Skip to content

Instantly share code, notes, and snippets.

@arose13
Created December 27, 2016 19:41
Show Gist options
  • Save arose13/847fbc5a9e60093194b9768c2f7bcf50 to your computer and use it in GitHub Desktop.
Save arose13/847fbc5a9e60093194b9768c2f7bcf50 to your computer and use it in GitHub Desktop.
Scipy free implementation of Normal distribution inverse CDF
def inverse_normal_cdf(p, mean, std):
"""
This is the inverse to a normal distribution's CDF.
While much slower this means you do not need Scipy as a project requirement.
:param p: list of p = (0, 1)
:param mean:
:param std:
:return:
"""
p = np.array(p)
z_scores = np.zeros(p.shape)
def i_inverse_cdf(p_i):
if type(p_i) is float:
assert 0 < p_i < 1, 'P = (0, 1)'
def polevl(x, coef):
accum = 0
for c in coef:
accum = x * accum + c
return accum
P0 = [
-5.99633501014107895267E1,
9.80010754185999661536E1,
-5.66762857469070293439E1,
1.39312609387279679503E1,
-1.23916583867381258016E0,
]
Q0 = [
1,
1.95448858338141759834E0,
4.67627912898881538453E0,
8.63602421390890590575E1,
-2.25462687854119370527E2,
2.00260212380060660359E2,
-8.20372256168333339912E1,
1.59056225126211695515E1,
-1.18331621121330003142E0,
]
P1 = [
4.05544892305962419923E0,
3.15251094599893866154E1,
5.71628192246421288162E1,
4.40805073893200834700E1,
1.46849561928858024014E1,
2.18663306850790267539E0,
-1.40256079171354495875E-1,
-3.50424626827848203418E-2,
-8.57456785154685413611E-4,
]
Q1 = [
1,
1.57799883256466749731E1,
4.53907635128879210584E1,
4.13172038254672030440E1,
1.50425385692907503408E1,
2.50464946208309415979E0,
-1.42182922854787788574E-1,
-3.80806407691578277194E-2,
-9.33259480895457427372E-4,
]
P2 = [
3.23774891776946035970E0,
6.91522889068984211695E0,
3.93881025292474443415E0,
1.33303460815807542389E0,
2.01485389549179081538E-1,
1.23716634817820021358E-2,
3.01581553508235416007E-4,
2.65806974686737550832E-6,
6.23974539184983293730E-9,
]
Q2 = [
1,
6.02427039364742014255E0,
3.67983563856160859403E0,
1.37702099489081330271E0,
2.16236993594496635890E-1,
1.34204006088543189037E-2,
3.28014464682127739104E-4,
2.89247864745380683936E-6,
6.79019408009981274425E-9,
]
negate = True
y = p_i
if y > 1.0 - 0.13533528323661269189:
y = 1.0 - y
negate = False
if y > 0.13533528323661269189:
y -= 0.5
y2 = y * y
x = y + y * (y2 * polevl(y2, P0) / polevl(y2, Q0))
x = x * np.sqrt(2 * np.pi)
return x
x = np.sqrt(-2.0 * np.log(y))
x0 = x - np.log(x) / x
z = 1.0 / x
if x < 8.0:
x1 = z * polevl(z, P1) / polevl(z, Q1)
else:
x1 = z * polevl(z, P2) / polevl(z, Q2)
x = x0 - x1
if negate:
x = -x
return x
for z_i in np.nditer(z_scores, op_flags=['readwrite']):
z_i[...] = i_inverse_cdf(z_i)
# Transform by with by mean and std
return z_scores * std + mean
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment