-
-
Save arsalanaf/d10e0c9e2422dba94c91e478831acb12 to your computer and use it in GitHub Desktop.
from btgym import BTgymEnv | |
import IPython.display as Display | |
import PIL.Image as Image | |
from gym import spaces | |
import gym | |
import numpy as np | |
import random | |
''' | |
from keras.models import Sequential | |
from keras.layers import Dense, Dropout | |
from keras.optimizers import Adam | |
''' | |
from keras.models import Sequential, load_model | |
from keras.layers.core import Dense, Dropout, Activation | |
from keras.layers.recurrent import LSTM | |
from keras.optimizers import RMSprop, Adam | |
from collections import deque | |
class DQN: | |
def __init__(self, env): | |
self.env = env | |
self.memory = deque(maxlen=20000) | |
self.gamma = 0.85 | |
self.epsilon = 1.0 | |
self.epsilon_min = 0.01 | |
self.epsilon_decay = 0.995 | |
self.learning_rate = 0.005 | |
self.tau = .125 | |
self.model = self.create_model() | |
self.target_model = self.create_model() | |
def create_model(self): | |
model = Sequential() | |
# state_shape = list(self.env.observation_space.shape.items())[0][1] | |
#Reshaping for LSTM | |
#state_shape=np.array(state_shape) | |
#state_shape= np.reshape(state_shape, (30,4,1)) | |
''' | |
model.add(Dense(24, input_dim=state_shape[1], activation="relu")) | |
model.add(Dense(48, activation="relu")) | |
model.add(Dense(24, activation="relu")) | |
model.add(Dense(self.env.action_space.n)) | |
model.compile(loss="mean_squared_error", | |
optimizer=Adam(lr=self.learning_rate)) | |
''' | |
model.add(LSTM(64, | |
input_shape=(4,1), | |
#return_sequences=True, | |
stateful=False | |
)) | |
model.add(Dropout(0.5)) | |
#model.add(LSTM(64, | |
#input_shape=(1,4), | |
#return_sequences=False, | |
# stateful=False | |
# )) | |
model.add(Dropout(0.5)) | |
model.add(Dense(self.env.action_space.n, init='lecun_uniform')) | |
model.add(Activation('linear')) #linear output so we can have range of real-valued outputs | |
rms = RMSprop() | |
adam = Adam() | |
model.compile(loss='mse', optimizer=adam) | |
return model | |
def act(self, state): | |
self.epsilon *= self.epsilon_decay | |
self.epsilon = max(self.epsilon_min, self.epsilon) | |
if np.random.random() < self.epsilon: | |
return self.env.action_space.sample() | |
return np.argmax(self.model.predict(state)[0]) | |
def target_train(self): | |
weights = self.model.get_weights() | |
target_weights = self.target_model.get_weights() | |
for i in range(len(target_weights)): | |
target_weights[i] = weights[i] * self.tau + target_weights[i] * (1 - self.tau) | |
self.target_model.set_weights(target_weights) | |
def save_model(self, fn): | |
self.model.save(fn) | |
def show_rendered_image(self, rgb_array): | |
""" | |
Convert numpy array to RGB image using PILLOW and | |
show it inline using IPykernel. | |
""" | |
Display.display(Image.fromarray(rgb_array)) | |
def render_all_modes(self, env): | |
""" | |
Retrieve and show environment renderings | |
for all supported modes. | |
""" | |
for mode in self.env.metadata['render.modes']: | |
print('[{}] mode:'.format(mode)) | |
self.show_rendered_image(self.env.render(mode)) | |
def main(): | |
env = BTgymEnv(filename='./data/DAT_ASCII_EURUSD_M1_2016.csv', | |
state_shape={'raw_state': spaces.Box(low=-100, high=100,shape=(30,4))}, | |
skip_frame=5, | |
start_cash=100000, | |
broker_commission=0.02, | |
fixed_stake=100, | |
drawdown_call=90, | |
render_ylabel='Price Lines', | |
render_size_episode=(12,8), | |
render_size_human=(8, 3.5), | |
render_size_state=(10, 3.5), | |
render_dpi=75, | |
verbose=0,) | |
gamma = 0.9 | |
epsilon = .95 | |
trials = 100 | |
trial_len = 1000 | |
# updateTargetNetwork = 1000 | |
dqn_agent = DQN(env=env) | |
steps = [] | |
for trial in range(trials): | |
#dqn_agent.model= load_model("./model.model") | |
cur_state = np.array(list(env.reset().items())[0][1]) | |
cur_state= np.reshape(cur_state, (30,4,1)) | |
for step in range(trial_len): | |
action = dqn_agent.act(cur_state) | |
new_state, reward, done, _ = env.step(action) | |
reward = reward*10 if not done else -10 | |
new_state =list(new_state.items())[0][1] | |
new_state= np.reshape(new_state, (30,4,1)) | |
dqn_agent.target_train() # iterates target model | |
cur_state = new_state | |
if done: | |
break | |
print("Completed trial #{} ".format(trial)) | |
dqn_agent.render_all_modes(env) | |
dqn_agent.save_model("model.model".format(trial)) | |
if __name__ == "__main__": | |
main() |
Hi Adham, it has been a while since I've worked on this, but iirc, the problem was related to attempting to run on Windows, and resolved when running on a recent distro of Ubuntu. The developer mentioned elsewhere that BTGym was developed on and tested exclusively in Linux.
I'm currently running the example files on my mac, so the windows issue shouldn't be a problem. I'm getting the following error when trying to run setting_up_enviornment_vasic.ipynb
. Any idea why this could be happening @Kismuz?
[2021-03-02 18:27:55.075162] DEBUG: SimpleDataSet_0: Start time adjusted to <00:00> Process BTgymDataFeedServer-7: Traceback (most recent call last): File "/opt/anaconda3/envs/btgym_env/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap self.run() File "/Users/adhamsuliman/Documents/personal_projects/bot_stock_trader/bt_gym/btgym/btgym/dataserver.py", line 176, in run sample = self.get_data(sample_config=service_input['kwargs']) File "/Users/adhamsuliman/Documents/personal_projects/bot_stock_trader/bt_gym/btgym/btgym/dataserver.py", line 88, in get_data sample = self.dataset.sample(**sample_config) File "/Users/adhamsuliman/Documents/personal_projects/bot_stock_trader/bt_gym/btgym/btgym/datafeed/base.py", line 539, in sample return self._sample(**kwargs) File "/Users/adhamsuliman/Documents/personal_projects/bot_stock_trader/bt_gym/btgym/btgym/datafeed/base.py", line 617, in _sample **kwargs File "/Users/adhamsuliman/Documents/personal_projects/bot_stock_trader/bt_gym/btgym/btgym/datafeed/base.py", line 882, in _sample_interval first_row = self.data.index.get_loc(adj_timedate, method='nearest') File "/opt/anaconda3/envs/btgym_env/lib/python3.6/site-packages/pandas/core/indexes/datetimes.py", line 622, in get_loc raise KeyError(key) KeyError: datetime.date(2016, 1, 11)
I am having the same problem as @mkraman2 and others on this thread. If someone in the community would be kind enough to post a solution, that would be highly appreciated.