Created
April 3, 2024 18:17
-
-
Save arthurgailes/1a7c3f1afb5b51acc0e68042d3a4bc19 to your computer and use it in GitHub Desktop.
duckdplyr summarizing wide data
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Load necessary library | |
pacman::p_load( | |
stringi, data.table, duckplyr, readr, dplyr, collapse, duckdb, dbplyr, bench, | |
ggplot2 | |
) | |
# Function to generate a dataframe chunk | |
generate_data_chunk <- function(num_rows = 1000, num_cols = 100) { | |
# Generate numeric columns | |
numeric_cols <- replicate(n = num_cols/2, expr = runif(num_rows, 1, 10000), simplify = FALSE) | |
# Generate word columns | |
word_cols <- replicate(n = num_cols/2, expr = stri_rand_strings(num_rows, 10), simplify = FALSE) | |
# Combine word and numeric columns | |
data <- data.frame(matrix(ncol = num_cols, nrow = num_rows)) | |
colnames(data) <- c(paste0("WordColumn", 1:(num_cols/2)), paste0("NumericColumn", 1:(num_cols/2))) | |
data[,paste0("WordColumn", 1:(num_cols/2))] <- word_cols | |
data[,paste0("NumericColumn", 1:(num_cols/2))] <- numeric_cols | |
return(data) | |
} | |
# Target file size in bytes (1GB) | |
target_file_size <- 1 * 1024^3 | |
# Temporary file to accumulate data | |
temp_file_path <- "data/large_dataset.csv" | |
# Write an initial chunk to establish the file with the correct headers | |
initial_chunk <- generate_data_chunk() | |
fwrite(initial_chunk, file = temp_file_path) | |
# Keep appending data until the file size exceeds the target size | |
while(file.info(temp_file_path)$size < target_file_size) { | |
chunk <- generate_data_chunk() | |
# Append data without header and row names | |
fwrite(chunk, file = temp_file_path, append = TRUE, col.names = FALSE) | |
} | |
# time it takes to read, group_by, summarize | |
read_times <- bench::mark( | |
readr = { | |
readr::read_csv(temp_file_path, show_col_types = FALSE) | |
}, | |
readr_lazy = { | |
readr::read_csv(temp_file_path, lazy = TRUE, show_col_types = FALSE) | |
}, | |
data.table = { | |
data.table::fread(temp_file_path) | |
}, | |
duckplyr = { | |
duckplyr::duckplyr_df_from_csv(temp_file_path) | |
}, | |
check = FALSE | |
) | |
p <- ggplot(read_times) + | |
geom_col(aes(x = expression, y = median), fill = "#ff1f51", alpha = 0.5) + | |
hrbrthemes::theme_ipsum() + | |
scale_y_continuous(breaks = c(1, 5, 10, 30)) + | |
theme( | |
axis.text = element_text(size = 14), | |
plot.background = element_rect(fill = "#e6e6e6") | |
) + | |
labs( | |
title = "Time to read 1GB CSV", | |
x = "", y = "Total time (s)" | |
) | |
ggsave("chart/duckplyr_read_times.png", p, width = 4, height = 4, dpi = 300) | |
data_duckplyr <- duckplyr_df_from_csv(temp_file_path) | |
data_dt <- as.data.table(data_duckplyr, key = "WordColumn1") | |
data_tbl <- qTBL(data_dt) | |
con <- dbConnect(duckdb()) | |
duckdb_register(con, "data", data_tbl, overwrite = TRUE) | |
data_dbplyr <- tbl(con, "data") | |
sum_times <- bench::mark( | |
dplyr = { | |
data_tbl %>% | |
dplyr::group_by(WordColumn1) %>% | |
dplyr::summarize(across(starts_with("NumericColumn"), mean)) | |
}, | |
data.table = { | |
data_dt[, lapply(.SD, mean), by = WordColumn1, .SDcols = paste0("NumericColumn", 1:50)] | |
}, | |
collapse = { | |
data_dt %>% | |
collapse::fgroup_by(WordColumn1) %>% | |
collapse::fsummarise(across(paste0("NumericColumn", 1:50), fmean)) | |
}, | |
duckplyr = { | |
data_duckplyr %>% | |
group_by(WordColumn1) %>% | |
summarize(across(starts_with("NumericColumn"), mean)) | |
}, | |
duckdb = { | |
dbGetQuery(con, ( | |
"SELECT WordColumn1, AVG(NumericColumn1), AVG(NumericColumn2), AVG(NumericColumn3), AVG(NumericColumn4), AVG(NumericColumn5), AVG(NumericColumn6), AVG(NumericColumn7), AVG(NumericColumn8), AVG(NumericColumn9), AVG(NumericColumn10), AVG(NumericColumn11), AVG(NumericColumn12), AVG(NumericColumn13), AVG(NumericColumn14), AVG(NumericColumn15), AVG(NumericColumn16), AVG(NumericColumn17), AVG(NumericColumn18), AVG(NumericColumn19), AVG(NumericColumn20), AVG(NumericColumn21), AVG(NumericColumn22), AVG(NumericColumn23), AVG(NumericColumn24), AVG(NumericColumn25), AVG(NumericColumn26), AVG(NumericColumn27), AVG(NumericColumn28), AVG(NumericColumn29), AVG(NumericColumn30), AVG(NumericColumn31), AVG(NumericColumn32), AVG(NumericColumn33), AVG(NumericColumn34), AVG(NumericColumn35), AVG(NumericColumn36), AVG(NumericColumn37), AVG(NumericColumn38), AVG(NumericColumn39), AVG(NumericColumn40), AVG(NumericColumn41), AVG(NumericColumn42), AVG(NumericColumn43), AVG(NumericColumn44), AVG(NumericColumn45), AVG(NumericColumn46), AVG(NumericColumn47), AVG(NumericColumn48), AVG(NumericColumn49), AVG(NumericColumn50) | |
FROM data GROUP BY WordColumn1" | |
)) | |
}, | |
dbplyr = { | |
data_dbplyr %>% | |
group_by(WordColumn1) %>% | |
summarize(across(starts_with("NumericColumn"), mean)) | |
}, | |
check = FALSE | |
) | |
p <- ggplot(sum_times) + | |
geom_col(aes(x = expression, y = median), fill = "#ff1f51", alpha = 0.5) + | |
ggthemes::theme_clean() + | |
scale_y_continuous(trans = "pseudo_log", breaks = c(0, 1, 5, 25)) + | |
theme( | |
axis.text = element_text(size = 12), | |
plot.title = element_text(size = 12), | |
plot.subtitle = element_text(size = 10), | |
plot.background = element_rect(fill = "#e6e6e6") | |
) + | |
labs( | |
title = "Time to group_by and summarize 1GB CSV", | |
subtitle = "Grouping by 1 word column and summarizing 50 numeric columns", | |
caption = "@arthurgailes", | |
x = "", y = "Total time (s)" | |
) | |
ggsave("chart/duckplyr_sum_times.png", p, width = 5, height = 3, dpi = 300) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment