Last active
January 12, 2022 21:06
-
-
Save arodland/932671d61b3db77f39fdae5ff58070d8 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import urllib.request, json | |
import pandas as pd | |
import numpy as np | |
import random | |
import george | |
from george.kernels import ExpSquaredKernel, ExpSine2Kernel, Matern32Kernel, ConstantKernel | |
from kernel import esfi_kernel, esfi_without_daily | |
import scipy.optimize as op | |
from multiprocessing import Pool | |
iter, fev, grev, best = 0, 0, 0, 1e10 | |
datasets = [] | |
def get_data(url): | |
with urllib.request.urlopen(url) as res: | |
data = json.loads(res.read().decode()) | |
return data | |
def make_dataset(dummy): | |
data = get_data('http://localhost:%s/mixscale_essn.json?series=6h&var=sfi&points=6000' % (os.getenv('HISTORY_PORT'))) | |
tm = [ x[0] / 86400. for x in data ] | |
sfi = [ x[1] for x in data ] | |
tm = np.array(tm) | |
sfi = np.array(sfi) | |
mean_sfi = np.mean(sfi) | |
sfi -= mean_sfi | |
ds = {} | |
ds['tm'] = tm | |
ds['sfi'] = sfi | |
ds['mean_sfi'] = mean_sfi | |
ds['gp'] = george.GP(esfi_kernel, white_noise=-2.98, fit_white_noise=True) | |
ds['gp'].compute(ds['tm']) | |
return ds | |
def loss(x): | |
(i, p) = x | |
ds = datasets[i] | |
ret = 0 | |
ds['gp'].set_parameter_vector(p) | |
ll = ds['gp'].log_likelihood(ds['sfi'], quiet=True) | |
return -ll if np.isfinite(ll) else 1e25 | |
def nll(p): | |
global fev | |
global best | |
fev = fev + 1 | |
losses = [ l for l in pool.imap_unordered(loss, [(i, p) for i in range(len(datasets))] )] | |
lsum = sum(losses) | |
if lsum < best: | |
best = lsum | |
return lsum | |
def grad(x): | |
(i, p) = x | |
ds = datasets[i] | |
ds['gp'].set_parameter_vector(p) | |
return -ds['gp'].grad_log_likelihood(ds['sfi'], quiet=True) | |
def grad_nll(p): | |
global grev | |
grev = grev + 1 | |
gs = 0 | |
for g in pool.imap_unordered(grad, [(i, p) for i in range(len(datasets))] ): | |
gs += g | |
return gs | |
def cb(p): | |
global iter | |
iter = iter + 1 | |
print("# iter=", iter, "fev=", fev, "grev=", grev, "best=", best, "p=", repr(p)) | |
if __name__=='__main__': | |
with Pool(processes=4) as p: | |
datasets = [ d for d in p.imap(make_dataset, [1,2,3,4,5,6,7,8]) ] | |
pool = Pool(processes=8) | |
p0 = datasets[0]['gp'].get_parameter_vector() | |
print("# Init: ", p0) | |
bounds = datasets[0]['gp'].get_parameter_bounds() | |
print("# Bounds: ", bounds) | |
opt_result = op.minimize(nll, p0, jac=grad_nll, method='L-BFGS-B', callback=cb, options={'maxiter': 100}, bounds=bounds) | |
print("# RESULT ", repr(opt_result.x)) | |
gp = george.GP(esfi_kernel, white_noise=opt_result.x[0]) | |
gp.set_parameter_vector(opt_result.x[1:]) | |
print(esfi_kernel) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment