Last active
August 29, 2015 14:28
-
-
Save aseetharam/975ab89052f1a8964429 to your computer and use it in GitHub Desktop.
Clustering metabolomics data for different tissues from various location
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| library(Heatplus) | |
| library(vegan) | |
| library(RColorBrewer) | |
| library("gplots") | |
| all.data <- read.csv("C:/Users/Arun Seetharam/OneDrive/PostDoc/Projects/20150303_Perera_metabolomics/bloodroot_data_v2d.csv", quote="") | |
| row.names(all.data) <- all.data$ID | |
| all.data <- all.data[, -1] | |
| data.prop <- all.data/rowSums(all.data) | |
| scaleyellowred <- colorRampPalette(c("lightyellow", "red"), space = "rgb")(100) | |
| heatmap(as.matrix(data.prop), Rowv = NA, Colv = NA, col = scaleyellowred) | |
| maxab <- apply(data.prop, 2, max) | |
| head(maxab) | |
| data.prop.1 <- data.prop | |
| heatmap(as.matrix(data.prop.1), Rowv = NA, Colv = NA, col = scaleyellowred, margins = c(10, 2)) | |
| data.dist <- vegdist(data.prop, method = "bray") | |
| row.clus <- hclust(data.dist, "aver") | |
| heatmap(as.matrix(data.prop.1), Rowv = as.dendrogram(row.clus), Colv = NA, col = scaleyellowred, margins = c(10, 3)) | |
| data.dist.g <- vegdist(t(data.prop.1), method = "bray" | |
| ) | |
| col.clus <- hclust(data.dist.g, "aver") | |
| heatmap(as.matrix(data.prop.1), Rowv = as.dendrogram(row.clus), Colv = as.dendrogram(col.clus), col = scaleyellowred, margins = c(10, 3)) | |
| # for tissue based labelling | |
| var1 <-c(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 2, 2, 2, 3, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4) | |
| var1 <- replace(var1, which(var1 == 4), "green") | |
| var1 <- replace(var1, which(var1 == 3), "orange") | |
| var1 <- replace(var1, which(var1 == 2), "magenta") | |
| var1 <- replace(var1, which(var1 == 1), "deepskyblue") | |
| cbind(row.names(data.prop), var1) | |
| heatmap.2(as.matrix(data.prop.1), Rowv = as.dendrogram(row.clus), Colv = as.dendrogram(col.clus), col = scaleyellowred, RowSideColors = var1, margins = c(12, 7), trace = "none", density.info = "none", xlab = "Metabolites", ylab = "samples", main = "Bloodroot Heatmap", lhei = c(2, 8)) | |
| heatmap.2(as.matrix(data.prop.1), Rowv = as.dendrogram(row.clus), Colv = as.dendrogram(col.clus), col = scaleyellowred, RowSideColors = var1, margins = c(12, 8), trace = "none", density.info = "none", xlab = "Metabolites", ylab = "samples", main = "Bloodroot Heatmap", lhei = c(2, 8)) | |
| # for location based labelling | |
| var1 <-c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6) | |
| var1 <- replace(var1, which(var1 == 3), "orange") | |
| var1 <- replace(var1, which(var1 == 2), "magenta") | |
| var1 <- replace(var1, which(var1 == 1), "deepskyblue") | |
| var1 <- replace(var1, which(var1 == 4), "green") | |
| var1 <- replace(var1, which(var1 == 5), "brown") | |
| var1 <- replace(var1, which(var1 == 6), "grey") | |
| cbind(row.names(data.prop), var1) | |
| heatmap.2(as.matrix(data.prop.1), Rowv = as.dendrogram(row.clus), Colv = as.dendrogram(col.clus), col = scaleyellowred, RowSideColors = var1, margins = c(12, 7), trace = "none", density.info = "none", xlab = "Metabolites", ylab = "samples", main = "Bloodroot Heatmap", lhei = c(2, 8)) | |
| heatmap.2(as.matrix(data.prop.1), Rowv = as.dendrogram(row.clus), Colv = as.dendrogram(col.clus), col = scaleyellowred, RowSideColors = var1, margins = c(12, 8), trace = "none", density.info = "none", xlab = "Metabolites", ylab = "samples", main = "Bloodroot Heatmap", lhei = c(2, 8)) | |
| all.data <- read.csv("C:/Users/Arun Seetharam/OneDrive/PostDoc/Projects/20150303_Perera_metabolomics/bloodroot_data_v2e.csv", quote="") | |
| iris <- all.data | |
| ir <- iris[, 4:21] | |
| # if you don't have missing data (i.e., everyting non-zeros) use log instead | |
| # gives better resolution for small numbers | |
| # ir <- log(iris[, 4:21]) | |
| ir.location <- iris[, 2] | |
| ir.tissue <- iris[, 3] | |
| ir.pca <- prcomp(ir, center = TRUE, scale. = TRUE) | |
| print(ir.pca) | |
| plot(ir.pca, type = "l") | |
| summary(ir.pca) | |
| predict(ir.pca, | |
| newdata=tail(ir, 2)) | |
| library(devtools) | |
| library(ggbiplot) | |
| # for location PCA | |
| g <- ggbiplot(ir.pca, obs.scale = 1, var.scale = 1, groups = ir.location, ellipse = TRUE, circle = TRUE) | |
| # if you don't need arrows/circle, then set circle = FALSE, var.axes = FALSE | |
| g <- g + scale_color_discrete(name = '') | |
| g <- g + theme(legend.direction = 'horizontal', legend.position = 'top') | |
| print(g) | |
| # for tissue PCA | |
| g <- ggbiplot(ir.pca, obs.scale = 1, var.scale = 1, groups = ir.tissue, ellipse = TRUE, circle = TRUE) | |
| # if you don't need arrows/circle, then set circle = FALSE, var.axes = FALSE | |
| g <- g + scale_color_discrete(name = '') | |
| g <- g + theme(legend.direction = 'horizontal', legend.position = 'top') | |
| print(g) | |
| # save history | |
| savehistory("C:/Users/Arun Seetharam/OneDrive/PostDoc/Projects/20150303_Perera_metabolomics/R_cmds_PCA.R") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment