Created
October 12, 2024 21:49
-
-
Save asears/c61455da08121eb36a8681d948d86c20 to your computer and use it in GitHub Desktop.
Parametrize Decorator for DRY repeatable parameterize
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # https://github.com/databricks/mlops-stacks/blob/main/tests/utils.py#L53 | |
| # Example of decorator for parameters | |
| import os | |
| import pathlib | |
| import pytest | |
| import json | |
| import subprocess | |
| from functools import wraps | |
| RESOURCE_TEMPLATE_ROOT_DIRECTORY = str(pathlib.Path(__file__).parent.parent) | |
| AZURE_DEFAULT_PARAMS = { | |
| "input_setup_cicd_and_project": "CICD_and_Project", | |
| "input_root_dir": "my-mlops-project", | |
| "input_project_name": "my-mlops-project", | |
| "input_cloud": "azure", | |
| "input_cicd_platform": "github_actions", | |
| "input_databricks_staging_workspace_host": "https://adb-xxxx.xx.azuredatabricks.net", | |
| "input_databricks_prod_workspace_host": "https://adb-xxxx.xx.azuredatabricks.net", | |
| "input_default_branch": "main", | |
| "input_release_branch": "release", | |
| "input_read_user_group": "users", | |
| "input_include_feature_store": "no", | |
| "input_include_mlflow_recipes": "no", | |
| "input_include_models_in_unity_catalog": "no", | |
| "input_schema_name": "schema_name", | |
| "input_unity_catalog_read_user_group": "account users", | |
| "input_inference_table_name": "dummy.schema.table", | |
| } | |
| AWS_DEFAULT_PARAMS = { | |
| **AZURE_DEFAULT_PARAMS, | |
| "input_cloud": "aws", | |
| "input_databricks_staging_workspace_host": "https://your-staging-workspace.cloud.databricks.com", | |
| "input_databricks_prod_workspace_host": "https://your-prod-workspace.cloud.databricks.com", | |
| } | |
| GCP_DEFAULT_PARAMS = { | |
| **AZURE_DEFAULT_PARAMS, | |
| "input_cloud": "gcp", | |
| "input_databricks_staging_workspace_host": "https://your-staging-workspace.gcp.databricks.com", | |
| "input_databricks_prod_workspace_host": "https://your-prod-workspace.gcp.databricks.com", | |
| } | |
| def parametrize_by_cloud(fn): | |
| @wraps(fn) | |
| @pytest.mark.parametrize("cloud", ["aws", "azure", "gcp"]) | |
| def wrapper(*args, **kwargs): | |
| return fn(*args, **kwargs) | |
| return wrapper | |
| def parametrize_by_project_generation_params(fn): | |
| @pytest.mark.parametrize("cloud", ["aws", "azure", "gcp"]) | |
| @pytest.mark.parametrize( | |
| "cicd_platform", | |
| [ | |
| "github_actions", | |
| "github_actions_for_github_enterprise_servers", | |
| "azure_devops", | |
| ], | |
| ) | |
| @pytest.mark.parametrize( | |
| "setup_cicd_and_project,include_feature_store,include_mlflow_recipes,include_models_in_unity_catalog", | |
| [ | |
| ("CICD_and_Project", "no", "no", "no"), | |
| ("CICD_and_Project", "no", "no", "yes"), | |
| ("CICD_and_Project", "no", "yes", "no"), | |
| ("CICD_and_Project", "yes", "no", "no"), | |
| ("CICD_and_Project", "yes", "no", "yes"), | |
| ("Project_Only", "no", "no", "no"), | |
| ("Project_Only", "no", "no", "yes"), | |
| ("Project_Only", "no", "yes", "no"), | |
| ("Project_Only", "yes", "no", "no"), | |
| ("Project_Only", "yes", "no", "yes"), | |
| ("CICD_Only", "no", "no", "no"), | |
| ], | |
| ) | |
| @wraps(fn) | |
| def wrapper(*args, **kwargs): | |
| return fn(*args, **kwargs) | |
| return wrapper | |
| @pytest.fixture | |
| def generated_project_dir( | |
| tmpdir, | |
| databricks_cli, | |
| cloud, | |
| cicd_platform, | |
| setup_cicd_and_project, | |
| include_feature_store, | |
| include_mlflow_recipes, | |
| include_models_in_unity_catalog, | |
| ): | |
| params = { | |
| "input_setup_cicd_and_project": setup_cicd_and_project, | |
| "input_root_dir": "my-mlops-project", | |
| "input_cloud": cloud, | |
| } | |
| if setup_cicd_and_project != "Project_Only": | |
| params.update( | |
| { | |
| "input_cicd_platform": cicd_platform, | |
| "input_databricks_staging_workspace_host": "https://adb-3214.67.azuredatabricks.net", | |
| "input_databricks_prod_workspace_host": "https://adb-345.89.azuredatabricks.net", | |
| "input_default_branch": "main", | |
| "input_release_branch": "release", | |
| } | |
| ) | |
| if setup_cicd_and_project != "CICD_Only": | |
| params.update( | |
| { | |
| "input_project_name": "my-mlops-project", | |
| "input_include_feature_store": include_feature_store, | |
| "input_include_mlflow_recipes": include_mlflow_recipes, | |
| "input_read_user_group": "users", | |
| "input_include_models_in_unity_catalog": include_models_in_unity_catalog, | |
| "input_schema_name": "schema_name", | |
| "input_unity_catalog_read_user_group": "account users", | |
| "input_inference_table_name": "dummy.schema.table", | |
| } | |
| ) | |
| generate(tmpdir, databricks_cli, params) | |
| return tmpdir | |
| def read_workflow(tmpdir): | |
| return (tmpdir / "my-mlops-project" / ".github/workflows/run-tests.yml").read_text( | |
| "utf-8" | |
| ) | |
| def markdown_checker_configs(tmpdir): | |
| markdown_checker_config_dict = { | |
| "ignorePatterns": [ | |
| {"pattern": "http://127.0.0.1:5000"}, | |
| {"pattern": "https://adb-3214.67.azuredatabricks.net*"}, | |
| {"pattern": "https://adb-345.89.azuredatabricks.net*"}, | |
| ], | |
| "httpHeaders": [ | |
| { | |
| "urls": ["https://docs.github.com/"], | |
| "headers": {"Accept-Encoding": "zstd, br, gzip, deflate"}, | |
| }, | |
| ], | |
| } | |
| file_name = "checker-config.json" | |
| with open(tmpdir / "my-mlops-project" / file_name, "w") as outfile: | |
| json.dump(markdown_checker_config_dict, outfile) | |
| def generate(directory, databricks_cli, context): | |
| if context.get("input_cloud") == "aws": | |
| default_params = AWS_DEFAULT_PARAMS | |
| elif context.get("input_cloud") == "gcp": | |
| if context.get("input_include_models_in_unity_catalog") == "yes": | |
| return | |
| default_params = GCP_DEFAULT_PARAMS | |
| else: | |
| default_params = AZURE_DEFAULT_PARAMS | |
| params = { | |
| **default_params, | |
| **context, | |
| } | |
| json_string = json.dumps(params) | |
| config_file = directory / "config.json" | |
| config_file.write(json_string) | |
| subprocess.run( | |
| f"echo dapi123 | {databricks_cli} configure --host https://123", | |
| shell=True, | |
| check=True, | |
| ) | |
| subprocess.run( | |
| f"{databricks_cli} bundle init {RESOURCE_TEMPLATE_ROOT_DIRECTORY} --config-file {config_file} --output-dir {directory}", | |
| shell=True, | |
| check=True, | |
| ) | |
| @pytest.fixture(scope="session") | |
| def databricks_cli(tmp_path_factory): | |
| # create tools dir | |
| tool_dir = tmp_path_factory.mktemp("tools") | |
| # copy script and make it executable | |
| install_script_path = os.path.join(os.path.dirname(__file__), "install.sh") | |
| # download databricks cli | |
| databricks_cli_dir = tool_dir / "databricks_cli" | |
| databricks_cli_dir.mkdir() | |
| subprocess.run( | |
| ["bash", install_script_path, databricks_cli_dir], | |
| capture_output=True, | |
| text=True, | |
| ) | |
| yield f"{databricks_cli_dir}/databricks" | |
| # no need to remove the files as they are in test temp dir | |
| def paths(directory): | |
| paths = list(pathlib.Path(directory).glob("**/*")) | |
| paths = [r.relative_to(directory) for r in paths] | |
| return {str(f) for f in paths if str(f) != "."} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment