Last active
April 14, 2020 10:50
-
-
Save arivero/a6bd5359fe17241b64efafded2bd2165 to your computer and use it in GitHub Desktop.
Analysis en modelo SI (sin R) de los datos Covid oficiales de España
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# coding: utf-8 | |
# In[1]: | |
import pandas as pd | |
dataframe=pd.read_csv("https://covid19.isciii.es/resources/serie_historica_acumulados.csv", skipfooter=3, engine="python", encoding='iso8859') | |
# In[2]: | |
dataframe['date']=pd.to_datetime(dataframe['FECHA'],format='%d/%m/%Y') | |
# In[3]: | |
data=dataframe.drop(columns='FECHA').set_index(['CCAA','date']).sort_index().unstack(level=0).fillna(0) | |
data | |
# In[4]: | |
data.plot(x=['CASOS'],y=['Fallecidos'],kind='scatter') | |
# In[5]: | |
data.plot(x=[('CASOS','MD')],y=[('Fallecidos','MD')],kind='scatter') | |
# In[6]: | |
#y a jugar | |
fallRoll=pd.concat([data[('Fallecidos','MD')].rolling(4).mean(),data[('Fallecidos','MD')].rolling(4).mean().diff()],axis=1,keys=['f','diff']) | |
fallRoll.plot(x=['f'],y=['diff'],kind='scatter') | |
# In[7]: | |
fallRoll=pd.concat([data[('Fallecidos','MD')].rolling(4).mean(),data[('Fallecidos','MD')].diff()],axis=1,keys=['f','diff']) | |
fallRoll.plot(x=['f'],y=['diff'],kind='scatter') | |
# In[8]: | |
fallRoll=pd.concat([data[('Fallecidos','MD')].rolling(4).median(),data[('Fallecidos','MD')].diff()],axis=1,keys=['f','diff']) | |
fallRoll.plot(x=['f'],y=['diff'],kind='scatter') | |
# In[9]: | |
fallRoll=pd.concat([data[('Fallecidos','MD')].rolling(4).median(),data[('Fallecidos','MD')].rolling(4).mean().diff()],axis=1,keys=['f','diff']) | |
fallRoll.plot(x=['f'],y=['diff'],kind='scatter') | |
# In[10]: | |
fallRoll=pd.concat([data[('Fallecidos','MD')].rolling(4).median(),data[('Fallecidos','MD')].rolling(4).median().diff()],axis=1,keys=['f','diff']) | |
fallRoll.plot(x=['f'],y=['diff'],kind='scatter') | |
# In[11]: | |
fallRoll=pd.concat([data[('Fallecidos','MD')],data[('Fallecidos','MD')].rolling(4).median().diff()],axis=1,keys=['f','diff']) | |
fallRoll.plot(x=['f'],y=['diff'],kind='scatter') | |
# In[12]: | |
fallRoll=pd.concat([data[('Fallecidos','MD')],data[('Fallecidos','MD')].rolling(4).mean().diff()],axis=1,keys=['f','diff']) | |
fallRoll.plot(x=['f'],y=['diff'],kind='scatter') | |
# In[13]: | |
fallRoll=pd.concat([data[('Fallecidos','MD')],data[('Fallecidos','MD')].diff()],axis=1,keys=['f','diff']) | |
fallRoll.plot(x=['f'],y=['diff'],kind='scatter') | |
# In[14]: | |
import numpy as np | |
for n in range(50,2,-1): | |
f=data['CASOS'].sum(axis=1).tail(n) | |
r=np.polyfit(f[~np.isnan(f.diff())],f.diff()[~np.isnan(f.diff())],2, full=True) | |
x=r[0] | |
print(n,x[0],(-x[1]- np.sqrt(x[1]*x[1]-4*x[0]*x[2]))/(2*x[0])) | |
# In[17]: | |
import matplotlib.pyplot as plt | |
import numpy as np | |
# In[24]: | |
f=data['CASOS'].sum(axis=1) | |
a=plt.plot(f[~np.isnan(f.diff())],f.diff()[~np.isnan(f.diff())],'.') | |
d=f | |
x=np.polyfit(d[~np.isnan(d.diff())],d.diff()[~np.isnan(d.diff())],2) | |
print((-x[1]- np.sqrt(x[1]*x[1]-4*x[0]*x[2]))/(2*x[0])) | |
p=np.poly1d(x) | |
plt.xlim(0,250000) | |
plt.ylim(0,10000) | |
xp=np.linspace(0, 300000, 300) | |
b=plt.plot(f[~np.isnan(f.diff())],f.diff()[~np.isnan(f.diff())],'.',xp,p(xp),'-') | |
d=f.tail(15) | |
x=np.polyfit(d[~np.isnan(d.diff())],d.diff()[~np.isnan(d.diff())],2) | |
print((-x[1]- np.sqrt(x[1]*x[1]-4*x[0]*x[2]))/(2*x[0])) | |
p2=np.poly1d(x) | |
b=plt.plot(f[~np.isnan(f.diff())],f.diff()[~np.isnan(f.diff())],'.',xp,p(xp),'-',xp,p2(xp),'-') | |
# In[15]: | |
import numpy as np | |
for n in range(50,2,-1): | |
f=data['Fallecidos'].sum(axis=1).tail(n) | |
r=np.polyfit(f[~np.isnan(f.diff())],f.diff()[~np.isnan(f.diff())],2, full=True) | |
x=r[0] | |
print(n,x[0],(-x[1]- np.sqrt(x[1]*x[1]-4*x[0]*x[2]))/(2*x[0])) | |
# In[16]: | |
for n in range(50,2,-1): | |
try: | |
fit=data['Fallecidos'].tail(n).apply(lambda x: np.polyfit(x[~np.isnan(x.diff())],x.diff()[~np.isnan(x.diff())],2)) | |
r=fit.apply(lambda x: (-x[1]- np.sqrt(x[1]*x[1]-4*x[0]*x[2]))/(2*x[0])).sum() | |
print(n,r) | |
except np.linalg.LinAlgError: | |
pass | |
# In[26]: | |
f=data['Fallecidos'].sum(axis=1) | |
a=plt.plot(f[~np.isnan(f.diff())],f.diff()[~np.isnan(f.diff())],'.') | |
d=f | |
x=np.polyfit(d[~np.isnan(d.diff())],d.diff()[~np.isnan(d.diff())],4) | |
p=np.poly1d(x) | |
print(p.roots) | |
x=np.polyfit(d[~np.isnan(d.diff())],d.diff()[~np.isnan(d.diff())],2) | |
print((-x[1]- np.sqrt(x[1]*x[1]-4*x[0]*x[2]))/(2*x[0])) | |
p=np.poly1d(x) | |
print(p.roots) | |
plt.xlim(0,30000) | |
plt.ylim(0,1000) | |
xp=np.linspace(0, 300000, 300) | |
b=plt.plot(f[~np.isnan(f.diff())],f.diff()[~np.isnan(f.diff())],'.',xp,p(xp),'-') | |
d=f.tail(12) | |
x=np.polyfit(d[~np.isnan(d.diff())],d.diff()[~np.isnan(d.diff())],2) | |
print((-x[1]- np.sqrt(x[1]*x[1]-4*x[0]*x[2]))/(2*x[0])) | |
p2=np.poly1d(x) | |
b=plt.plot(f[~np.isnan(f.diff())],f.diff()[~np.isnan(f.diff())],'.',xp,p(xp),'-',xp,p2(xp),'-') | |
# In[20]: | |
f0=data['CASOS'] | |
for name in f0: | |
f=f0[name] | |
a=plt.plot(f[~np.isnan(f.diff())],f.diff()[~np.isnan(f.diff())],'.') | |
d=f | |
x=np.polyfit(d[~np.isnan(d.diff())],d.diff()[~np.isnan(d.diff())],2) | |
print(name,(-x[1]- np.sqrt(x[1]*x[1]-4*x[0]*x[2]))/(2*x[0])) | |
p=np.poly1d(x) | |
plt.xlim(0,60000) | |
plt.ylim(0,3000) | |
xp=np.linspace(0, 300000, 300) | |
b=plt.plot(f[~np.isnan(f.diff())],f.diff()[~np.isnan(f.diff())],'.',xp,p(xp),'-') | |
# In[21]: | |
f0=data['Fallecidos'] | |
for name in f0: | |
f=f0[name] | |
a=plt.plot(f[~np.isnan(f.diff())],f.diff()[~np.isnan(f.diff())],'.') | |
d=f | |
x=np.polyfit(d[~np.isnan(d.diff())],d.diff()[~np.isnan(d.diff())],2) | |
print(name,(-x[1]- np.sqrt(x[1]*x[1]-4*x[0]*x[2]))/(2*x[0])) | |
p=np.poly1d(x) | |
plt.xlim(0,7000) | |
plt.ylim(0,400) | |
xp=np.linspace(0, 7000, 70) | |
b=plt.plot(f[~np.isnan(f.diff())],f.diff()[~np.isnan(f.diff())],'.',xp,p(xp),'-') | |
# In[22]: | |
###%matplotlib notebook | |
import matplotlib.pyplot as plt | |
plt.ioff() | |
f0=data['Fallecidos'] | |
for name in f0: | |
d=f0[name] | |
f=d | |
x=np.polyfit(d[~np.isnan(d.diff())],d.diff()[~np.isnan(d.diff())],2) | |
print(name,(-x[1]- np.sqrt(x[1]*x[1]-4*x[0]*x[2]))/(2*x[0])) | |
p=np.poly1d(x) | |
xp=np.linspace(0, int(d.max())*1.5, int(d.max())) | |
plt.plot(f[~np.isnan(f.diff())],f.diff()[~np.isnan(f.diff())],'.',xp,p(xp),'-') | |
plt.axis("auto") | |
plt.ylim(bottom=0) | |
plt.show() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment