Created
March 2, 2018 13:44
-
-
Save arisliang/64d1bbdddc5eba0fd6cb9d3ba0ccabce to your computer and use it in GitHub Desktop.
play tensorlayer book Issue 11
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
ch 3.5 | |
https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mnist.py | |
code for https://github.com/tensorlayer/chinese-book/issues/11 | |
""" | |
import time | |
import numpy as np | |
import tensorflow as tf | |
import tensorlayer as tl | |
import matplotlib as mpl | |
mpl.use('TkAgg') | |
X_train, y_train, X_val, y_val, X_test, y_test = \ | |
tl.files.load_mnist_dataset(shape=(-1, 784)) | |
X_train = np.asarray(X_train, dtype=np.float32) | |
y_train = np.asarray(y_train, dtype=np.int32) | |
X_val = np.asarray(X_val, dtype=np.float32) | |
y_val = np.asarray(y_val, dtype=np.int32) | |
X_test = np.asarray(X_test, dtype=np.float32) | |
y_test = np.asarray(y_test, dtype=np.int32) | |
print('X_train.shape', X_train.shape) | |
print('y_train.shape', y_train.shape) | |
print('X_val.shape', X_val.shape) | |
print('y_val.shape', y_val.shape) | |
print('X_test.shape', X_test.shape) | |
print('y_test.shape', y_test.shape) | |
print('X %s y %s' % (X_test.dtype, y_test.dtype)) | |
save_path = './ae_tl/autoencoder2.ckpt' | |
image_width = 28 | |
saver = None | |
# 模型结构参数 | |
hidden_size = 196 | |
input_size = 784 | |
def main_layers(model='relu', is_train=True, reuse=False): | |
"""build network | |
:param model: 模型类别,可选Sigmoid或Relu | |
""" | |
with tf.variable_scope("ae", reuse=reuse): | |
# set model reuse | |
tl.layers.set_name_reuse(reuse) | |
# # 定义模型 | |
x = tf.placeholder(tf.float32, shape=[None, input_size], name='x') | |
# 输入层 f(x) | |
network = tl.layers.InputLayer(x, name='input') | |
# ch3.4 introduce noise to input data | |
network = tl.layers.DropoutLayer(network, keep=0.5, is_train=is_train, is_fix=False, name='denoising1') | |
print('Build Network') | |
if model == 'relu': | |
network = tl.layers.DenseLayer(network, hidden_size, tf.nn.relu, name='relu1') | |
# 隐层输出 | |
encoded_img = network.outputs | |
# 重构层输出 g(h) | |
# recon_layer1 = tl.layers.DenseLayer(network, input_size, tf.nn.softplus, name='recon_layer1') | |
recon_layer1 = tl.layers.ReconLayer(network, x_recon=x, n_units=784, act=tf.nn.softplus, | |
name='recon_layer1') | |
elif model == 'sigmoid': | |
network = tl.layers.DenseLayer(network, hidden_size, tf.nn.sigmoid, name='sigmoid1') | |
# 隐层输出 | |
encoded_img = network.outputs | |
# 重构层输出 g(h) | |
# recon_layer1 = tl.layers.DenseLayer(network, input_size, tf.nn.sigmoid, name='recon_layer1') | |
recon_layer1 = tl.layers.ReconLayer(network, x_recon=x, n_units=784, act=tf.nn.sigmoid, | |
name='recon_layer1') | |
return x, recon_layer1 | |
def train_layers(model='relu'): | |
global saver | |
# 定义超参数 | |
n_epochs = 10 | |
batch_size = 128 | |
print_interval = 200 | |
x, recon_layer1 = main_layers(model, is_train=True, reuse=False) | |
saver = tf.train.Saver() | |
with tf.Session() as sess: | |
tl.layers.initialize_global_variables(sess) | |
recon_layer1.pretrain(sess, x=x, X_train=X_train, X_val=X_val, denoise_name='ae/denoising1', n_epoch=n_epochs, | |
batch_size=batch_size, print_freq=print_interval, save=True, save_name='w1pre_') | |
# 保存模型为TensorFlow的ckpt格式 | |
saver.save(sess, save_path=save_path) | |
print('model saved.') | |
if __name__ == '__main__': | |
all_start_time = time.time() | |
model = 'sigmoid' | |
train_layers(model=model) | |
print('all finished took %.2fs' % (time.time() - all_start_time)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment