Skip to content

Instantly share code, notes, and snippets.

@arrieta
Created October 5, 2017 00:52
Show Gist options
  • Save arrieta/3f701d9e461cc8228aae2540a71cdcae to your computer and use it in GitHub Desktop.
Save arrieta/3f701d9e461cc8228aae2540a71cdcae to your computer and use it in GitHub Desktop.
Basic OpenCV C++ example: Object detection using Haar cascades.
// -*- coding:utf-8; mode:c++; mode:auto-fill; fill-column:80; -*-
/// @file cascade-classifier.cpp
/// @brief OpenCV object recognition example.
/// @author J. Arrieta <[email protected]>
/// @date October 04, 2017
/// @copyright (c) 2017 Nabla Zero Labs
/// @license MIT License.
///
/// I wrote this example program for my later reference.
///
/// Compilation:
///
/// clang++ cascade-classifier.cpp -o cascade-classifier \
/// -std=c++1z -Wall -Wextra -Ofast -march=native \
/// -lopencv_objdetect -lopencv_highgui \
/// -lopencv_imgproc -lopencv_core -lopencv_videoio
///
/// The Haar cascade XML description is provided as a command-line argument; the
/// examples I used are in GitHub:
///
/// https://github.com/opencv/opencv/tree/master/data/haarcascades
///
// C++ Standard Library
#include <cstdlib>
#include <iostream>
#include <vector>
// OpenCV
#include <opencv2/opencv.hpp>
int main(int argc, char* argv[]) {
if (argc != 2) {
std::cerr << "usage: " << argv[0] << " classifier.xml\n";
std::exit(EXIT_FAILURE);
}
// Load a classifier from its XML description
cv::CascadeClassifier classifier(argv[1]);
// Prepare a display window
const char* const window_name{"Facial Recognition Window"};
cv::namedWindow(window_name, CV_WINDOW_AUTOSIZE);
// Prepare a video capture device
cv::VideoCapture capture(0); // `0` means "default video capture"
if (not capture.isOpened()) {
std::cerr << "cannot open video capture device\n";
std::exit(EXIT_FAILURE);
}
// Prepare an image where to store the video frames, and an image to store a
// grayscale version
cv::Mat image;
cv::Mat grayscale_image;
// Prepare a vector where the detected features will be stored
std::vector<cv::Rect> features;
// Main loop
while (capture.read(image) and (not image.empty())) {
// Create a normalized, gray-scale version of the captured image
cv::cvtColor(image, grayscale_image, CV_BGR2GRAY);
cv::equalizeHist(grayscale_image, grayscale_image);
// Detect the features in the normalized, gray-scale version of the
// image. You don't need to clear the previously-found features because the
// detectMultiScale method will clear before adding new features.
classifier.detectMultiScale(grayscale_image, features, 1.1, 2,
0 | CV_HAAR_SCALE_IMAGE, cv::Size(30, 30));
// Draw each feature as a separate green rectangle
for (auto&& feature : features) {
cv::rectangle(image, feature, cv::Scalar(0, 255, 0), 2);
}
// Show the captured image and the detected features
cv::imshow(window_name, image);
// Wait for input or process the next frame
switch (cv::waitKey(10)) {
case 'q':
std::exit(EXIT_SUCCESS);
case 'Q':
std::exit(EXIT_SUCCESS);
default:
break;
}
}
return EXIT_SUCCESS;
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment