Created
July 1, 2016 13:53
-
-
Save arthurwuhoo/faeb9043d2c0fb7a1a21685084a86796 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# ===================================================================================================================== | |
# TEXT MINING EXERCISES | |
# ===================================================================================================================== | |
# GRAB SOME TEXT DATA ------------------------------------------------------------------------------------------------- | |
library(rplos) | |
# Use plosabstract() to query PLoS and gather abstracts relating to a topic of your choice. | |
# CREATE CORPUS ------------------------------------------------------------------------------------------------------- | |
library(tm) | |
# 1. Use VectorSource() and Corpus() to create a corpus. | |
# 2. Retrieve a single document from the corpus. You might need to use as.character(). | |
# APPLY TRANSFORMATIONS ----------------------------------------------------------------------------------------------- | |
# Use tm_map() to apply the following transformations: | |
# | |
# - convert to lower case [this might require content_transformer()]; | |
# - remove punctuation; | |
# - remove numbers; | |
# - remove stop words; | |
# - remove extra white space. | |
getTransformations() | |
# STEMMING ------------------------------------------------------------------------------------------------------------ | |
library(SnowballC) | |
getStemLanguages() | |
# Use tm_map() and stemDocument() to stem all documents in the corpus. | |
# DOCUMENT TERM MATRIX ------------------------------------------------------------------------------------------------ | |
# 1. Create a Document Term Matrix. | |
# 2. Find the most frequent term in a single document. | |
# 3. Find the most frequent term across the entire corpus. | |
# 4. Use findAssocs() to find associated terms. | |
# TF-IDF -------------------------------------------------------------------------------------------------------------- | |
# Create a Term Frequency-Inverse Document Frequency matrix. Do the data make sense? | |
# VISUALISATION ------------------------------------------------------------------------------------------------------- | |
library(wordcloud) | |
require(RColorBrewer) | |
# Make a word cloud. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment