}] | |
for distr in distr_seq: | |
self.play( | |
UpdateFromAlphaFunc(my_group, | |
lambda group, alpha : update_pq(group, alpha, distr)), | |
run_time=2.75) | |
last_p_obj = deepcopy(p_obj) | |
last_q_obj = deepcopy(q_obj) | |
self.wait(0.75) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thanks! For kicks and giggles, ported to use
manim
community edition:https://gist.github.com/EricCousineau-TRI/68cb261bdd13184000ea3da9f505c69d
asymkl.mp4