Skip to content

Instantly share code, notes, and snippets.

@arshren
Last active September 1, 2022 07:09
Show Gist options
  • Save arshren/f0fe245a934f4ca94aa20d8d6f0aa77c to your computer and use it in GitHub Desktop.
Save arshren/f0fe245a934f4ca94aa20d8d6f0aa77c to your computer and use it in GitHub Desktop.
# Import libararies
import numpy as np
import pandas as pd
import os
import torch_geometric.transforms as T
from torch_geometric.datasets import Planetoid
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
from torch_geometric.nn import GraphConv
import torch_geometric
from torch.nn import Parameter
from torch_geometric.nn.conv import MessagePassing
import urllib.request
import tarfile
from torch.nn import Linear
import torch.nn.functional as F
from torch_geometric.nn import GCNConv, GNNExplainer
from torch_geometric.nn import global_mean_pool
from torch_geometric.datasets import TUDataset
from torch_geometric.loader import DataLoader
# Load the dataset
dataset = TUDataset(root='data/TUDataset', name='MUTAG')
# print details about the graph
print(f'Dataset: {dataset}:')
print("Number of Graphs: ",len(dataset))
print("Number of Freatures: ", dataset.num_features)
print("Number of Classes: ", dataset.num_classes)
data= dataset[0]
print(data)
print("No. of nodes: ", data.num_nodes)
print("No. of Edges: ", data.num_edges)
print(f'Average node degree: {data.num_edges / data.num_nodes:.2f}')
print(f'Has isolated nodes: {data.has_isolated_nodes()}')
print(f'Has self-loops: {data.has_self_loops()}')
print(f'Is undirected: {data.is_undirected()}')
# Create train and test dataset
torch.manual_seed(12345)
dataset = dataset.shuffle()
train_dataset = dataset[:50]
test_dataset = dataset[50:]
print(f'Number of training graphs: {len(train_dataset)}')
print(f'Number of test graphs: {len(test_dataset)}')
'''graphs in graph classification datasets are usually small,
a good idea is to batch the graphs before inputting
them into a Graph Neural Network to guarantee full GPU utilization__
_In pytorch Geometric adjacency matrices are stacked in a diagonal fashion
(creating a giant graph that holds multiple isolated subgraphs), a
nd node and target features are simply concatenated in the node dimension:
'''
train_loader = DataLoader(train_dataset, batch_size=64, shuffle= True)
test_loader= DataLoader(test_dataset, batch_size=64, shuffle= False)
for step, data in enumerate(train_loader):
print(f'Step {step + 1}:')
print('=======')
print(f'Number of graphs in the current batch: {data.num_graphs}')
print(data)
print()
# Build the model
class GNN(torch.nn.Module):
def __init__(self, hidden_channels):
super(GNN, self).__init__()
torch.manual_seed(12345)
self.conv1 = GraphConv(dataset.num_node_features, hidden_channels)
self.conv2 = GraphConv(hidden_channels, hidden_channels)
self.conv3 = GraphConv(hidden_channels, hidden_channels )
self.lin = Linear(hidden_channels, dataset.num_classes)
def forward(self, x, edge_index, batch):
x = self.conv1(x, edge_index)
x = x.relu()
x = self.conv2(x, edge_index)
x = x.relu()
x = self.conv3(x, edge_index)
x = global_mean_pool(x, batch)
x = F.dropout(x, p=0.5, training=self.training)
x = self.lin(x)
return x
model = GNN(hidden_channels=64)
print(model)
# set the optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=0.02)
# set the loss function
criterion = torch.nn.CrossEntropyLoss()
# Creating the function to train the model
def train():
model.train()
for data in train_loader: # Iterate in batches over the training dataset.
out = model(data.x, data.edge_index, data.batch) # Perform a single forward pass.
loss = criterion(out, data.y) # Compute the loss.
loss.backward() # Derive gradients.
optimizer.step() # Update parameters based on gradients.
optimizer.zero_grad() # Clear gradients.
# function to test the model
def test(loader):
model.eval()
correct = 0
for data in loader: # Iterate in batches over the training/test dataset.
out = model(data.x, data.edge_index, data.batch)
pred = out.argmax(dim=1) # Use the class with highest probability.
correct += int((pred == data.y).sum()) # Check against ground-truth labels.
return correct / len(loader.dataset) # Derive ratio of correct predictions.
# Train the model for 150 epochs
for epoch in range(1, 160):
train()
train_acc = test(train_loader)
test_acc = test(test_loader)
if(epoch % 10 == 0):
'''print(f'Epoch {epoch:>3} | Train Loss: {total_loss/len(train_loader):.3f} '
f'| Train Acc: {acc/len(train_loader)*100:>6.2f}% | Val Loss: '
f'{val_loss/len(train_loader):.2f} | Val Acc: '
f'{val_acc/len(train_loader)*100:.2f}%')
'''
print(f'Epoch: {epoch:03d}, Train Acc: {train_acc:.4f}, Test Acc: {test_acc:.4f}')
#Explain the Graph
explainer = GNNExplainer(model, epochs=100,return_type='log_prob')
data = dataset[0]
node_feat_mask, edge_mask = explainer.explain_graph(data.x, data.edge_index)
ax, G = explainer.visualize_subgraph(-1,data.edge_index, edge_mask, data.y)
plt.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment