Last active
December 23, 2015 05:39
-
-
Save arq5x/6588467 to your computer and use it in GitHub Desktop.
irradiated clones
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
############################################################ | |
# Novoalign | |
############################################################ | |
export GENOME=/home/arq5x/cphg-home/shared/genomes/hg19/bwa/gatk/hg19_gatk.fa.novo.k14.s1.idx | |
export IRCHOME=/net/midtier18/vol79/cphg-quinlan2/projects/irradiated-clones | |
export STEPNAME=ircnovo | |
export QSUB="qsub -W group_list=cphg_arq5x -q arq5xlab -V -l select=1:mem=32000m:ncpus=16 -N $STEPNAME -m bea -M [email protected]"; | |
echo "cd $IRCHOME; novoalign -d $GENOME -o SAM $'@RG\tID:parental\tSM:parental' -r Random \ | |
-f fastq/CgmW_AGTCAA_L001_R1.fastq.gz fastq/CgmW_AGTCAA_L001_R2.fastq.gz \ | |
-c 15 \ | |
| samtools view -Sb - > bam/parental-L001.novoalign.rg.bam" | $QSUB | |
echo "cd $IRCHOME; novoalign -d $GENOME -o SAM $'@RG\tID:parental\tSM:parental' -r Random \ | |
-f fastq/CgmW_AGTCAA_L002_R1.fastq.gz fastq/CgmW_AGTCAA_L002_R2.fastq.gz \ | |
-c 15 \ | |
| samtools view -Sb - > bam/parental-L002.novoalign.rg.bam" | $QSUB | |
echo "cd $IRCHOME; novoalign -d $GENOME -o SAM $'@RG\tID:parental\tSM:parental' -r Random \ | |
-f fastq/CgmW_AGTCAA_L003_R1.fastq.gz fastq/CgmW_AGTCAA_L003_R2.fastq.gz \ | |
-c 15 \ | |
| samtools view -Sb - > bam/parental-L003.novoalign.rg.bam" | $QSUB | |
echo "cd $IRCHOME; novoalign -d $GENOME -o SAM $'@RG\tID:mock\tSM:mock' -r Random \ | |
-f fastq/CRW5_AGTTCC_L004_R1.fastq.gz fastq/CRW5_AGTTCC_L004_R2.fastq.gz \ | |
-c15 \ | |
| samtools view -Sb - > bam/mock-L004.novoalign.rg.bam" | $QSUB | |
echo "cd $IRCHOME; novoalign -d $GENOME -o SAM $'@RG\tID:3Gy\tSM:3Gy' -r Random \ | |
-f fastq/C13W_ATGTCA_L005_R1.fastq.gz fastq/C13W_ATGTCA_L005_R2.fastq.gz \ | |
-c 15 \ | |
| samtools view -Sb - > bam/3Gy-L005.novoalign.rg.bam" | $QSUB | |
echo "cd $IRCHOME; novoalign -d $GENOME -o SAM $'@RG\tID:6Gy_1\tSM:6Gy_1' -r Random \ | |
-f fastq/C2AW_CCGTCC_L006_R1.fastq.gz fastq/C2AW_CCGTCC_L006_R2.fastq.gz \ | |
-c 15 \ | |
| samtools view -Sb - > bam/6Gy_1-L006.novoalign.rg.bam" | $QSUB | |
echo "cd $IRCHOME; novoalign -d $GENOME -o SAM $'@RG\tID:6Gy_2\tSM:6Gy_2' -r Random \ | |
-f fastq/C11W_GTAGAG_L007_R1.fastq.gz fastq/C11W_GTAGAG_L007_R2.fastq.gz \ | |
-c 15 \ | |
| samtools view -Sb - > bam/6Gy_2-L007.novoalign.rg.bam" | $QSUB | |
echo "cd $IRCHOME; novoalign -d $GENOME -o SAM $'@RG\tID:6Gy_3\tSM:6Gy_3' -r Random \ | |
-f fastq/C29W_GTCCGC_L008_R1.fastq.gz fastq/C29W_GTCCGC_L008_R2.fastq.gz \ | |
-c 15 \ | |
| samtools view -Sb - > bam/6Gy_3-L008.novoalign.rg.bam" | $QSUB | |
export IRRHOME=/net/midtier18/vol79/cphg-quinlan2/projects/irradiated-clones | |
export STEPNAME=irrcount | |
export QSUB="qsub -W group_list=cphg_arq5x -q arq5xlab -V -l select=1:mem=1000m:ncpus=2 -N $STEPNAME -m bea -M [email protected]"; | |
echo "cd $IRRHOME; samtools view -b -q 1 bam/3Gy-L005.novoalign.rg.bam | bedtools coverage -abam - -counts -b bam/windows.5kb.bed > bam/3Gy-L005.novoalign.rg.bam.depths.5kb.q1.txt" | $QSUB | |
echo "cd $IRRHOME; samtools view -b -q 1 bam/6Gy_1-L006.novoalign.rg.bam | bedtools coverage -abam - -counts -b bam/windows.5kb.bed > bam/6Gy_1-L006.novoalign.rg.bam.depths.5kb.q1.txt" | $QSUB | |
echo "cd $IRRHOME; samtools view -b -q 1 bam/6Gy_2-L007.novoalign.rg.bam | bedtools coverage -abam - -counts -b bam/windows.5kb.bed > bam/6Gy_2-L007.novoalign.rg.bam.depths.5kb.q1.txt" | $QSUB | |
echo "cd $IRRHOME; samtools view -b -q 1 bam/6Gy_3-L008.novoalign.rg.bam | bedtools coverage -abam - -counts -b bam/windows.5kb.bed > bam/6Gy_3-L008.novoalign.rg.bam.depths.5kb.q1.q1.txt" | $QSUB | |
echo "cd $IRRHOME; samtools view -b -q 1 bam/mock-L004.novoalign.rg.bam | bedtools coverage -abam - -counts -b bam/windows.5kb.bed > bam/mock-L004.novoalign.rg.bam.depths.5kb.q1.txt" | $QSUB | |
echo "cd $IRRHOME; samtools view -b -q 1 bam/parental-L001.novoalign.rg.bam | bedtools coverage -abam - -counts -b bam/windows.5kb.bed > bam/parental-L001.novoalign.rg.bam.depths.5kb.q1.txt" | $QSUB | |
echo "cd $IRRHOME; samtools view -b -q 1 bam/parental-L002.novoalign.rg.bam | bedtools coverage -abam - -counts -b bam/windows.5kb.bed > bam/parental-L002.novoalign.rg.bam.depths.5kb.q1.txt" | $QSUB | |
echo "cd $IRRHOME; samtools view -b -q 1 bam/parental-L003.novoalign.rg.bam | bedtools coverage -abam - -counts -b bam/windows.5kb.bed > bam/parental-L003.novoalign.rg.bam.depths.5kb.q1.txt" | $QSUB | |
export IRRHOME=/net/midtier18/vol79/cphg-quinlan2/projects/irradiated-clones | |
export STEPNAME=irrsort | |
export QSUB="qsub -W group_list=cphg_arq5x -q arq5xlab -V -l select=1:mem=6000m:ncpus=8 -N $STEPNAME -m bea -M [email protected]"; | |
echo "cd $IRRHOME; novosort -c 8 -t ./ -m 4G bam/3Gy-L005.novoalign.rg.bam bam/3Gy-L005.novoalign.rg.sorted.bam" | $QSUB | |
echo "cd $IRRHOME; novosort -c 8 -t ./ -m 4G bam/6Gy_1-L006.novoalign.rg.bam bam/6Gy_1-L006.novoalign.rg.sorted.bam" | $QSUB | |
echo "cd $IRRHOME; novosort -c 8 -t ./ -m 4G bam/6Gy_2-L007.novoalign.rg.bam bam/6Gy_2-L007.novoalign.rg.sorted.bam" | $QSUB | |
echo "cd $IRRHOME; novosort -c 8 -t ./ -m 4G bam/6Gy_3-L008.novoalign.rg.bam bam/6Gy_3-L008.novoalign.rg.sorted.bam" | $QSUB | |
echo "cd $IRRHOME; novosort -c 8 -t ./ -m 4G bam/mock-L004.novoalign.rg.bam bam/mock-L004.novoalign.rg.sorted.bam" | $QSUB | |
echo "cd $IRRHOME; novosort -c 8 -t ./ -m 4G bam/parental-L001.novoalign.rg.bam bam/parental-L001.novoalign.rg.sorted.bam" | $QSUB | |
echo "cd $IRRHOME; novosort -c 8 -t ./ -m 4G bam/parental-L002.novoalign.rg.bam bam/parental-L002.novoalign.rg.sorted.bam" | $QSUB | |
echo "cd $IRRHOME; novosort -c 8 -t ./ -m 4G bam/parental-L003.novoalign.rg.bam bam/parental-L003.novoalign.rg.sorted.bam" | $QSUB | |
python windowed_coverage.py -c data/3Gy-L005.novoalign.rg.bam.depths.5kb.txt -f ~/data/hg19.fa | |
python windowed_coverage.py -c data/6Gy_1-L006.novoalign.rg.bam.depths.5kb.txt -f ~/data/hg19.fa | |
python windowed_coverage.py -c data/6Gy_2-L007.novoalign.rg.bam.depths.5kb.txt -f ~/data/hg19.fa | |
python windowed_coverage.py -c data/6Gy_3-L008.novoalign.rg.bam.depths.5kb.txt -f ~/data/hg19.fa | |
python windowed_coverage.py -c data/mock-L004.novoalign.rg.bam.depths.5kb.txt -f ~/data/hg19.fa | |
python windowed_coverage.py -c data/parental-L001.novoalign.rg.bam.depths.5kb.txt -f ~/data/hg19.fa | |
python windowed_coverage.py -c data/parental-L002.novoalign.rg.bam.depths.5kb.txt -f ~/data/hg19.fa | |
python windowed_coverage.py -c data/parental-L003.novoalign.rg.bam.depths.5kb.txt -f ~/data/hg19.fa | |
python log_ratio.py -1 data/parental-L001.novoalign.rg.bam.depths.5kb.txt.depth.txt -2 data/parental-L002.novoalign.rg.bam.depths.5kb.txt.depth.txt | grep -v "_" > data/p1p2.bedg | |
python log_ratio.py -1 data/parental-L001.novoalign.rg.bam.depths.5kb.txt.depth.txt -2 data/parental-L003.novoalign.rg.bam.depths.5kb.txt.depth.txt | grep -v "_" > data/p1p3.bedg | |
python log_ratio.py -1 data/parental-L002.novoalign.rg.bam.depths.5kb.txt.depth.txt -2 data/parental-L003.novoalign.rg.bam.depths.5kb.txt.depth.txt | grep -v "_" > data/p2p3.bedg | |
python log_ratio.py -1 data/mock-L004.novoalign.rg.bam.depths.5kb.txt.depth.txt -2 data/parental-L001.novoalign.rg.bam.depths.5kb.txt.depth.txt | grep -v "_" > data/m1p1.bedg | |
python log_ratio.py -1 data/mock-L004.novoalign.rg.bam.depths.5kb.txt.depth.txt -2 data/parental-L002.novoalign.rg.bam.depths.5kb.txt.depth.txt | grep -v "_" > data/m1p2.bedg | |
python log_ratio.py -1 data/mock-L004.novoalign.rg.bam.depths.5kb.txt.depth.txt -2 data/parental-L003.novoalign.rg.bam.depths.5kb.txt.depth.txt | grep -v "_" > data/m1p3.bedg | |
python log_ratio.py -1 data/3Gy-L005.novoalign.rg.bam.depths.5kb.txt.depth.txt -2 data/parental-L001.novoalign.rg.bam.depths.5kb.txt.depth.txt | grep -v "_" > data/3Gp1.bedg | |
python log_ratio.py -1 data/3Gy-L005.novoalign.rg.bam.depths.5kb.txt.depth.txt -2 data/parental-L002.novoalign.rg.bam.depths.5kb.txt.depth.txt | grep -v "_" > data/3Gp2.bedg | |
python log_ratio.py -1 data/3Gy-L005.novoalign.rg.bam.depths.5kb.txt.depth.txt -2 data/parental-L003.novoalign.rg.bam.depths.5kb.txt.depth.txt | grep -v "_" > data/3Gp3.bedg | |
python log_ratio.py -1 data/6Gy_1-L006.novoalign.rg.bam.depths.5kb.txt.depth.txt -2 data/parental-L001.novoalign.rg.bam.depths.5kb.txt.depth.txt | grep -v "_" > data/6G1p1.bedg | |
python log_ratio.py -1 data/6Gy_1-L006.novoalign.rg.bam.depths.5kb.txt.depth.txt -2 data/parental-L002.novoalign.rg.bam.depths.5kb.txt.depth.txt | grep -v "_" > data/6G1p2.bedg | |
python log_ratio.py -1 data/6Gy_1-L006.novoalign.rg.bam.depths.5kb.txt.depth.txt -2 data/parental-L003.novoalign.rg.bam.depths.5kb.txt.depth.txt | grep -v "_" > data/6G1p3.bedg | |
python log_ratio.py -1 data/6Gy_2-L007.novoalign.rg.bam.depths.5kb.txt.depth.txt -2 data/parental-L001.novoalign.rg.bam.depths.5kb.txt.depth.txt | grep -v "_" > data/6G2p1.bedg | |
python log_ratio.py -1 data/6Gy_2-L007.novoalign.rg.bam.depths.5kb.txt.depth.txt -2 data/parental-L002.novoalign.rg.bam.depths.5kb.txt.depth.txt | grep -v "_" > data/6G2p2.bedg | |
python log_ratio.py -1 data/6Gy_2-L007.novoalign.rg.bam.depths.5kb.txt.depth.txt -2 data/parental-L003.novoalign.rg.bam.depths.5kb.txt.depth.txt | grep -v "_" > data/6G2p3.bedg | |
python log_ratio.py -1 data/6Gy_3-L008.novoalign.rg.bam.depths.5kb.txt.depth.txt -2 data/parental-L001.novoalign.rg.bam.depths.5kb.txt.depth.txt | grep -v "_" > data/6G3p1.bedg | |
python log_ratio.py -1 data/6Gy_3-L008.novoalign.rg.bam.depths.5kb.txt.depth.txt -2 data/parental-L002.novoalign.rg.bam.depths.5kb.txt.depth.txt | grep -v "_" > data/6G3p2.bedg | |
python log_ratio.py -1 data/6Gy_3-L008.novoalign.rg.bam.depths.5kb.txt.depth.txt -2 data/parental-L003.novoalign.rg.bam.depths.5kb.txt.depth.txt | grep -v "_" > data/6G3p3.bedg | |
setwd("/Users/arq5x/src/quinlan/codachrom/") | |
library(DNAcopy) | |
d <- read.table('data/p1p2.bedg') | |
CNA.object <- CNA( genomdat = d[,4], chrom = d[,1], maploc = d[,2]+(d[,3]-d[,2])/2, data.type = 'logratio', sampleid="p1p2") | |
CNA.smoothed <- smooth.CNA(CNA.object) | |
segs <- segment(CNA.smoothed, undo.splits = "sdundo", undo.SD = 1.5, verbose = 1, min.width=5) | |
pdf('figures/p1p2.pdf', height=10, width=10) | |
plot(segs, plot.type="s", ylim=c(-5,5)) | |
dev.off() | |
setwd("/Users/arq5x/src/quinlan/codachrom/") | |
library(DNAcopy) | |
d <- read.table('data/3Gp2.bedg') | |
CNA.object <- CNA( genomdat = d[,4], chrom = d[,1], maploc = d[,2]+(d[,3]-d[,2])/2, data.type = 'logratio', sampleid="3Gp2") | |
segs <- segment(CNA.object, undo.splits = "sdundo", undo.SD = 1.5, verbose = 1, min.width=5) | |
pdf('figures/3Gp2.pdf', height=10, width=10) | |
plot(segs, plot.type="s", ylim=c(-5,5)) | |
dev.off() | |
setwd("/Users/arq5x/src/quinlan/codachrom/") | |
library(DNAcopy) | |
d <- read.table('data/6G1p2.bedg') | |
CNA.object <- CNA( genomdat = d[,4], chrom = d[,1], maploc = d[,2]+(d[,3]-d[,2])/2, data.type = 'logratio', sampleid="6G1p2") | |
segs <- segment(CNA.object, undo.splits = "sdundo", undo.SD = 1.5, verbose = 1, min.width=5) | |
pdf('figures/6G1p2.pdf', height=10, width=10) | |
plot(segs, plot.type="s", ylim=c(-5,5)) | |
dev.off() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment