Last active
January 12, 2022 21:08
-
-
Save arodland/53f228bf631504aa2e02ff8be2c57304 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import urllib.request, json | |
import pandas as pd | |
import numpy as np | |
import random | |
import george | |
from george.kernels import ExpSquaredKernel, ExpSine2Kernel, Matern32Kernel, ConstantKernel | |
from kernel import esfi_kernel, esfi_without_daily | |
import scipy.optimize as op | |
iter, fev, grev, best = 0, 0, 0, 9999 | |
i = 0 | |
tm = [] | |
sfi = [] | |
def get_data(url): | |
with urllib.request.urlopen(url) as res: | |
data = json.loads(res.read().decode()) | |
return data | |
data = get_data('http://localhost:%s/mixscale_essn.json?series=6h&var=sfi&points=8000' % (os.getenv('HISTORY_PORT'))) | |
tm = [ x[0] / 86400. for x in data ] | |
sfi = [ x[1] for x in data ] | |
first_tm = tm[0] | |
last_tm = tm[len(tm)-1] | |
span = last_tm - first_tm | |
tm = np.array(tm) | |
sfi = np.array(sfi) | |
mean_sfi = np.mean(sfi) | |
sfi -= mean_sfi | |
gp = george.GP(esfi_kernel, white_noise=np.log(0.1**2), fit_white_noise=True) | |
gp.compute(tm) | |
def loss(p): | |
ret = 0 | |
gp.set_parameter_vector(p) | |
ll = gp.log_likelihood(sfi, quiet=True) | |
return -ll if np.isfinite(ll) else 1e25 | |
def nll(p): | |
global fev | |
global best | |
fev = fev + 1 | |
lsum = loss(p) | |
if lsum < best: | |
best = lsum | |
return lsum | |
def grad(p): | |
gp.set_parameter_vector(p) | |
return -gp.grad_log_likelihood(sfi, quiet=True) | |
return ret | |
def grad_nll(p): | |
global grev | |
grev = grev + 1 | |
return grad(p) | |
def cb(p): | |
global iter | |
iter = iter + 1 | |
print("# iter=", iter, "fev=", fev, "grev=", grev, "best=", best, "p=", repr(p)) | |
p0 = gp.get_parameter_vector() | |
print("# Init: ", p0) | |
bounds = gp.get_parameter_bounds() | |
print("# Bounds: ", bounds) | |
opt_result = op.minimize(nll, p0, jac=grad_nll, method='L-BFGS-B', callback=cb, options={'maxiter': 100}, bounds=bounds) | |
print("# RESULT ", repr(opt_result.x)) | |
gp.set_parameter_vector(opt_result.x) | |
print(esfi_kernel) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment