Created
December 14, 2021 15:18
-
-
Save asehmi/6c69c8db650dd561f48fca855f4de91f to your computer and use it in GitHub Desktop.
Chaining Streamlit forms and passing values using session state API
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import streamlit as st | |
from streamlit_pandas_profiling import st_profile_report | |
from streamlit import session_state as session | |
import numpy as np | |
import pandas as pd | |
from pandas_profiling import ProfileReport | |
if 'data_uploader_submitted' not in session: | |
session.data_uploader_submitted = False | |
if 'cluster_duplicates_submitted' not in session: | |
session.cluster_duplicates_submitted = False | |
def cluster_duplicates(df, col_name, dis_num, dis_non_alphanum, sim, aff): | |
st.write(col_name) | |
st.write(df.head()) | |
st.write(df[col_name].unique()) | |
@st.experimental_memo(show_spinner=True, persist='disk') | |
def get_profile_report(file_info, df): | |
pr = ProfileReport(df, explorative=True, lazy=True, minimal=True) | |
return pr | |
def profiler(file, delim): | |
file = st.session_state.upload | |
delimiter = st.session_state.delim.split(" ")[1][1:-1] | |
df = pd.read_csv(file, sep=delimiter, engine="python") | |
session['df'] = df | |
file_info = {"Filename": file.name, "FileType": file.type, "FileSize": file.size} | |
st.write(file_info) | |
pr = get_profile_report(file_info, df) | |
st_profile_report(pr) | |
cluster_duplicates_form = st.form(key="cluster_duplicates") | |
with cluster_duplicates_form: | |
cols = [val for val in df.columns] | |
col_name = st.selectbox("Select column for clustering", cols, key="col_name") | |
dis_num = st.checkbox("discard_numeric", key="dis_num") | |
dis_non_alphanum = st.checkbox("discard_nonalpha_numeric", key="dis_non_alphanum") | |
similarity = st.radio(label="Select Similarity Measure", | |
options=["levenshtein (recommended)", "cosine", "jaro_winkler", "trigram", | |
"levenshtein_partial"], key="similarity") | |
affinity = st.radio(label="Select Distance Measure", | |
options=["euclidean", "l1", "l2", "manhattan", "cosine", "precomputed"], key="affinity") | |
if cluster_duplicates_form.form_submit_button(label = "Cluster Duplicates"): | |
session.cluster_duplicates_submitted = True | |
def data_uploader_form(): | |
file_upload_form = st.form(key="file_upload") | |
with file_upload_form: | |
data_file = st.file_uploader("Upload File", type=['csv', 'xlsx'], key="upload") | |
delim_list = ["pipe (|)", r"tab (\t)", "comma (,)", "semicolon (;)"] | |
delim = st.selectbox("Select File Seperator/Delimiter", delim_list, key="delim") | |
if file_upload_form.form_submit_button(label='Profile Data'): | |
session.data_uploader_submitted = True | |
if __name__ =="__main__": | |
#st.set_page_config(layout="wide") | |
st.write("Data Profiler :wave:") | |
data_uploader_form() | |
if session.data_uploader_submitted: | |
profiler(session.upload, session.delim) | |
if session.cluster_duplicates_submitted: | |
method_args = (session.df, session.col_name, session.dis_num, session.dis_non_alphanum, session.similarity, session.affinity) | |
print(method_args) | |
print(list(session.items())) | |
cluster_duplicates(*method_args) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment