Last active
September 27, 2019 15:53
-
-
Save arose13/bd1efb7a31493274d5e0dd93bd32c712 to your computer and use it in GitHub Desktop.
Compute Lasso and optimize lambda without needing cross validation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import sklearn.linear_model as lm | |
class FastLasso: | |
def __init__(self, verbose=False): | |
self.alphas, self.coefs = 2*[None] | |
self.score_path_ = None | |
self.best_iteration_ = -1 | |
self.best_score_ = -np.inf | |
self.verbose = verbose | |
def fit(self, X, y, x_val, y_val): | |
""" | |
Fit lasso without cross validation | |
:param X: | |
:param y: | |
:param eval_set: (x_val, y_val) tuple | |
:return: | |
""" | |
from sklearn.metrics import r2_score | |
# Fit model | |
self.alphas, self.coefs, *_ = lm.lasso_path(X, y, verbose=self.verbose) | |
# Find optimal coefs | |
self.score_path_ = [] | |
for i in range(self.coefs.shape[1]): | |
m_i = self.coefs[:, i] | |
score_i = r2_score(y_val, x_val @ m_i) | |
if score_i > self.best_score_: | |
self.best_iteration_ = i | |
self.best_score_ = score_i | |
self.score_path_.append(score_i) | |
return self | |
def predict(self, X): | |
return X @ self.coefs[:, self.best_iteration_] | |
def score(self, X, y): | |
from sklearn.metrics import r2_score | |
return r2_score(y, self.predict(X)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment