Created
May 11, 2016 15:17
-
-
Save arvind-iyer/988f2f1bc60bdc201a52dc2b07b5d0e1 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
def nonlin(x, deriv=False): | |
if(deriv==True): | |
return x * (1-x) | |
return 1/(1+np.exp(-x)) | |
#input data | |
X = np.array([ [0,0,1], | |
[0,1,1], | |
[1,0,1], | |
[1,1,1] ]) | |
#output | |
y = np.array([[0], | |
[1], | |
[1], | |
[0]]) | |
np.random.seed(1) | |
#synapses | |
syn0 = 2*np.random.random((3,4)) - 1 | |
syn1 = 2*np.random.random((4,1)) - 1 | |
#training | |
for j in xrange(60000): | |
l0 = X | |
l1 = nonlin(np.dot(l0,syn0)) | |
l2 = nonlin(np.dot(l1,syn1)) | |
l2_error = y - l2 | |
if(j%10000) == 0: | |
print "Error rate: " + str(np.mean(np.abs(l2_error))) | |
l2_delta = l2_error*nonlin(l2, deriv=True) | |
l1_error = l2_delta.dot(syn1.T) | |
l1_delta = l1_error*nonlin(l1, deriv=True) | |
syn1 += l1.T.dot(l2_delta) | |
syn0 += l0.T.dot(l1_delta) | |
print "Output after training:" | |
print l2 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment