Skip to content

Instantly share code, notes, and snippets.

@aseyboldt
Created October 14, 2014 11:34
Show Gist options
  • Save aseyboldt/2e7632d4c07e526bcf12 to your computer and use it in GitHub Desktop.
Save aseyboldt/2e7632d4c07e526bcf12 to your computer and use it in GitHub Desktop.
{
"metadata": {
"name": "",
"signature": "sha256:ab6514d1265318a64fcb0fa3b19d1f50e174fffbdfa67f512bd25b3a43d2dc72"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Model peptide scores accross multiple technical replicates"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- each peptide gets a score in each technical replicate. (no missing values)\n",
"- the distribution of scores is a mixed distribution of a 'bad' distribution (normal or student-t)\n",
" and a 'good' distribution (gamma).\n",
"- each peptide has a fixed probability of ending up in one of these distributions. The technical\n",
" replicates are iid draws from this distribution. The propability balancing these is called 'from_true'\n",
"- for each peptide 'from_true' is drawn from a distribution with (an informative?) Logit-normal prior."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%matplotlib inline\n",
"\n",
"import numpy as np\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"from scipy import stats, optimize, special\n",
"import pymc # pymc3\n",
"import theano\n",
"import theano.tensor as T\n",
"import emcee\n",
"import functools"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Generate some fake data"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"sim_params = {\n",
" 'dist1': {\"loc\": 7, \"scale\": 1, \"df\": 6}, # the 'false' hits\n",
" 'dist2': {\"scale\": .2, \"a\": 60}, # the 'true' hits\n",
"}\n",
"sim_dist1 = stats.distributions.t(**sim_params['dist1'])\n",
"sim_dist2 = stats.distributions.gamma(**sim_params[\"dist2\"])"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 3
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"num_samples = 100\n",
"num_runs = 5\n",
"\n",
"sim_sample_dist1 = sim_dist1.rvs((num_runs, num_samples // 2))\n",
"sim_sample_dist2 = sim_dist2.rvs((num_runs, num_samples // 2))\n",
"\n",
"fig, axes = plt.subplots(num_runs, 1, sharex=True)\n",
"for i, ax in zip(range(num_runs), axes):\n",
" sns.distplot(sim_sample_dist1[i], ax=ax)\n",
" sns.distplot(sim_sample_dist2[i], ax=ax)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stderr",
"text": [
"/usr/lib/python3.4/site-packages/matplotlib/font_manager.py:1279: UserWarning: findfont: Font family ['Arial'] not found. Falling back to Bitstream Vera Sans\n",
" (prop.get_family(), self.defaultFamily[fontext]))\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEDCAYAAAAyZm/jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXl8HWd97/+eOfuu5WjfLNny4zW2sy/OigkkELJAIQ3l\nQi/lBZfetsAtvf1R+ut6f69eoFDae1soLaUtlC00AcKSkMVJHCdOvMfbWKu1S0fb2feZ3x9zJEu2\nrHMkHcnH8bz9Oi9JZ55n5uOzPDPzXSVN0zAwMDAwuHqQL7cAAwMDA4O1xVj4DQwMDK4yjIXfwMDA\n4CrDWPgNDAwMrjKMhd/AwMDgKsNY+A0MDAyuMsz5Bggh7ga+BliB7yiK8vlLjLsfeArYoyjK87nn\nHgX+Ev0E8yVFUf6+WMINDAwMDJbHolf8QggJ+AbwXmADsEcIccsC4xzAHwIvA1LuOQ/wJeB2YAfw\nGSFEY1HVGxgYGBgsmXymnp3AlKIoJxRFyQLfBh5ZYNwfA38LxICZjLA9wH5FUYYVRQkDTwIPFke2\ngYGBgcFyybfwNwADc/7uzz03ixBiM7BdUZTHF5g7uNhcAwMDA4O1J5+N/8J6DqYFxnwV+J05f0uX\nmGs4kg0MDAxKAGmxWj1CiJ3A99AXcytwFjimKMof5LabgGnAnpsiA5PA+4Ea4D84f9WfBb6wmINX\n0zRNkqRLbTYwMDAwWJglLZz5rviPA+uBDwA/A8aBHwkhtgEpRVHOCiHWofsBVCHEQcChKMoLQoha\n9MX+ZiAMHAF+sqhySSIQCC9F/6pTVeW5bJpUVSUSWfjYfr+H8fHz27LZLP2BGF3DUcKxNHarifpK\nJ+0NHhy2+TdqqqoCIMuF34S53Z684y/na3UpDE2FUYqaoDR1laqmpZBv4d8BdAF/BfwNsB9ozz0C\n6FfwE3PGy5w38UTQTxT7cs9/UVGUuf4CgzxEImF+daATh9N10Ta3a5JINAnARCjFQWWccOLifcgy\nNFQ6WFfjpLrMiiRJTI6PIstmyioqC9IRj0V5+00b8Hp9K/r/GBgYlAb5Fv4G4LSiKA8DCCEeBD6g\nKMpjcwcJIT4B/BFgA94+Z1MZuqlnkvlOYoMCcThdOF0Xn81dbjsqCZS+KV4/PY6mQW25hY0tVbjt\nZpJplcB0nJ7hEP2BOP2BOB6nBdFcRrnVic1qXnC/BgYGb32K4dxFUZSvAV8TQrwP+DPgIfTQznZF\nUQaEENcAvxRCHFUUpXexAy71lmUtuFyarFYVt2sSl9u+4PauoTAHTo3hsJm5caOT2goX/qqq2e2b\ngN07NUYmYpzsmaCzf5qDZwLIMrRUO9jlzlJb6SSfX0Umhd/vwefL/zoY719hGJoKpxR1laKmpZBv\n4R8ENgshFOY4d+cOEEJ8BPg8+kkhAGwXQpgURckKIXYLIWYyd0fQTUe9ix2wFG1nl0tTKBQmEk2i\ncrENJxBM8srxIZw2M/fe2EQqOkE0msDmuHis227ips3V7FhfQddgiNM94/SMxOkZ6cTtsNBW76W1\nzovPbV1QRyyaZHw8TCpl2PiLgaGpcEpRV6lqWgordu6iL+SbFEXJCCH+N3pMf1YIsR74a+B6oAo4\nDEwscAyDJRKKpnjujT5MssTbrm/E67IyHs0/z241s7W1gmpngsmIRiAq0zca5njXBMe7JvD77Gxr\nq6Cp2p33LsDAwODKZcXOXeBe4NtCCIAQoOTmPgb4gDeAKPBMbn/7ivo/uMrIZFVePDpEKqOy+5pa\nyj22Je9DkiSqfGbE+mrSmRr6xyL0DIUYGo+y98gQfp+dGzdX4y9zrML/wMDA4HKzYueuoiifE0L0\noTt3/Zx37k4B31AU5dO5ub+Hkbm7Yo6cHWcqnGRrWyVt9SuPsrGYZdrqvbTVe5mOJDnaMU7faIRf\nHOhj5wY/29oqiqDawMCglFhN5+6yMndL0WlSKs7dkYkop89N4XNb2b2jHrPp/Esaj1qRZQueSziC\n53KpsR63naZaH4NjEZ59o48jHeNEk1lu3uQznLtFxtBUOKWoqxQ1LYViOHc/Bfz33L46gNtyGb0T\nwN/lTgaQy9zNJ6gUnSal4NzNqhrPvdEHwM1bajCbZMKR847caDSFLGcXdO5eSL6xXqeZ+25uZu+R\nQc72TRGPJ9jZVmE4d4uEoalwSlFXqWpaCsVw7maAGxRFmRJCfBfI5Jy7e1li5q7BpTnRPcF0JMXG\nJh81Fc5VP57DZmbP9U08e7Cf/kCc777Qy8cf2oF8lTh9F8uaXgqFZDwbGKw1xXDu1gNv5py740Bn\nbq6RuVskpiNJ3uyawGEzc+3GqvwTioTFLPO26xt5+sA53lAmqXm5h0fuaFuz419OIpEwz3e+hMO5\ntJNsSk0Ry8RJqEliiRiiuh2nw4nNZMNtcVJhr6BSuzgT28BgLSmKcxf4XG77N4Ezc+YbmbsrRNM0\nXj0xgqrBzVtrsFoWdLOsGlazid1bK9l/apKn9vfSWOXixs01a6rhcuFwOnF5Lr1Ia5pGKBVmKDrK\naGyMqcQ0iWxy3pgTvcpF86wHLDQ461jnaWKdu5kWdyM208I5FDMYdw4GxaQQ565/jo3/IJCeO2CO\njb8MvULcn+Y2xYD/AXwGvVLnt4QQO43M3cKxWlUGJlIEphOsb/Sxpc0/b/tc52wxnLuXQibFZx/b\nwZ/9yxG++bPTiDY/GxrLFhz7Vnn/rFYVT9iGyzP/NdI0jUB0AmWim77pIaLp2Ow2t9VJs7ser82D\ny+ogGU6QzWRxeVyk1QyJTJJIOkYwGaIn0kdPpA94BZMk0+CqocXbQIOrBpM8/+Qei8S4f/uegpzr\nK6EU3zsoTV2lqGkpFOLcvQE9Ces0utnnwjj8s+iZu7+P3nP3C8CjgAv9TuAGdLPPMHAP8M3FDliK\nTpPLpam7f5xDZyexWmSubffPc+Z63PZVc+5eSCyaxC6rfOyBLfzd48f5y38+wJ/85g24HZZ540rV\n6bUcTaFQmHA4iZr7iiSzSXqCfXQHzxFMhQCwmqy0eBqpc9VQ66rBYZ5/kgiExjDZZSp8F5ywPXYm\npkME4hME4hMMRobpyz0sspkWbxOibANem764ZDVTQZnTK6EU3zsoTV2lqmkp5Fv45Tk/Z36XLnDu\nRtB7696Dbvt/W27c+4DXFUUZzmXxakDTktRdxaiqxn8830smq7F7aw0OW763avXZucHPe3a38uN9\nPXz9Jyf59K/tQJbf2s7eWDrGmalOOqd7yGpZZEmm2dNAm28dNc7qZTu7rSYrDe46Gtx17PBvZToZ\npDfUz7lwP53TPXRO91DnqkGUb8Bj+AQMiky+1aQePfP2cfRmKwfQzTkf5rxz9y+Auty4cmAsN3cX\ncI8QYgA9c/fH6NU7DQrg6df76B6O0OC301rnvdxyZnngtnX0DIc43jXBk/u6eeSO9Zdb0qowlZzm\nyNQJBuNDqGg4zQ42lm+gzduMzVzcj7EkSZTbyyi3l7GjaisDkWGUqU6Go6MMR0cps3gpd/m40XO9\nUUrDoCgUYuMfVxTldgAhxCPA+xRF+ezMAEVR7sxt+xi6iefemU3Av8zJ3P00es0egzycGwnzxMvd\neBxmrt3gK6kvuyxJfOyBLfz5t97gqf3naK3zsqv9rfO2RtJRnu59nhcH9pPVsnitHjZXbKTF24RJ\nWn3n6swdRbOngYnEFKcnz9IfHuTfOn/IC6P7uX/dHrb7t5TUZ8LgymNFrRdzY/YAXwdagQ8pivKd\n3POPssTWi1yc7XvVMRVK8Jm/eZGJUILff3Q7gakILnf+K/6x0UFk2YK/qrqoYwGikRB7bmzB5ztf\nIqJnKMjvf/UlzGaZr3zqTuqr3AXtq1RJZVL8vOMFnjz9NLF0nEpHOaKsla31YtmL7NjQKLLZhL/a\nn3/wIgyODzGWmOTgyJtoaLSWNfHerfdzQ8MO4wRgMMPatl4EZto4PQHE58zdyzISuErRabJWmtIZ\nlS989zDjwQTvvbONhnIrPQMLl2Vea+fuhc5Ft0Xmv7xT8E9PnebP//k1Pv+h62lsKLvi3j9VUzkw\nfIinep5hOhnEZXby3vYH2OnZwhsjR4lEkpecm49IJInJImO7oDWax2MnvFC7tEtgStl4pPEB3tHy\ndn7Z+xyHRo/xpVe+ToO7jvvX7eGaqq3IK7wbKUWHJZSmrlLVtBSKkcD1SaACeCdwpxDi93LmHyOB\nawlksir/+NOTdA2GuGlLDfff3EI4HLrcsgA9i3UhLduanezeVsW+EwG+8dPjfPrRawiFIldEzLmm\naZycOMOPu37BUHQEi2zm3pa7eXvzXTgtDkKh4OWWOMvM6+/xeHlv07u43X8Tzw/v4/jkKb5x4t+p\ndVRzT91utpZvWtTZfCW8LwZrQzESuGZs/P8OPKkoyo/mzDcSuAoglc7y90+e4HjXBBubyvjN+zaV\n1C18Ih7jxcNTC/borfaZqfBYONwxxZf+4xiNZVrJ9+ftDfXxZOfP6ZjuRkLi5rrreXfrvZTbF85N\nuNwkYnH2BV+jrPx8pdQWeyOV1eWcDXcxEB/mP7r/E4/ZzUbPeurtNRd9fuKxGPdsuKOk3xeDtaMo\n1TkvwbJaL15tTIWTfP3HJzg7EGRbWwW//fD2Nc/OLQS7w3nJHr33XOfklwf6ONY1DW2lE4F0ISPR\nMX7a/TRHA28CsLVyEw+uv48Gd91lVpYfh9NxURaxCxc15dWEUmFOTiicC/VxaOoYHVYPm8o30OJt\nxiyX3mfJ4PJTjOqce4AvopuFhoEfASiKoi6n9WIpZsStlqbXT47wN987QjiWYveOej7z2LVYzOe/\nqPl67q5V5m6+8R43PHTnev5zbyfHukO82RfmobsbC9r3WiC7Mvzw5M94oWc/mqbRXrGOx3Y8zNbq\njZecc6nM3aUQD9uQzSY8C+xjoeeWsx8AD3YaKqsIJsIcGT5Jx2QPr48e4fjEKTZXbWBLVTsebHlL\na5fidw9KU1cpaloKxXDudgEfAn46d+JyWy+WotOk2JoGx6P8aG8XRzvHMZtkfuPejdy9q4Hpqdi8\ncYv13F1L524h42Xggd1tPLG3g39+6iyBqRQP7m5dc5PV3Kqa4XSEg8EjPH9uPxktQ7Xdz70Nd7Gl\nbCNSWKIrfGnrYzgcIhRKzGbuLodiOXcvtZ8LkbFwnX8nm32CjukuOqd7OTJ8kqPDp6i2+ZEzVm5o\nuu6ikhBQmg5LKE1dpappKRTDudsAfBeoBT4hhLhPUZTtwAcxWi/OYyqc5Mf7unn5+DCaBhsbffzG\nvYLG6is7FHIGf5mDu3dUcbBjmp+80ktgOs4H3y5w2tcu6zgSCfOzs88wkBmhLzaIiopdtrPNJ2h0\n1BOKh3ktfijvfiYC47i9LuDKe2+cFgc7qraxtXITvaF+uoI9jCYC/HvX4zzZ/0uurb6GnVXb2VDW\nuuJoIIMrk2I4d/cBTQs4dycwWi8CEE9m+MWBczzzej+pjEpNuZ0Hbmlga4sPScpeMoIkHA6hqVdW\naoPHaeZTj2zim0/38OrJUc70TfOb921iW9vFjuGl1rxfLCpF0zR6Q338qmcvx0On0NBwWZzsqttK\nva1+wavcxYhFCuheX+KYZTMbylrZUNbK0OQwaSnDscmTvDiwnxcH9uOxuLmmaiu7qrZTXrnzcss1\nWENW07l7IW/p1ou/eO5V5AuKdGVVjRO9Ed44GySRUnHaTNywwYlZSpJRVY71TC26z/HAKC63bxHb\nemnY+Ofidtloba7grz/VwuPPneX7z57lyz84xta2St53TzvXiurZ+j7BYJBnXuvH6cxfiyYWi/Ke\nu7ZcZKNOZJK81n+YX3bspXtK71Dms3rY1bCNDeUtyw5fzGdXX+k+imnjL4RGqrir9VZcng9zauws\nrw0c4Y2Bo7wydIBXhg7wzVMOttdsYmftFnbUbcHvLJ1ey1fqmlDKFMO5awH+GXgYve3iSUVRznCV\ntV4cn85g9zoA/erz3EiYIx3jhGNpLCaZne1+NreUk05GGR4dR2Xx+usAqmYmGk0saFsvNRv/jKZI\nLtnLm5LZc20DGxu8/OjFbt7snuBk9wQ+t5WdG/TXotIFWdU0+1ok4jEi0YXvfuKxCMdOnMHt9uiv\nb2yAE8EzKOEu0loaCYmN7jY229tJkKDCWkk0mlqyPX2GQu3qy9nHatn4FyMcjNPTM4jH48WFh7eV\n38HdZbvpjfRzYuoMZ8NdHBg4woGBIwDU2KvY6Gtjo289Le4mLPL5pWIt8wFK1Z5eipqWQjGcux9C\nL772JNAPfBV4B8vM3L3SGZmMcVgJMB5MIEmwqbmMazZUYrfqL3V6+YmgVyTNNR4+/f4d9I2GefbQ\nAEc7xnnx6BAvHh0CwGySKPdMU+6xghrCXBHH6VQxX/DJTEoxDsaGCYSmGIyOkMjqi6DT7GCDex3r\nPM24LE5ikSjTwWkqKi82LV3NLJQLMEOVuZLWpjpGpqcYS4wzlhxnPDnB6GiAl0cPYJJkKq0VVNv8\neDQXD2x8Bz5faeY8GBRGMZy7HwE2Aw4gAfiEEC6usszdYCzD/o4BBgK6bbil1sOudj9eV/4r+7cS\nl8ryLXPA+3bX88itdfSORjk3GqV3OEjPaJzxYJzAdK7ax6BuzrA7NLzlSayVE2SdY4SkcdTJLABW\n2Uqbr4VWbwtVjsp5kUNms+WiYxvoLJQLMIPbY6dGslCDXr8pq2YZi4/PVggdS+onBIBTx8+yuVKw\nqaKdTRXteKxXngP8amfFzl30Bf9tiqIcz405gl7OeZirIHN3bDrOU/t7eeV4CA2oKXdwnajCX+a4\n3NIuC4tl+c7FYoJKe4ymLV585X6moym6+nuZtEwQkyZJ2yYIuYJIErqnKWXHozXSWtZIe52/JJPc\n3kqYZBN1rhrqXHqbzWg6xkh0lIHgMNOZIK+NHOS1kYMANLjr2FTRzubyjawva8VqMk6+pc5qOHdn\njH/LytwtRafJQpoGxsL88LkO9h4eQFU1ytxmbtvRREutZ9HYdZkUDru1KE7YUnTuulxWPB4X/qr8\npZpVLU6IINMMMWYeYKjuHFkyAMhIOCnDlKgkNV5NaMRDXJUZAw6akjTUm2lqtFBbbaa6yozVKuXm\nZQjFrPMcoctxir7VnLuF7GPRbdipraigvayJO9bdzJQa4vjoGY6PnObMeBeDkWGe63sJs2xmfXkz\nomo9wr+e9op1lDlWVibiSlkTriRW7NwFhoCvCCHagCmgERhabuZuKTpNZjSpqsbx7gleOjrEsc5x\nNKDB7+Ldt65jIjCE02MlEl3ciB+LJoknUvMcs5diMadqqTp3LzVW0zRiapjp7BiTmTHGM4NMpkdQ\nJRVS+hi76qTCWoNXrsBjKsckmcEJVECsKYxTcjAxZWV4BPr6M/T1Z2b37/NCmQ+c9hRZLYvDHsXr\nkfH5HIZzt4B9FKopGk4yORHF663gNv+t3Oa/lVQ2Red0D2cmOzg73cXZiR6UiW7gV/q+rW4a3fU0\nuOuocVbhd1RQaa+k3O7Lm0dQqo7UUtS0FIrh3J0AdimK0pxb5D+hKEp0uZm7pUYskeZ41wRHOwIc\n7hgnFNVXqdY6D/ff3MKujVXIksQvXxq+zEpLAw2NFAkm0sNE1GmC2QmmMmNMZwOktPkLi5syyrRq\nGt3r8VvqGR8dJu1eePFRMymmMzE8lS48lZBKSYRDJqIR/RGOmAiGZtpGVHO2M4lJhvLyFF4PlJXJ\nlPkkystkPG7pLd8ycrW4lA+n0VJLY00te2puJ5lN0R8d5FxkgMHYMMOxMU5PnuX05Nl5c2QknGYn\nTrMDp9mBK/e7zWTDIpsxS2Z8gy5S8SxmyYxZNmOWTEiShIyEpumNgWTZhIyUe15GkiSk2b8lZElG\nluTZ7TN/y5KMjITH7cVismAzWZec73GlUgznbiXQIYToRz8xIIRwA49xhWTuJtNZIrE0kXia8WCc\nkckYI5MxBgJR+sciqLkkKrfDwl27GrhzRz0ttVf2rV6haJqGSpYsGWLZMBnSpNUkCS1GUo2T1GIk\n1DgJLUo8HGLaNElWSutxXHNwyz6qLU2Um6ooM1dTaaolOD6JLJuosBXWEMZisWK16uYIqxXcsz5F\nFU1TSSZgejLF+ESUck8NobDMdDDL+AToAWY6sgwet4TXI+H1yHi8Ek6HhN0u4bBL2G36omJwMYtF\nB12IEwftzjbanW2k1DThdJhoNsZ4aIKklCIjq6TUFNOpIGOJ8TVQnx+TZMJmsmI1WbHlHlaTFbvJ\nhi33KB/woKYk7Gb9b7vJlvvdOvu3zaz/tJqsJZkdXQznbj3w0QWcu5OUSOZuVlX5ux+9yehUnGxW\nJZNVyaoamaxGOqP/vRAmWUI0l7Ou1s01bZVsaPRhukT8cjabIZ1K5dWSTqVIxKPEovlvFRPxKLJs\nXnCsTIrYHLPSYmMvZCzVT6/tlG6YQ0PTNDRUtHn/9L+zZNDMuVUwT4l6EyasqgOHVonP5scleXFL\nPrxSJRYpF92kAilIk7pIcyIeJWmNLbjveCyKJMnkK/1jtcawmIfYscWDzebA7bYyMpoiFIZgCIJh\nCEcgEtFydwgLv/fgwiSDyRTFZNJPFrIMkgReN9x6I3m1xONxTGmZaHh+FrBMhmi48LjeS+1nKeTb\nR6Ga4vE4JvPSFzKrbKHSVkElFbiidkxmed7JQ9M0UmqalKqb6rKaioqK1S4TjSXPP6fp75eGRjQS\nQZIl7A7H+c+tNrNVQ8vt9/y2i39PZzJUu/1gkkhlUySzqdmfsXScqWSQVPaC7/USb+4lJEySjCyb\nMEkmTJKs/y2ZMMmmXEtPCQlm71ZkSebdbfey3b9lya91Iaymc7fQ5+cirZbT5H99cveq7HeGj7z/\n7lXdf3G54XILuASlqsvA4K1FvsV4EN1ZO0MjF4dlDgJNAEIICajLPXfh3KYF5hoYGBgYrDH5Fv7j\nQIUQ4ppcaYYPAk8KIbYJIWaKmf8E+HDu9/cARxVFiQLPAbcIIRqEEF7gQa6CzF0DAwODUmfRhV9R\nFBX4GPA4upP3OUVR9qMv9A8JIe4G/idwvxAiCPwp8Lu5uWH0eK5+dHt/BXDf6vw3DAwMDAwKRdKW\nGb6QM+t0AA8Bp4FXgE8rivLqnDG/DfgURfn/iqDVwMDAwKAIrCTOaCcwpSjKCUVRssC3gUcWGGcE\nTBsYGBiUECtZ+BuY76ztZ+Fwzd8RQvQIIf5TCFE6jVgNDAwMrlJWsvAXEur5Q6AFPfv3deBfVnA8\nAwMDA4MisJJmqHlDPRVFGZv5XQjxf9AdwZdE0zRtrZtzXy0Eg0F+svdU3m5X5ztdraywloGBwZqy\npIVzJQv/bKgnunP3g8Cn59bxEUK0A52KomjodfuPL7ZDSZJKsvhRqWmCpesKhcKomjlv5y9V0zto\npVJLvxksxdfK0FQYpagJSlNXqWpaCss29eQL9cwN+2/AQK6Oz0PAby33eAYGBgYGxWHZV/y5GP5/\nACzAvymK8nkARVE+OzNGUZTPCCGeBZ4CPqwoSscK9RoYGBgYrJBlXfHnYvi/AbwX2ADsEULcssA4\nB/CHwMsrEWlQfLJZlZHJGH2jYUanYqQy2fyTDAwM3hIs94p/NoYfQAgxE8P/6gXj/hj4W+CjGPH8\nJUE6o3K8axylb5pM9nxglixBvd9Fa42N5Sb1GRgYXBksd+FfKIb/1rkDhBCbge2KonxOCPFRLg7/\nNFhjIvEMrxzqJRxL47SbaW/04HKYiSUyDE/o/QcGAlG6R+K8Z/d6rhN6kxkDA4O3Fstd+AuJ4f8q\n8Dtz/i5oBSnFXpalqAmWpmsqEmXv8XESKZWd7VXctK0Ws2m+pW90MsYbJwfpG4vxD0+eoLnGxXvv\nauXajZWX7CPs8XiQ5/QoKMXXytBUGKWoCUpTVylqWgrLXfgXjeEXQpiAa9EbrAPUADuFEL+uKMre\nxXZcimFSpaYJlqYrEk/zV98+SiKlcsOmajavKycev7hpjNMqs7XBTIPHykDIRN9olK98/wTlbgtb\nWzzUlNvmnQDisShvv2kDXq9vyZrWCkNTYZSiJihNXaWqaSksd+HPG8MP+GcGCyF+AXwx36JvUHw0\nTeNbvzhDYDrJxkY3m9eV551TUeZiw4ZqpiNJjnVOcG4kzL6Tk1SVOdjV7qe20rkGyg0MDFaLZUX1\nFBjDb1ACvHx8mMNnA6yvd7N93dKuCsrcNu7cWc+7b22hsdpNYDrOM2/088zr/bNN5w0MDK48VpLA\n9TzwcSAO/LoQ4i8VRfmsoihfmBkjhPiIEKIT2AT8lRDi2hUrNiiYYDTF95/vxGEz8Rtva72knT4f\nFV4791zbwP23NFPvdzIyGeOp/b2cG40ZEUAGBlcgy174C4zl/ymwUVGUVuAvgP+73OMZLJ0fPN9B\nPJnhkTvWU+5ZvFRDIfh9DvZc38Tt19QhSRJvnJ3mey+cI6teqmG5gYFBKbKSWj15Y/kVRZmYM96K\nEdK5Zpw+N8WrJ0dpqfVw964GIpFQ0fbdWu/FX2Zn7+EBDpyZIK2e5OPv2Vq0/V9JaJpGRs2gomGR\nzcjSSgreGhisDStZ+PPG8gMIIT4B/BFgA96+guMZFEgmq/LtZxQk4L+8QyDLxY/F9zit3LG9klN9\nUQ6fDfC3jx/jTz9+0dt/RaCqKpFI/igNTdMYT07SGeqhO3yO0XiAqeQ0GU3PepYAr9VLtd1Pi7sR\n4VtPg7PuIhOb1aoSCs0/nts9PyzWwGA1WcnCX0gsP4qifA34mhDifcCfkcf5W4rxsaWoCS6t6wfP\nnmV4Isa7bmvlxmv03jhWq4rbNYnLbV90n/GoFVm24MkzDkAmxf/z4Xa+9mQHr58a4Yv/fojPfeQG\nTKbSWsDyvX/BYJDnOw7gdC8crRRORekO9dMT7Ceaic8+b5UteG0epIyGJMlIZolIOkZHqJuOUDfP\nDr2E2+JElLWyvqwFi5z7ul1wjolFYty/fQ8+3+X9nF1pn/PLSSlqWgqrWo9/LoqiPC6E+FchhCnX\nqnFBSjE+ttQ0ga5rdDR40ZXqRCjJ9545g8dh5rZNXrq69LckHA4RDifylmWORlPIchabI5FXQyya\nJDQd47eb9nPXAAAgAElEQVTetYloLMnrp0b48ncO8eF3imU7kotNIe9fKBQmq5lQ53wdNE1jODrK\nmakORmMBAMyymWZPAzXOamqcVbgtLr2U+PAYJotMhV+PYE5kkgTi4/SHhxiIDHIocJLjEwrrfa1s\nqdyIv8xHOHz+9c1qpmWXwi4Wpfw5LzVdpappKax2Pf5dwHFFUbJCiPcDA4st+gZLIxIJ86sDnThy\nzVU0TeOVk5Oksxq7mt0cPhuYHTs5PorT5cXl8RZdh9kk88mHt/PXPzjGS8eGKPfYeHB3a9GPsxao\nmkZfeIBTEwrBlO4XqXL4We9rocnTgFnO/5Wxm200eRpo8jSQzFxDR7CHjqkuzkx10BXs5br67TQ7\nmzEZ/gCDy8SyF35FUVQhxP8FDqJHB72mKMp+IcQXgQDwhdzj7lz2bhj4wMolG8zF4XThdOln+3Mj\nYUamktRWOhHrqudddceikaIfW1VVwuHzTuPPfGALf/JPh/jxvh5cVo0bN1XOG1/KdmxN0xiMDHMs\ncJJgKoSERIunic0V7ZTby5a9X5vZxrbKTWwub6djupsTE2d4beAwJy1nubbmGupdtUX8XxgYFMZK\n6vFLwCfRSzOcBl4RQtwytx4/8BXgfYqiBIUQnwP+K/DMSgQbLEwyleX106PIksRNm2vWxNSSiMd4\n8fAUZRX6Au922biu3ccLx8b57gu9DAbCVJXZgIvLO5QS5yIDvDLxBpOpKSSg1dvCtspNuK2Lt6lc\nCibZxKaKdlq9zSjhDk6NdfDiwH6a3PVscrUX7TgGBoWw2uGcP58z/mXgvhUcz2ARXj89SjyZZddG\nPz73ymP2C8XucM7ecbjcdmqxcvcuO88e7OfVM1Pcd1PLmupZChPxKf6z8ymOBt4EoMFdxw7/Vny2\n4pvDZrCZbdzWfD1NjiYOjh6hPzLEUHQUi8XMO917MMkLxkgYGBSVVQ/nnMNvoid0GRSZvtEwPcNh\n/D47W9dVXG451FY6uWVbLa+8OcJzhwa4/5bmyy1pHmk1w3N9L/LL3udJq2maXQ002Rto9jfmn1wk\nyu0+9jTfSU/oHEfG3uTnA89xdOokHxAPs6HsyvSPGFw5rHo4J4AQ4mNAC3p9H4Mikkhlee3kOLIk\ncev22lWJ2V8O6xt8hGNpjndN8MLhQXZvzV8cbi04OaHww7NPEohP4LG6+fX1j7DJuZ7Xhg+tuRZJ\nkmjzraMcHxOZKd4YP8pXDv8DN9ddz0Pr78djda+5JoOrg1UP5xRCvAe9ps/dhUT0lGJ8bClqAiiv\ncHGwI0gileXW7XU01V7afl5ofP5S4vgXGjv39907G4insnT0T3O4M8hDd7dTUb72r2VVlYdAdIJ/\nPfI4rw8eRZIk7m+/m/dvewCn1UEwGMQTseHy5P8/L0Q8bEM2m/AsYf68saqLPf6beduGW/n2ySd4\nbfggx8dP8t6N72R34w0FZQNf2BdhOZTq57wUdZWipqUgLbfIlhBCBjqAh9Gdu/uATwMhzodz3gF8\nDbhHUZSRAnarlWJ8bKlpAvD73XzhW6+y70SApmo3d+2qX9ShOz42jCybqPBXL7rfQsctNNbjthOO\nzI//z6oqz74xwOhUnOvaK/hvD+9Y07uSsgo73zv8c37Z+xxpNc163zo+IB6mwV03OyYUCvLq0EFc\nnuU5cy+M48+Hx2OfF8cfGB4jlU5SVl6Bqqn0Rvs5E+4go2Upt/i4pmwLPsul/Q7xWIx7NtyxIsd5\nqX7OS1FXiWpa0pdqpeGcM6WZ7cC3Fwjn/AugDngjF9LZrSjKncs9psF5vv/sWfadCOBzmblte23J\nJExdiEmWuee6Rp55vZdDHZP8889O8dF3bSnq4n+pkgtnpjv5xWvPMhabwG128VDLfeyq2IakSoRC\nwdlx4XDoslcZdTgdsyee7d4trK9q5cjYm/SFB3gx8CrrvE1sr9xS1Egjg6uXlZh6QLfza0AWUAEu\nCOf8C+CLwDbgUUVRfrTC4131aJrGEy9389T+c5R7rNy6uRyrpbQjQSxmmd1bKznaHebVk3r00cff\nsxWbtTi6I5Ewz3e+hMOpl1yIZKKcDCqMJgNISLS6mtnk2UAymVzQlj8RGMftdQGlY1N3mh3cVn8j\n66PrOBJ4k95QP32hAdaXtbK1UuAwOy63RIMrmNUuy9wFfAj4AUZlzhWTSGX4+k9O8tT+c9RWOvmd\nhzbisJX2oj+DxSzziXe3s7mlnKOd4/zVdw4zFU4Wbf8OpxOry0pXope9gf2MJgNUO/y8d+t93Nx4\nPWW+Mlwe14IPh6N0F9FaVzXvbLmHW+puwGlx0jHdzU+7n+HI2JvE59QNMjBYCqsdx9+T26ZSYLN1\ng4U5c26Kb/3iDGPTcTY0+viT37qFibFA/oklhMNm4tPv38G3n1F46dgwf/6tN/jouzezrbUy/+RF\nyKgZuiPn6BjtIZlN4jQ72FW1nSZPA16HY549/UpEkiTWeZto9jTQHezlxMQZzkx1cHa6izZvCy22\ntQtDNXhrsJZx/AbL4NxImJ/u7+Xw2QAScN/NzTx8extlHhsTY5db3dIxm2Q+/M5N1Fe6+OHeLr78\n/WPce0MTj9zRtmSTVTqb5rWRQzzd8xxTqSBm2cy2ys1srmgvqKbOlYYsyWwoa6PV20JP6BynJzvo\nDPbQSQ/jmUne0XYPLd6myy3T4ApgTeL4DZZGJqtyonuSvUcHOd6l97JZX+/lsbdvpLVu9bJK1wpJ\nkrj3xmY2Npfxjz85xTNv9HOkI8BjezayY0P+yJhIKsq+oQPs7d9HOB3BJJloc7Wwo3YbdrNtDf4H\nlxeTbGJDWRttvnX0hQc5ETjNscmTHJs8SbOngdsbbuX6mh1YTaWZMW1w+VmzsswUaOMvxfjYtdCk\naRo9QyFeONTP3kMDTEd0+/fmdRU8eq9g18aqiyJ3/H5PQTX24fLE8c9FJoXf75lXc76qysP2jTV8\n5+kz/OTlbr76+HGu31zDh+7bTFvD/NBEVVU5Pnqa57v388bQMbJqFqfFwUOb38FtNddxdPgELs/C\nztl88fXLicNf6fy5Y1dy/O3edlo9tVR5qnhl5BCHho7znTM/5Mmup7h93U3sbr6BDZXrCsoFKMXv\nHpSmrlLUtBRWNY5/zthvA08UENXzlo3jXyjkMJNV6RqKcKJ3mhO9QabCKQCcNhPXtldw02Y/jX7H\ngqGafr+Hnp5BjnZHCiq1fLni+GeIhIPsavPgWUBrOBKhbzTIM4enOBfQT3jb1nm5a2c5UcsoZ0Kd\nnA11Ecvqzsxqm59dFdvZVb4Nm8lGLBZFiXcvGId/Ycz8Qiw1Dn+l8xeK41/J8aPhKLfUX4/X62My\nMcUrQ6/zytABwim9Imu5rYyd1dvYVN7O+rJ1C0YEVVa66OkZWtbxVU1DAjweb9Grr5ZozHwpaiqd\nOH4hxG7gu0A58E4hxJ8qirJ9uce8kolEwjz9WgeJrJWx6SSBYJKJUJqsqp94LSaJpioHjX47NjWI\nWQtxbsTCuZHggvtzuybpO9e3ajX2i82FlTzn0j10EtWXwdOYpbYsRkTNcNYyRefANJKsvz422Uar\nu5kWVwNlVh+SJKFEOgEIDU7hqim9qp+Xgwp7OQ+0vYP71r2NM5MdHB47zvHxk7zQv48X+vchIdHo\nqafOVUONs4oqhx+XxYk7ZmGv8hpWux1Vy6JqKmktQ0pNk1bTpHKPmd/TWmr275nWkyZJxiSbcZmd\neKxuPFY3FfZyqh2VVDn9VDn8+B0Vb0n/y5XGasfxHwBeAG4HpoDHVni8KwZN05gKJ+kZDtEzHKZz\nYJLu4QiZ7Pk7rDK3lbpKF43VLmrKnbNJTeNjWWTZNFv1ciFcbjt2x5WVzDO3kmdKTRDMTjCdDTDq\nO0fUEiKpxfRLBHSHkZzwkpysJDtVg9VchqPVgstrwuGcf1UZsxS/18CVjlk2s82/mW3+zaTVDF3T\nPXROd3N2qptzoT76w4MLTyzwQtYsmbCarLitbqyyhUwmg8NkR5U04tk4Q5ERMlrmonkSEhW2Mqrt\nfqodfqrsfqrtlfpJwecv2X4NbzVWWo//G+g9dGfq8f9MUZRX5wz7EGBTFKVVCPEA8FXgHSsRvFqo\nqkY4liIcSxOLJzjV2Ycsm3G5rcSiKUyyhCyBfOFPCSoqygnH0gSCScaDSQLTCYYm4oTj8z/4boeJ\ner+b2gonNRVOHLa39pWPpmkktThRNciw1ENMCpMMxwlmxklo0fMDzSBrJjxyOTbNQbO3kjpvDRbJ\nzPgEKJ0wMACHjqY5dDSNxw1VfigvB5cTMtNpXFKCREoCCTQNVFV/TAezRKNJzGYrVouM1QY2q4TZ\n/NaJLr6wIc5C1JurqfdXc4f/ZrKaylRymvHEJJPJKeLZBBmS9EwPYrVaMUkmTLKMRbZiM1mwylas\nJis2k/7TKlsuKh89t+wE6O99RssSy8aIZnKPbIxIJko4HWEiOcXpYMe8fXgtHurdtdS4qql1VlPr\nqsbiaUPTKNnM9CuVVY3jB94D/GPu96eAfxJCuBRFibKGqJpGNJ5mMpRkPBhnIphgPJRgIphgIpQg\nGEkRiqVYftb+6EXPOGwmGirtlHsslLutkJrC5/UWZDu/ElC1LCkSZMiQSSdJqDFQU0wlpohkg0TV\nIJFsiCxpfcLMOpEGh+ym1tyCz+THZ6okMhHEXu5EkiQi4SDBsQzpaGz2WLVN4K+DqUkLk+NmImEz\n3b0S9M6MWKxD1kySWGresyYTuJwSTqeEWbLhdELlRBqXU8LlknE6Jey2K2PBScTi7Au+NrvoLgUJ\nCScOktE0mxxty/YzwPyyEzOUsbAJLpFJEkqFCaVCBFNhpmLTpLQ0Z6Y6ODM154RwBKwmK+U2H2W5\nR7nNR5ndh9fqwWl24LQ4cZodOMwObCbrFfGeXW5WO45/doyiKJoQYgioR3cKr5jhiSg/f/UcyXSW\nTFYjo6pksxrZrEo6qxFLZojG00QT6Usu6lazTJnHRnu5D6/bhsdpQctmGBqPYLXZsFrMJJL6fFXT\nUNXcQ9NQNSATR5ZlXE4bbrsZt8OM22HCbJp/yzo5LpGIx4hF899LJ+JRZNm86FiZVEHjFttnZ+YY\nYW0KDRUt9y9JAlQwT5lnn1PJkiFNVkuTIUOWNCrq+U/PAoc3YcYleXFIHpySB6Lg1sqo87VgkXIh\nlxqQgWg8TNqtL9DpdAppgQgUsxmqqtNUVevvRTwmMzWZIpM2kwhraCYZ2WQGDSQJJElDksBkkshk\n0lT4HGiYSacglYZkEuIJjVBYAiz6QbrT819jWcNh149tMoHZpP80mXLHAGqqweeMY0rLRMOFXc/I\nZIjOyVqOx5c2/0Li8Tgm88pNJPFYfGUalvh/cOHAZXJQ56ghrumF5qxOG6OxACPRMUZiY0xmJhkN\nBphKBmeb3i+GSTJhN9uwyBbMshmLbJ7z04JZNmGSTMhISJKEdMFPk2TizsZb3/L5EGsdx5/v0ykt\nJUyqqsrDNZuu5p6l16xw/g1FUbFySkWHQSnQRBWw5XLLWJQrPZxzJZcJhcTxDwJNMOsTqAOWFzNm\nYGBgYFAUVrLwHwcqhBDXCCEswAeBJ4UQ24QQG3NjfgJ8OPf7e4Cja23fNzAwMDCYz7IXfkVRVPRW\nio+jV+F8TlGU/egL/UO5Yf8GJIUQ/cCfAr+7IrUGBgYGBismr41fCHE3ehctK/AdRVE+P7NNUZTn\ngY25cffnqnDuyT0P8D7gFiANfENRlDNF1m9gYGBgsEQWveIvsOY+QggH8IfAy+TKLwshPMCX0JO3\ndgCfEUIY9WMNDAwMLjP5TD2zsfq5RukzsfoX8sfA3wIxzkf77AH2K4oyrChKGHgSeLA4sg0MDAwM\nlku+hX+hWP2GuQOEEJuB7YqiPL7A3Ll54RfNNTAwMDBYe/LZ+DXAL4RQ0G38B4H0BWN+CHiEED3o\nlVbagefRs2J+Twjxvty4KPCfix5M0zQj687AwMBgyRS1OucgenbN9ej1eLrQyy8DIIQwocfmzxQK\ncQB/J4Q4CwwDUUVRZuL4v8zi9fqRJKkUy52WnCbQdY2OBi8q9VwobrfHKKF7mTA0FU4p6ipVTUsh\n38Ivz/k587skhNjG+Zr7s3V2hRCHAauiKC8IIWoBuxCiAT2p/0HgziWpM1iUSCTMrw504nAurUpn\nPBbl7TdtwOs1ShkbGFyN5Fv464E3OF9z/wD6LcWHydXcBxBCfAL4I6Aa+O3c3Ai6qagXvWTzvyqK\nsugVv8HScThdi5ZvNjAwMLiQfPf6GjCuKMpGRVGa0ZuqoCjKZxVF+cLMIEVRvpYz6XwQeHfu6RjQ\npiiKBd1c9G4hxLpi/wcMDAwMDJZGITb+zXOcu2eBY3MHCCE+AnwevUhbANguhDApipIVQuwWQvwl\n+glmBD2ev3exA5Zi8aNS1AT5e+5qmsZ0JMnweJSpcJJEKgMamGUVm2OaDc0WNjaX43UVryl3Kb5W\nhqbCKEVNUJq6SlHTUsi38B8H1gMfAH4GjAM/usDG3wtsUhQlI4T43+ihnVkhxHrgr9Edw1XAYWAi\nn6BSdJqUmibQdY2Ph4lEk6jM7ymbzqh09E/TMRAkGE0tOP9ETxDdVw81FU62t1aws93Pxqayi0pK\nw8I9gy/E79c1XchqOJILpRTfP0NT4ZSirlLVtBTyLfw70FeHvwL+BtiPHq7Zznkb/73At4UQoEf3\nKLm5jwE+dB9BFHgmt799GKwKmqbRMRDkyNlxkukssizRXOOmrtJFuceGw2ZC02A6FKa11stERKVr\nKETXYJBnDw3w7KEBHDYzO9ZXcuOWGra1VsyeBApxJLtdk0SiyXnPGY5kA4PSI9/C3wCcVhTlYQAh\nxIPABxRFme2dqyjK54QQfejOXT/w9tymKfT6PJ/Ozf09jASuVSOaSLPv+DCjk3HMJokdGyrZ1FyO\nzXpxmwQzVnasL59djDNZFaV/mqNnxznaGeC1U6O8dmoUr9PCTVtquW17LWWO/I5kl9t+0d2HgYFB\n6VFIAtdcFmy2oijK14Cv5ZK1/gy9OueFc40uyqvE2FScFw4Pkkxnaap2c9OWGpz2wnvsmE0yW9dV\nsHVdBY+9vZ3ekTD7T4xw4NQovzrYz68O9tNa66KmzMoGh3u2KbyBgcGViaQt0mhWCLET+B56COes\nc1dRlD+YM+ZTwH9HP4l0ALcBHuDXgP/gfNmGLPAFRVH+fhE9y+56ezUSDAb5xo9Psu/NcVRN4/Yd\nDWxbX5m352g0EmLPjS34fIubX9IZlUNnRnn6tXMcPK33Ffa6rNy0tZb2prKCepsWeiwDA4MVUdTM\n3UKcuxngBkVRpoQQ3wUyOefuXvTF/mb0BK4j6I1ZFqUUnSalpgl0XU+80MWLxwJYTDJ37Wqgocp1\nkY19IWLRJOPjYVKp/Ddh62vcfPLBrXTs9PP9F3roHY3xq9f7OHRmlBs2VVNT4Zwd63HbCUfmm3qW\ncqzVoBTfP0NT4ZSirlLVtBTyfRvnOnc7OO/cndtspR54UwgxAGwGOnPPR9BPFPuAN4GvGAlcxeOF\nQ/386OV+7BaZd97cREPV0rJ3l0pNuZ1r28t48PZWWus8TIaSPP16PwdOjZLOqKt6bAMDg+JSFOcu\n8Lnc9m8Cc5utlKGbeibJU6fHoHCOdozzf554E4fNxO6tFZR7Fo7jXw08Tiu376hnU0uc/SdGUPqm\nGQxEuX1HHZ5L5BMYnEfVVMLJCCPRUcKpKMlsEpNswiyZMMsWymxevFYPJnlBd5qBQVEoinMXQAjx\nMaAFvR0j6Jm77YqiDAghrgF+KYQ4qihK72IHLMXEiFLSdKJrnK/9+AQWs8wfPHYN54anL5nAdUnU\nBBaLitVa+JW6xaLiclpx547lcdtpqfPx+qlRjihjPP16P3ekVLa2Vc6bJ5PC7/fg812+17DQ909V\nVcLhld3Cq6r+msqyTCKTpCfYT29wgMHwCMPRMUYiAVLqhQVu52OWTNS5a9hQ3sL2qk2IijasJsuS\ntXg8S8ufKKXP+VxKUVcpaloKxcjc/RTwB+jF2l5Br9Y5oCiKupzM3VK0nZWKpnMjYb7w3cNkVY3/\n9zdvwmdJcXKBBK58jI9P8cSzI5RVVOYfnGNyfBSny4sm2eY9v621nAqPlZeODbH38ABDgTA3bq6Z\njfy5kmz8oVCQ5ztfwuF05h+8AGk1TU/gHCHChKUY4Uxk3nYZGbfZRbWzEpNqxipbMUsmNDRUTSWr\nqSTUBNPxEAPhYfrDQ7zQ9yoyMlW2Sta5mqi2+QtyqsdjMe7ZcEfB+ROl9DmfSynqKlVNS6EYzl0r\neuLWtcB/RW+3+OhyM3cNFmZkMsaXf3CURDLLxx/cyrWbqunqWr71zO5wLqm4WywaueS2er+Ld93S\nwsvHhznbHySWyHDHzvoFM4BLHYfTictTmL8kq2YJxCcYjY0xGgswmZiavUU2SSaqHX4qHRVU2ssp\ns/lwWVzIkoTHYyccvvTJOjA8hmSGrEtiODrKUGSE0WSA0WQAl8VJe1kbG3ytWJZxF2BgAMXJ3H0X\nUIOeoWsFZi4JP4iRuVsQ+cohTIVT/O0TCuFYml+7s5lNDXaCwSDhcAhNLY0IWI/TysN3buCpfd0M\nBKL86o1+7rn2rdViWdU0ppPTjETHGIkFGI+Pk9V0046EhN9RiUd14beV01rbiiwt/8QnSzJ+p58a\nZxU7q7YxmZimc7qb3lA/RwMnODVxli2VG2kvW4/Z8AcYLJFiOHdna+xf4NydxMjcLYjFyiEk01n2\nHpsgHM+wtcWDpmbY9+Ywbtckfef6cLq8uDzey6D6YqwWE/dc18grbw7TOxzmmTf62b217HLLWjaa\nphFJRxmJjs1e1c+1z5fZfNQ4q6h1VlPl9GORzQSGxzBZ5BUt+gtRYS/jxtpr2Vm1jY7pbk5PdnA0\ncAJlqpPtlVto87UUZAIyMIDVde4uK3O3FJ0mq63JalWpqqrA5Z6/gKfSWX78UhfheIad7VXcek3d\nvC93pb8cWbYsOZomHrUueV6hc8q8Du6/tZWXjgxyonuCfSenuH/3+lV/DS/lmA0Gg1gLLD5qsahY\nHRITmQD9oWEGgsOEU9HZ7W6ri1ZvMw3eGho8tTgsF78W8bAN2WzCkyfSarHti+/DTmXZTnY1buHY\nyClOjCm8PnqY3sg5drfciN9ZDoBMZslO9VL87kFp6ipFTUuhGM7dPcDXgVbgQ4qiZHObJtDbMM70\n3M2Sa9yyGKXoNFltTaHQxVU2s1mV5w4NMjYVZ32Dl+1t5fOSszxuO9FoClnOYnMszbm7nHmFzJmb\nwLWrvZJ0JovSN82ff/MI//M3rsPrLF755wu5lGPW47ERDl86qU3TNEKZCKOJMYYiI4S1KFrumsUi\nW2h011PrqqbWWY3b4po98WYSEE5c/FpEIklMFhnbIjb8fDb+QvYBsNm3iRZnC0cCx+kLD/LEqV/Q\nXrae7f4tpGOpJTnVS9FhCaWpq1Q1LYViOHdnQkOeAOJz5u5lGZm7BqCqGi8dG2ZkMkZTtZtbttZe\ncbfxkiRx4+ZqMuk0XcNRvvjdI3z20V1Frf1/IQs5Zl0eO+oFH3NN05hKTtMXHqQ/PEgkff6q3mf2\n0OhroM5ZQ6WjvOgmm2LjtDi4rf4m2qKjHBo9xtnpLvrCA2zxbGSxciwGVzfFcO5+EqgA3gncKYT4\nvZzdf27mrgx80cjczY++6A/RPxahtsLJHTvqrtiiaJIksXO9l3q/k5ffDOiL/6+v7uK/GJFUlK5g\nL+fC/UTTMUCPvmn2NNDorscclnHYbFT4/ZdF30qoc9Vw37q3cWaqg5MTZzg8/SahsxE+uPV9VDur\nLrc8gxKjaM5dIcS/A08qivKjOfONzN0loKoaLx8fpm80Qk2Fg7uvbcB0BYZEzkWSJB7Z3YTNZuPZ\ngwN84btH+P1Hd1LmtuWfXARUTaUvPEDndA+jsQAAZtlMi6eJJk89da4azLL+NQhEx9ZE02phkk1s\nrdxEi6eJA0OH6Az38L8OfJl7193Dvc13GeGfBrMU4tz1z7HxHwTmpR3mbPxfRL87GAFmFv4Y8D+A\nz6CHe35LCLHTyNy9GKtVxW4f55UTI5wbCVPnd/HA7lYs5sXD9FyupTtpYXWduxdul0lRVeXldx9t\nxOW08eOXuvjS947yl5+4japyx5J0L4bVquIJ23DlHKKpbBplvIs3exQiOQdtrbuKTVUbaCtvml3s\n51KoY3YxVt+5mx8PdvZYbsHr9PJ95Sl+3vMrjgSO8dHrHuWa2s2XnFeK3z0oTV2lqGkpFOLcvQE9\nCes0utnnwjj8LuBD6Pb7uTUAXOg1fG5AN/sMA/cA31zsgKXoNFltTYMjk/zstSGmwmlqK53ctbOe\nRCJNgkun9pe6c3eGuZm777mlmUw6w89ePccf/N3/z96Zx8lxlnf+W1V9X3P13CNppJH06r58YRvf\nNgFvMLcxyWYNIQmQAFlCYHPuhiVkWch+cmxw+ASyBAK5OGzAGIMPbMuWLEuWZUmW9OoazYzm7jn6\nPqtq/6geaUaao+duSfX9fPoz1d1vvfVMdfdTb73v73meF/jMB3ZSW7kwzj8WixOPZ8noJnLkNHLk\nNHkjj6ZqrKtcw/rKNkJu68eaThawkspOpNRF1elYysXd6UgmcmwNtfLHN3yan5z9Oc+df4k/f/5v\nub5+B+9a+5+odE+M6C3HBUsoT7vK1abZMJPjV8f9HdtWxi/uSinbAYqlF8fPS7wXeEVK2VuM4jWB\nFbOy7hqgvTfGI4+eYCSep60pxJu2NKBdoXP6M6EoCu+5ow2XQ+XR3e188TsH+cwHdtJQPbcUCePJ\n6jlOxc9ypu8cOSOPW3OxtWYjO1s2kr+Gi4J5HR7eu/4Bbmzcxb+e+AEH+g9xePAN7ll5B/euvAOP\nY2mm3GzKi5kcfxNW5O33AA+wDyvh/8MUF3eFEG8G/hVoAD4ihHirlHIrsAO4u5iuOQn8kItRvdc8\nhp2yDzwAACAASURBVGHy030dPLa7Hd0w2bgywPUbrzz1zlx4+63WNNZ//OI0/+vbr/LJ92yjrXlu\nhVpyeo4Xuvfy83O/IFlI4VKdbAtvZn1VG07VgcfpIT+J7PJaY2Wwhc9c/3H29uzn8faf89NzT/Ni\nz8vc33ovNzfduNzm2SwxpczxR6SUtwEIId4NvFdK+ZmxBlLKF4EVkyzungS+MS5y91NYOXuuec70\nRPm3Z05xpjtGZcDFr9y9ioGR5DXh9Md4600r8bg1vv2zk3zpX1/jN355EzdsqCt5/7ye56WeV/hZ\nx7PEcnHcmhsRbGNL/aY5ZbK8FlAVlVubb+K6+h080/UCT3c8x7+ffIwnzz3Luzb/EttD23Fpy6O4\nsllaFqL0ohP4R+DdwABwv5TyhBDiIezSixPo6o/zb09JXnjNOiVv3t7Ex96zHbOQ5ulXOi6L3J2J\ngf5uVNVJuLZ0hznX/eZ6rJlKL756op///a39pLM6v/IWwYP3iWmnunJ6nmfPvsSjx59kJB3F43Bz\n//q7uL3xRvafP4Q/GJiVfeMZ6OlHdWiE6+Yu5yyXPpLxBHeuvmXakpejmRiPy6f52ekXyBayhNwB\n7l5zK29pu52wv3rOx7ZZFmY1apzJ8atAlokBXJ/G0vPnpJQnhRC/DvwSltqnC9glpfwlIURD8Xkr\nFwO47phBy2+W46JJqTaZpsnrR0+gjEuaZZgmXYNZXmtP0DFgTTnUVTi5fXMlzTXWzFc8FmUk7yMY\nKj2vTTDgof1sO6qqUR2enTOODPTOer9S9plscTcRj7JzTZDgNPmEuiMpvv7EGUYSOdY1B/m1+1YT\n8jkJBC7mk8/reV7qfYWfn/sF0VwMl+bijuZbuGfl7QRdAWKxKHt7DlwWwDXTQup4xvLszEfHX0of\npWTnnK8dyXiSm5uuLyktcyKXZN/wPn528gWShRQKClvDm3hT4/VsqhE4J1FALRXlupBahjYtaM3d\nUgK4PohVctELZIAKIYSfazCAyzAMuoey+CrCjMSznO2J0d4bI521sljUVXnZuKqKlfUBFEVhpCja\niURHcLj0aXq+csmkUzx/cGTG3P+3balm/8lRTnXH+cJ3jrKpxc1/eetGVK+DF7v3sbt7D9FcHJfm\n4r6Vd15w+DaTY+UuipXc/m0r72SHZxuHh4+xd+BVDkfe4HDkDbwODztrt7KzbhvrKtfYsQBXCfMO\n4MJy+PdIKQ8X27yGtSjcyzUUwGWaJl0DCd7oStF79BzRRA4Al1Nl/YoK1rZUEK5YON36lUQpuf99\nwL03hDjeMcLBk4O8PtjDF3YfIuPvRDd1PJqbe4tKFNvhz0wmlebF6MtUVpU2ZROMX8xpdF3lNtb6\nWzkX62TEiLGndz97evfjVJ2IqjY21gjaKlbTHGgo+5QWNpOzYNk5xzH2TZhT6cUrCdM0ae+N86oc\n4FU5yMColapIVRVW1gdY0xSiudaPNovyd9cqpmkSN0Yw609SVXGClBklCZhpH6u0rfzq9ntoqbly\nUzwvB16ft+SiMpfmNPLjJ6gF2BoSRJRRToyeRkZPc3ToBEeHrMzrLtXFSn8zTb566n11NHhrqfXU\n4FQv3hWML0U5F1wug1jMmlYZP/VnMz/mnZ0T6AH+SgixBhgBWoCeuZZeLMeIuPE25QsGJ84Ns/do\nL3sP9xCJWnO1HpfGrdsa0cwMoq0Z1wxRt+NJB9w4XO5ZR+BeCZG70+2XNTIMZLs5nz7L+cxZ4oVR\nAByKk5WudWwMbeWV/SAHU3zu9de4aUsD996wkl2i7rJUFpdG7k6wqcQI2KslcneufVzaNh2Pcmjo\nENXhalZW1rGyso5EPkV/KsJgepjB9DCn4+2cjrdP2M+tufA7vPidPtQcuB1uqoIVuDQnLtWJS3Ph\nUh04NSdO1TH9XUNxKj2VSHH/1nuXtXbzeMrRT82GhcjOOQTslFKuLDr5j0opk3MtvVhuiybhcICj\nJwc4fm6YI2eHOd45QjZnzcf73A5u2dLAdaKWza3VaCo8ufsI2Uye7DRRt5eSTGRxuFScrtL15ldK\n5O7YfrhHiOlDRPUhRvVBhgq9xPThC+0ciosW51oaXWtodrWRT2V5c2sjv7wlxL7j/Tzxcgd7Dvey\n53AvQZ+Tza3VbGqtZm1LBbWVHpIJK3JXNzWy2Ys2BAIeEonS/s94PIPDpV0Vkbuz7WMym8b6GH8n\n4HOGWF0RYnXFGsCKoxjNxhjNRhnNRknkk6TyaUZzcYazUWunHNb9/xRoioZTdeBUnTi14l/Vuij4\nPB7QFcy8CcefJxwM43f6Cbj8BJx+6+KyxNNNZbq4O6v2C7G4WwOcEkJ0YV0YEEIEgF/hCiq9aJom\niXSeSDTD4GiaroEE7b0xOvoTJNMXnXh9lZctW2rYvraGDauqJtSV1fWrc4F2OgzTIGdmyJlpkhmD\n0VyUtJEkacRI6TGi2hAZUuRHJ+bE13BS52ihxtFIYaSAGw8KKhmSnOEwmUwa1dmB12uti9xzg8lQ\nVON0l0FHf56Xj/Xz8rF+AFQVQl7w+MHtSZNIp9GKyipNy1PQDQwDTEOx/prW3wuvmaDroJh+NA1c\nrjQOh4LTCS6ngtsNLpeC263gdoG7uO1yUXzN2r6W4jDGcGku6nxh6nwTFUimaZLRs3T3dVNQC7j9\nXnJGjpyeI6fnyRt58kah+DdPXre2U4U0ujnudzRuffpY7ORlx1dQ8Dm8+F2+4oXAuiAEihcH6/nE\n97wOzzX5WY1nIRZ3m4APT7K4u6ylF0cTWfa+0Ucub1DQDXTDRNdNdMOgoJtk8zrJTJ5UpkAyU2A0\nkb0wkh9PY9jPltXVrG+pYPOaGuoWKLfMpaTTKVzJ0oNnVHJk0klU1UEqWdroY9QYZMjoJanHUQwF\nd9SLiYmJAcXyIyaG9Zo59o6OToGMmcIwDdQRBZ0CBTNPjiwFctMeU0HFbXqp1GoJKlUElSpCShUB\npZjr3oQzmaMotQrjl5RUt0rBb5D3XPxMKvxwXRPsMiEag75+GBm1tmMxk9Hk2I+5tM9IUUwUxURV\nTVBMHKoBqGSyBoUk6PpsnIOJywma5sXpNPF5k7ic4HSBQwNFufjwuLPk8gU0FVpXgOeS2Zh0Oo2W\nV0nGk5MfqgRm24dKgeQlBWsWwg5XzoHX4aJSrbYmfEtQhhqmQcEskDcKuL0q0USKZCbJ+rq16A6T\nZC5JIp8kkU+RzI9tJ4mkhzFMY8b+VUW9cHHwO314HB4cioZDdaCpGg5FQ1MdOFQNh+JAU1QURUFB\nQVEU/INu0sk8KLCmopW1lavnfH6Wi8Vc3C319fEoCzV3VlsbZN3qpc+r/sH33TaHvTbM8Wjb5rhf\nuXHDchtgY3NNMZMz7sZarB2jhctlmd0Uk68JIRSgsfjapfuumGRfGxsbG5slZibHfxioFkJsK6Zm\n+FXgMSHEFiHE+mKbH2ElbQN4ADgkpUwCzwA3CyGahRAh4B3YpRdtbGxslp1pHb+U0gB+Eys75xng\nGSnlHixH/85is28B2eLi7p8BnyzuGwc+g7WYewT4q6s9ctfGxsbmSmDaXD0zIYS4C/gqlsb/O1LK\nP7nk/Y8DX+Di2vz/lFJ+bc4HtLGxsbGZN3N2/MX5/FNYI//jwEvAp6SUe8e1+R2gQkr5Fwtgq42N\njY3NAjCfyIcdwIiU8qiUUge+jZWa+VKubcGsjY2NTZkxH8ffzESVTheT6/Q/IYRoF0L8QAjRMsn7\nNjY2NjZLyHwSbZei8f8u8HWsXP2fBb4B3Ddlh6ZpXusRdQuNlZ53duHlwaCdDMvG5gpjQfPxT8eM\nGn8p5cDYthDi74D/Nl2HiqKUZQ6McrMJSrcrFovy1L7TeH2lZWlMp5Lcd9Pakgp4zNWmpcS2qTTK\n0SYoT7vK1abZMB/Hf0Hjj7W4+6vAp8YncBNCrANOSylNrIIth+dxPJs54vX5Z8yHb2Njc+0wn/v5\nO7BknK9iJWebTOP/MWBQCGECHwJ+Yx7Hs7GxsbFZAOY04i9KOb8GvI2LUs4fA0gpPzOu6R9jpWU2\ngc9JKU/Ny1obGxsbm3kz1xF/qVLOPwX+Fisbt71qa2NjY1MGzNXxzyjlFEJsBLZKKb9XfGnuIcI2\nNjY2NgvGXBd3S5Fy/g3wiXHP7RF/GZAr6AxHs6SyeUAh5HdSHfSgqvbHY2NzrTBXxz+tlFMIoQG7\nsAqsA9QDO4QQH5BSPjddx+VYy7IcbYLS7HK5DPy+IUaSeQ6fjtDZF8O45LLtcWlsWFXNrg11BPxu\nwuHgnGubluO5sm0qjXK0CcrTrnK0aTbMKVePEELFytPzLqzF3ReBT2ElYxurxTu+/U+BL0spn52h\na7Mc9bHlZhOUbtepjn6+/sQpBqNWpayqoJumsJ+g14mByWg8S2d/gkxOx+lQ2dkW4lfuabN1/IuI\nbVPplKNdZWrT4gdwSSkNIcRYumYP8G0p5R4hxJe5WIvXZhkxTZOnXz3Pfzx7Gt0waQ772b4uTLjC\nc1nbGzaayM4RDp2K8Iocxe3q5OG3bbGnf2xsrlLmHMAlpXxWCPERrLTMHxBCGJdIORFCfBD4E6w1\ngC8KIT4qpTw4H4NtZiab1/nHx49xQA4S8DrY2hpk3aq6KdtrqsKm1mpaagP84tUudh8ZJJ1/g996\n+6YJxeRtbGyuDub8qx6n5X8PsBa4Vwhx8yXNfgysl1KuBj4PfGWux7MpjWgyx5f+5TUOyEHWr6jk\nMw9uojlcWvHxkN/FndvDtDUFOHBigG8+eYL51GuwsbEpTxY1LbOUcqhYxQusKF/biywivUNJ/vyb\nB2jvjXHLlgZ+/6EdVPids+rD6VD5rf+0ltWNQV460sf3nj+zSNba2NgsF/PJ1TOZlv+WSxsJIT6K\nFcHrZprMnDalYRgGiUQcl8sgFru4wNQ7lOaRH50kni7wthubeMt1DaSSceLxGOalMp4ZcDs1fvd9\n2/lf3z7IT1/upMLv5i03rFjof8XGxmaZWOy0zEgpvwp8VQjxXuBzXMzjYzMHEok4T+07TW1tNYlk\nFoDRRJ4XjgyRKxjsbKvA74aXjvYBMBzpx+cP4Q+GZnWckM/Fpx/czhe+/Sr//swpGqq9bGsLL/j/\nY2Njs/TMp/TiDuBrUsobis8/CbRIKT87zT5JIFScGpoMeypoBqLRKE+/0oE/YDnyoWiaR58/Qzan\nc9d1LWxaXTOh/UB/N6rqJFw79eLueJKJGPfeuIqKCkvOeaprhD/4uxfRNJW//ORtrGyY3QXkamEu\ndQ0mw651YLNIzEqCNx/HP6OWXwixEzgspdSFEA8Cn5dSimm6tXX8MxCLRXnxSC/19bV098f42Sud\npLM6t2xpYG3L5dr7yEAvqqpRHS7N8aeScd68tXGCjv+V4/189YdvUFvp4U8fvoGAd/J1g3I7V7Bw\nNsViUZ49/QJen6/kffJGnkQhRVpPkzPyZHMZ1oXbaK6vw8hq1HprqPOGcWqzW4dZDMrxs4PytKtM\nbVqaQiwlavnfB/y4GL17Fnj/XI9nM5FEKsdT+7tIZ3Vu2Fg3qdNfKG7cWM/5wSSP7znHI48e4ffe\nv+OalHl6fT78wakL2mQKGfpTgwykIgykI8RylzsH2XXWWg0roqBQ462mJdDI2so1rK9qo9Ffj6pc\ne+fXZumYzxw/WFMzJqADBlyWlnkAyBSPk8XK228zT7I5nWd2nyWZKbBjbQ0bV1UtWN/WlEbsstfv\n3l5NZ+8oh9tH+acnjvLgHasmvB8IXNkh7HMlb+Q5H+/lXKyT/tTAhblKh6JR76ujwh0k4PTj1lzk\n0jlW+ZqprAnSNzJMJDvEQDrCYGaIQ4NHOTR4FAC/w4eoWMuWKsHa0Bqc6sSfaSBgTxfZzI85O/5x\nOv53UszJL4T4iZRy77hmJ4HrpJRRIcQfAX8JPDQfg691MjmdF98YZiSRZ1NrFVvbambeaTb9p1M8\nf3CEyurL+13T6KFjwMGeNyKkM3namqzR71i5xvr6xbvrKDdiuThy+DTtsU5001qyqvFU0RJops4X\nptpTedmofTA5QGQkgjfoxGFoNDjraHDWQQiShRRDuWEi2WEGs8McHDrMwaHD1gXEU0ujp546d5h8\nJsfda2+fU0oNG5sx5jPiv6DjBxBCjOn4Lzh+KeUT49rvxircYjNHcnmdrz1xmpFEno2t1VwnwixG\ncXqP1zdlqcZ7rvfxxN4ODp2NUhHys7L+2hnpm6bJYCrC8ZFTdCd6AfA7fawOraI1tIKgKzBjH16f\nF38wgHHJT8+PnzpqLxxnKDNMV7yHrkQ33ek+utN9OBSNBk89LdEWdgW329NBNnNm0XX84/gQxSpd\nNrOnoBs88thRzvQkaA57uPO6FpJFOedSEvA6uWtXM0/t7+L5Qz3csaOJ8Mz+7orGMA2ODB/nxcg+\nRvJRwBrdb6heT0ugCXWBL76KohD21hD21rCjdgsj2Shd8W464l2cT/fwjVP/yvc7Huf6+h3c2LCL\nlkDTogwAbK5eFl3HD1BcBF4F/OZMnZZjutPltknXDb707QMcPjPEtrZqtreFUBWFYODyhGuXkk66\nUFVnSW1LbR8MeHi728mPX2znhUO93LWzjnDYOkfLfa4mY642ZfIZftG+l5+cfIaB5BAArZUtbKvf\nSH1g9ndb6bgb1WH9TILB0j4PgBBeVtU2cKu5i3MDneQocKD/CM927ebZrt20hBq5vfUm3rzyBsL+\n6lnZNJ5y/OygPO0qR5tmw3wc/7Q5+ccQQjwAfAS4axr9/gXKUCa1rDYZpsk/Pn6MvW/0s2FlJf/5\nnlW8cryfUAjiicyM+yeTOVRVx+2due1s2ge9Du7e1cwzr57n2YP9VPpdPPyOnUQiiZKOs1TM5fOL\nZmM8f34Pu7v3kiqkcaoObqrdhV/xUV9lyWITidnfbSUSWTSnShiIx0v7PC7Fqwe4u+l63t32Dt4Y\nkuzvO8iRoeP8y+HH+JfDj7Gucg03NOxkZ+02fM7ScjTB8n/Pp6Ic7SpXm2bDfBz/YaBaCLENa3H3\nV4FPCSG2cFHHfzvwReBuKWV5nakrANM0+eefSfa+0U9bU4hPvGcb+Wxyuc26QEONj/tuaOEXB7v5\n/u4uekYLPHjHGioC7uU2bU70JPp4tms3+/sOUjB1Ak4/96++j9ubb8bM6OztObDcJl7AoTrYXruZ\n7bWbSeXTvDZ4mP19r3Fq9CynRs/yHyd/yJaajdzYsIvNNQKHOl8Bn83VxGLr+D8PNAL7x7T8Uso7\n5m/21Y9hmnznqZM8f6iHlfUBPvXgdrxuB/mln9aflroqH/fsCCO7U+w90svBEwPce30Ld+1spjpU\n+nTGYjKW32jS90yDE9HT7Onfz5n4OQBq3NXc1nATu2q24lSdmBndynlUBplKp5Lbbg1sYOvaDYxk\no7w+fJTXho5yaPAIhwaP4NW8bKveyI7qLawKtKAoii0JvcZZbB3/54EvA1uAh6SU35/n8a4JCrrB\n1x8/xivHB2ip9fPp9+/A51n+6M6p8Hkc/M471nN6UOfbPz3OT/Z28MTeDtY0h1i/opLmsJ/mcIBw\npQef27HkC5GJRPyyqNu8kacz1U17spOUngYg7KpmtX8VDZ5ajLzBgb7XL7QfGowQCPmB5V3JzqTS\nvBh9mcqqqefy3bi5qWoXsUKcrlQP3ele9g0eZN/gQXyal3pHmHesfRvr6tcuoeU25cRi6/jPAL8G\n/CF2Hp6SSGcL/P1jRznaPszalgp+973b8Jex0wdrFJpMxLllUzOtVZs5eGqYV+QQZ3tinOmeODp1\nOVQqA04qAy6qg67iXzcr63zUV3mmvCjMd4Q6FnUbzcY4NXqW9mgHBVNHU1TaKlpZX9VGpXtqbXwq\nUT5TbJYkdOoI4jECBGiqbsQwDfpTg5yLdXE+3kN7tou/fuMfaOlo4oaGnVxfv4NaruzFSpvZsdg6\n/vbiewazTCJ0LdI1kOCRx47SP5xiW1sNH3vnFtzOKcVSZcNY0NeZwcKFjKG71obY0hogmswTSxaI\npfKksjqprM5wPMvA6OVzVi6HQrjCTVONh6ZqDy6n5ejHAsTmGrSU03N0prrpHullMG2pc3wOL5sr\n19BW2YpbuzLXJEpFVVQa/fU0+usp1Bc4PdBOvBDnbLKTR0//hMdO/wRR3cbm0Aa2VG7A4yhtis6e\nLrpyWUodv80UmKbJC6/38C9PnyJfMHjrjSt59x1rrqh8OB6vD38ghMFFtYoPqJzEV0cGejFMFbe/\nimQmTzyVY3A0w8BImp6hDD1DGRQFGmt8rGkKEQ6Urk4ZwzRNOuPnebTjELvb95E1rGLzDb462ipX\n0xJovCYDoByqgxqzgqDhoa1uNT2ZPrrTvZwYPsOJ4TM8yk+p99TS4m2kzlOLNsU5SqdSdgTxFcyS\n6PhnQznqYxfLJsMwOHyyh+/8/DQnOqL4PQ4+8Z5N7BJjee+Ny/ZxOg38PhfAsun4p9pntjaFay9P\n8TwSz3C2O8rZ7ig9kRQ9kRQOTWEwbvKWm11sXxtGm+KCaJomHaPn2dP1Knu7DtKfGASgylPBen8r\nW5o2EHTPbY5+TIM/G/39VH3A7HT8i2OHj3BdmFU0AjuJZROcHjrH6eFz9Gb66c3049KcrKlaydqa\nVhoDdROm4ZJxN+FwkIqKxf+9Xks+YalYdB3/OEqa4y9HfexC21TQDY6dG+bnr3RwrMOKBG2s9rCz\nLURnzzCdPcNT7jtWWCUQrFhWHf9k+4Rr5x9b4FBgfUsF61sqiCVzxXWCUV460s9LR/qp8Lu4aVM9\nN29uYGV9ABOTjth5jkaOcXDgMANpKw+gS3NxXd12fmnDbfiTQfb1HoScg3hubvr5MQ2+e476+/F9\nzEfHv5B2jO8jFAywLriWtYE2RrJROmJddMS7OBE5w4nIGXwOLy3BJpr8DdR5w2SSWSKROLnc4t41\nlatmvhxtmg2LquMf11bhGpjjN02T0dGRCVc40zSJJvMMjGYZGM1wpifByfNxsnlrNF8VcHDdhgaa\nwjMv1gGkkuUVILWYhPwudqwLs67RRUttiMPnEuw73sdTR4/xzLk9+GtHIRAhj7Ve4FKd7Krbxq66\n7Wyu2YBLc1JbG+TMmenGIzbjURSFak8l1Z5KttduYWBsUTjRzcmRM5wcOYOmaNS4qsgoWTYU1rMq\ntAKP4+peJ7namK+O/yvAAayi7S9fquMXQtwBPAF4gYeEEGellOsXwvByo6AbtHeP8OSeE2QNF/F0\ngXiqQDxdQL+k5q3fo7GyLkBdEHKZVMlO/1qiYObJGCnihRH60530J3WGq0Zx7ujFNPIA5AEj68GI\ntlBpNrE+1Ma6iirqjACZZIoM4HIZZaPBv9JQFYUGfx0N/jp0YweD6SF6kn30JvsZyEb4efdz/Lz7\nORQU6nzh4qOWWm+YCleQoCtIyBXA5/TiUl1o6sTZ4OniK8a4tLb0ZNiLzLNnvnLO3wZ2cVHOefMl\nOv424HEp5fuFEG8HPj4va8uEbF7n/ECCjv44HX1xOvsTnB9MjHPw1ghUUxVCfhchv4uK4t+akIeQ\n34miKKSScTrPp5fvH1lgdFMnZcTJGmlyZgbdLNA9eIasmsZQDAwMDEUnm0uDYqINODDQMRQDk4vv\nF5Q8hjIuu4cGjFqbAc1HrbuaCkeIABWMpgJ0x50Mjai8ZIzw0pERALweg1DQoKZaQ88NU13jpBkV\nl2vyG0+jeGGYKuFaNpdB1TUymYufl9s9tfz0akNTtQsXAYCh0SHqAmH68hHao530JvvoTw1iuYIp\n+lA0XJoTl+rCqTnRUEnn0jg0J5qioikaKiqaoqIqGg5FI+D1YOQVnIoDp+rEqTpwKk6cqhOX6iSb\nztiLzHNgUeWcwAPAPxS3Hwe+LoTwSynLRxQ9DYZpMhRNc7R9iK7+BF0DCToHEvQOJRk/gHRoKivr\ngzSHvcTjSWrDlYT8LvyepQ9WWkhM0yRv5siaKbJGmqyZJmukyJgpMkaKrJkmY6RIaTFyZCl05S7v\nZDJBzhRhCQoqGhpuxYtTceFQXGgFjUQ0Ro2vgZC3Gk3RrHBBHdKAO5RjTShHqwHJhEY8phGPOUgm\nFPoHHfQPAtRAO3AANM3A7TFwuQwcThOHw8TpNCkU0iiKgtvttiYlTTCLD8NUSMdVUBRcngyGAYWC\nQVXQRFE0az8XuNwKbpeC2w1ej4LHo+D1KDidXNHfg8lwKS5WOprYXLUBilU9k/kUkewwQ5lhEoUk\niXyKRCFJppAhZ+TJGXnyxb/ZQpa8bm0b+uUihgvM4Ck0RWP/4cME3QH8Dh9+pw+/00+g+Nd6fvF1\nv9OHR3NfdZ/HbFlsOeeFNlJKUwjRAzRh1epdUnJ5nZNdo+QKBrphohsGum6iGyaZnE4qkyedtf6O\nJLJEohmGYxkK+sQpAo9LY21zBasagqyqtx4NNT4cmkomk+GZfafwVyzP1I1h6kQKPRTMPCYmJgZR\nZRgFhVh2CBMD0zQx0NHNAgUzR4ECBTNPwcyjm3lSapy8kqMwkidrpjEnURZdihM3brzUuhtxmG48\nig+n6saBk5HoAFpAQ0VDLY7oMqk0muLA7wsWX7Nen+zHmCmkyGZOEwhV4nVPf149HqgJAxgk4lH0\ngobTVUVvV4xcwYFpesmkIZNWSSUvFaHNpJK5/P3IAFhXoenRVPB4FRyaF48bTrYn0DQDp0NBc4BD\nA01T0DTQtOKCmGJdLIJBhcqK8pvGmCmC2ImTKq2CKq0Cppj+HxqMEKjyU1VTg2Ea6KZuPQxru2AU\ncLgVoomkdeHQc9bFQ8+TM3Jk9RzpXAYTk77kAPniFOBMaIqGz+m1LgQOHwGnD5fmLt6NOHGO++tU\nncU7EBVFUVFRqEz5SMSz1nNFRUFBVZSiPFih1ltNna92jmd2aVhqOeeyfYOffKWTx3a3l9w+5HOy\noi5IU12AKr+LVfUBVtQHCVd4ppwOUFUVt5JFyU6typlANoGhZ0glS1cIZNJJVNVBMhEjdUk+5Gy8\n+AAAHRNJREFU/i79JIcLL07cYexTKfUeSwXNdOA2vVQoNbgUDy48uBUvLjy4FGvbjffCe6NDg6iq\ng5aapgsBXBeuF0mFTDI14RCFeAFDMckFJrlDuOz/TZFNpoi7o+j50n7YUFwEV1TcLhO3awCvRyVQ\nYU0HmCYYhkKhoKIXVAq6SjqVBVRcLhdmUYegKGbxAelkHE1V8AV8KCoUCjnWNFfi8XgwDMjlIZ+H\nbA5yOchmIVN8WNsm8bRKNKbQPzjz/z2Gppq865etiwdAOp1Gy6sk43O/aZ6sD5UCyXjpiaDS6TSa\nY/4/53Qqjds98fuhAA40HGgEvW4cisv6Hk/iYcbHE+T0PMl8kmQ+ZT0KqYnP8xOfx7Nx+pMDmAuc\nVMDr8PCl2/6srONEFlvO2Q2sAA4X1wQagZ5p+lQWSx/74Xdu48Pv3LYofY/nA++5a9GPMTU3YImr\nyokbltsAm2uKudcjuJaYzyXpgpxTCOHE8jiPCSG2CCHGlDs/Ah4ubj8AHLpS5vdtbGxsrlbm7Pil\nlAZWRa3vYSVje0ZKuQfL0b+z2OxbQFYI0QX8GfDJeVlrY2NjYzNvFjst80exRvoxIAzcBpyY5zFt\nbGxsbOaBMtfAluKc/SnGpWUGPjU+LbMQ4neACinlXyyArTY2NjY2C8B85vgv6PiLtXTHdPyXcm0L\nZm1sbGzKjPk4/sl0/M2TtPuEEKJdCPEDIUTLJO/b2NjY2Cwhi63j/y7wday0Kp8FvgHcN2WHpmle\n6xF1i41Vs7W0uIFg0M6BYmNzhTArx7moOn4p5cDYthDi74D/Nl2HiqKUZbrTcrMJ5m5XLBblqX2n\n8fqmj4KdS9WrcjxXtk2lUY42QXnaVa42zYZFTcsshFgHnJZSmsAHi/vYLDNenx+f/8ouJGFjYzN3\nFlvH/zHgfFHH/07gN+Znro2NjY3NfJlPWua7gL/HyrX4LSnln8BEHb+U8veEEE9jZeZ8WEq55MnZ\nbCbHNE16h1J0DSToH04VM0xadQLWNF1eEtHGxubqYU6Ov6jh/xrjNPxCiJ+M1/AX23mBPwB2z9dQ\nm4UjmSmw90Q33YNW9gyHpqAoCiPxLH1DKQ6eHGTr6hC3brGLl9jYXI3MdcRfSi5+gD8F/hb4MLae\nvyw40xPnqYODFHSThhof29pqqKv0oqoK6WyBM91RjrYP89rpKLn8GX773dvxuucb4G1jY1NOzHWO\nf0YNvxBiI7BVSvm94kv28HGZOXxmiK/++BS6YXLzlnruu76Fhmofqmpdk71uB1vW1PDAra3UVbp4\noyPK//n3QyTSpadDtrGxKX/mOpQrRcP/N8Anxj0vacS/WGmZ50M52gSzs0t2DPPIo0dAUbhnVx1i\ndcOUbYMBD2+9sYmzfWlePNzPX3/3MH/x27fi905ROmuONi0Vtk2lUY42QXnaVY42zYa5Ov5pNfxC\nCA2rFu+TQgiAemCHEOIDUsrnpuu4HPWx5WYTzM6uSDTNn3/rVfK6wW/ev5bhWIp4IjPtPql0jnff\n2oymajx/qIfPfW0vn3pwOw5t6pvEcjxXtk2lUY42QXnaVa42zYa5Ov4ZNfxY2TgBEEL8FPjyTE7f\nZuHJFwy+8oOjxJI5fuXedWxaFeLFI6mZd8QqPP5rbxHEkjleOxXh/z1xnN/85U3XfL1SG5srnTnN\n8Y/T8P8ESAECuJ+JGn6EEB8UQpwG7gC+IoTYNW+LbWbF958/Q0d/nDdvbeTe61fMen9VVfjIA5tp\naw7x8hv9PPFyxyJYaWNjs5TMJxHLL4AssBOoAe4FfiCl/NK4Nj8G1kspfVi5er4yj+PZTINhGMRi\n0QmPfUc7+fn+Luoq3bz9TfXEYlHi8RimMfM6u5XTJ0YsFiWTTvDwfa1U+p384Pmz7DncceEYhjFz\nMXYbG5vyYj46vRklnVLKoXHtXdjKnkUjkYhPyMGTyek8dXAQVYGtq0PsP2GlTRqO9OPzh/AHpw/S\nyqRTPH9whMrqmguvXbe+gudeH+KffnaWu7aHcSm5WefzsbGxWX7m4/gnk3TecmkjIcRHgT8G3EyT\nmdNm/ozl4DFNkz3Hz5PNG1y/oZbm+osFqFPJRMn9eby+CTl9fH64dauTF17vZe/xUe7aXjPN3jY2\nNuXKfKZ6SpF0IqX8qpRyBfDbwOfmcTybEjl2boSeSIrmsJ+Nq6oWtO/WxhDb2mpIpPO8fHwYXbdv\n4mxsrjQWNS3zeKSU3xNCfFMIoRUrdk1KOepjy9EmmGiXy2UQ8A+TzBu8djKC1+3gLW9ahc8zUXuf\nTrpQVSfBgGfavqdr9+YdzSTSBc72RHnyYB+ffOjionE5nivbptIoR5ugPO0qR5tmw2KnZd4JHJZS\n6kKIB4Hz0zl9sHX8pXKpXbFYnNFYmmcODWGYJrdubUAv6MQTE093MplDVXXc3ul1/DO1u2lTHUOj\nSZ7a30Nj9Qnu3NlcludqsWwyDINEYm79hsNBIpGJ+wYCy1v0phw/OyhPu8rVptkwZ8cvpTSEEGNp\nmT3At6WUe4QQXwYGgS8B7wN+XAziOgu8f67Hs5ke0zQ5cHKUeCrPptYqmsLTF1qZL06Hyi2bq3nh\nyDDfeeokDdW+K34UNBsSiTjPnn4Br883632DcTfxePbC83Qqxd1rb7cXyW2WjPlm3zKLDx0wYGJa\nZmAAyBSPkwUi8zyezRQ8e6if85EMdVVedq2vXZJj+j0Ofv2ta3jkR6d45LGjtLVWM3NSh6sHr8+H\nPzj7C6w/6MGY90/PxmbuzCcffympmU8C10kpo0KIPwL+EnhoPgbbXM7Bk4M8/nI3XpfKHTuaLiRd\nW2wMw6AuaPLe21fw78918id//xIff8c6Kvyuy9ou91RGOTMWM7GQ2OfbZjoWW8f/xLj2u4G3zeN4\nNpNwvGOEr/7wDZyays2bqpc0hfJ4rf+mlUGOdcb5P989zp3bwricF53OXOr3XomYpkmqkCaZT5HV\ns2T0LHk9j4GJYRqAiaZo+JJu8jkDTdFwqg5SsSTdI91UV9TgVJ04Fce80mLYU0c2M7HoOv5xfAgr\nktdmgTjeMcLffv8wpmny4fvXMjiaXHIbxrT+120MoLncHDkdYe+JUe69fgVOx9U74jRMk1g+Tu/o\nAJH0EKPZKLFcAt2cVrswPQMXN52qE7fmwqO58Tg8eB0ePA4PPoeXkCtA0BXArbnn/4/YXJPMx/GX\npOMHKC4Cr8LK7zMt5bhAuJw2WdMAlysIntp7ikcePY5pwsffs4n1TS5eOZEnMA+Z5mzbXdrmtu1N\nZHMFTnaO8tKRPt52SysOTUUlRzgcpKJiec7jQn1+qXyaw33HOdBzmIPdR0nkL15oNVWj0hOi0hsi\n6PLjdXrwONy4NReqqqEqCgoKuqGjmzq6YVAwCuSMPMMjIxTQUV0aWT1HrpAjq+fIFrIMZUcwM5PH\nSrg1FxWeIDW+Kur8NdT5w1R6QqgU5nS+y/G3B+VpVznaNBsWXccvhHgA+Ahw10xSTrDlnJcSi0Un\npGIwDJOjHXFOnk/g0BRu2VRNd98IR45aqRhMZfpR4ELJOSdrEwx4uHFDHcl0ns7+OI/vPsudO5vI\nZrJEInFyuaW/A5jv5xdJD3MkcoyjkeOcGj17YUQfcgZY4W2iIVRPrbeGkCtY2vSMCsGgh3j84nn1\njXrRnCrV4fBlzU3TJKtnSRcypPUMqXyKeC5JPBcnnk8SSQ4zkBzi+OBpwLpTqHSGGEok2Nm0jeZA\nY0l2Lff3fCrK0a5ytWk2LLaO/3bgi8DdUsryOlNXEGOpGEbjWfYc7SMSzVARcHHbtkaqQ9Zoezap\nGBYTVVW4c0cTz73WQ3ckyS9e6+EmceUUb9cNnY54F0cixzkSOUZvsv/CeyuCzWyt2cjW8CYqzAAv\n9746J1XPbFAUBU9xmmeyGGzDNBjNRhlKDxPJjDCUHmYwO8ST3c/yZPezhFxBNlavZ1P1ejbVCHzO\n2ctPba4+FlvH/3mgEdg/puWXUt4xf7OvLfIFg4MnBznWPoxhQmtjkPtuXEU2W54lETVN5c6dTTx3\nqIfuwSR79AK3bJ664tdyM5IZ5fjwSY4Nn+TE8CnShTQATtXBlpoNbAlvYmt4I5Xui4ulsVh0ucyd\ngKqoVHuqqPZUsa742tDoMJW+EO2p85wYPsm+vlfZ1/cqqqKypmIVW2o2sjW8kXpfnV1b4RplsXX8\nnwe+DGwBHpJSfn+ex7umSGcLPPtaH0/uHyBXMPB5HNy0qZ4VdQFcTq1sHT+Mc/6vWc7/a0+c5nff\nt3PZC7frhk5Pso/2aCfnYp20xzoYSF0ML6n2VLGrbhtbajawoXodLu1yaWq549Hc7KzZyh2r34xh\nGnQnenlj6ARHI8c5M3qO06PtPHbmCWo81WwJb2RrzUYqq7ctt9k2S8hi6/jPAL8G/CF2SuaSGRhJ\n8dyhHna/3kMyU8ChKexYF2ZTa9W0pQ/LDU21nP+zB7o4eT7O//6Xg3zqfdupCJSmRunq7aIn2jOn\nY+umQbyQIO/M0huPEC3ESZtZhnIj5I2LF0yP5mFTtWBTjWBT9XrqfLVX1ShYVVRWBJtZEWzmra33\nEM8lrIvA0AmOD53k+fMv8fz5l/jaG242VK1jS80GNtdsoMJ95UzP2cyexdbxtxffMyix2Pq1SjSR\nZf+JAV45PsDpbmsaIeB1cv+NTThUg8rKK1OTrakqN2+qonc4z95jEb7wz6/ye+/fQUP1zHPNiXSC\nfHD68YJu6ERzcaLZKNFcnFguTiwbJ5FPYl4y1tBQqfOGafE3sTLQzAp/M7WeMOqYo9cpOZAqHo9h\nmuU5lpkpIGyTfx2b/OsotOh0JLo4Hj3F6fhZXh88yuuDRwFo9jWyoXIt60JrEHXrcDmuvDsfm6lZ\nSh2/zSWkMnkOyEH2HevnROcIpmldHTesrOT27U1cJ+pIp+K8eKR3uU2dF6qi8OAdK6mrDvLDF9v5\ni39+lY+/eyvrV1TOqh/d0BnOjhJJDzOUGWY0GyWRS1x2K+lSXdR4q6lwBakNVuE2vTjyGoN9A7RW\ntQKQzxU4m+vgLHMrJTk0GCEQ8gOBOe2/mGRSaV6MvkxlVfXMjYEarYrWFbfQOzJMf2aQ/swgPak+\nulO9PNOzG4d0sCrQQmtwBasDK1nhb8alzT05hx1VvPwsiY5/NpSjPnYhbTIMkwPH+3l6fyf7j/VT\n0K3ShRtbq7ltRzO3bm+6oNQBiEYh4B/GP4mefrzGfiH1+aW2m6zNZO1VctTWhviNd61gRWOIR773\nOl/+19f40Ns388Bta6acWjk/5OJsepTz0V76EgNEUiPFCFgLl+akPlBLlbeCam8l1d5KKj0hPA73\nZX0m4wn0XJaGpoUpHqNSQHVoBIPTn8epGL9fOu6eV1+XYvXnI1w3u/91bTDAWlYCkCvkOB/r40zf\nOSLZYc7Ez3Emfg4AFYUqTyW13ipqPFWEvVX4Hd6SpshSiRT3b713VjEGV7tPWA6WLB8/Jc7xL4c+\nNpvNkkxNHvUargkSGbJscjocBGcoWThVut5c3mC/HOK5w/0MjlqZGRuqPVy/voada6uoCVnz3iOD\nEUYGL+4Xj8eIxzMYTLzVDgY8xBMXteALqc8vtd1kOv7xNo2RSl7U8e9qq+H3H9rJV3/0Bl//4VH2\nHenl4bcKqkMeTNNkIDXIseGTHBuWnBw+TaGom1dQqPJUEPbUUOOtJuypxu/0XeZsChlIcDHz5Zhm\nPhnPks7kJujn50MikUVzqrjn0N+lOv759LVQtl1qE0Ctsw4csN67Bn9ViEh6iIFUhMF0hOHMKEOZ\nkQttPZqbsLeaGk81YW811Z4qHOrl7kU3tVnFdJSrZr4cbZoNi6rjH9dWoYzn+E+1d9I1PPl1KeCP\nk0hajsRlJrnn1p3T9nVp7dtsTud0b5IzPSlyBQNFgVX1Xup8WSp8Jh6nyfGO4Sn7K7VG7pXEhlVV\n/I8P3sD/+8kxjnT08affPcGqdRnijh6GxzmTamcltYEwjX4rSGoyR2KzNLg1F82BRpoDjQAUDJ2R\nzCiRzDBDxam384leziesaUkFhUp36MJFusZbTdBZftNi1yrz1fF/BTiAVcLx5Ut1/EKIO4AnAC/w\nkBDirJRy/UIYvpAoijJlXnWf34NuWqdJzeVK6s/r81PAzbFzw5zpjqEbJi6nytY11YiVVfg8DiID\nvaiqNqGm7WSUS2DWQmGYBl3xbo4NnURZJ/HVdWBi0lEAsk5avOu4ddVWttZuoK+nlyF3eejlbSbi\nUDVqfTXU+i5OJ6XyKYYyI0TSw0Qyw4xkRhjJRjlNO2CtvVQ6Q6RIsyG/nlWhFjugbJmYr5zzt4Fd\nXJRz3nyJjr8NeFxK+X4hxNuBj8/L2gVENwx6IinO9cV47cQw/VGDVLZALq+j6yaKouDQFPxeF163\nht/jIOjME6qKEK70EK7w4HFdPH25vM75wSRHz/Sz+0iEoZh1kQh4nWxqraKtueKqTlo2FbpZYKjQ\nx9MdJ+kvRGiPd5IspADrFrDZ30Srr5XB80GOHIFThsLAawUGtg7RWFmApSktcM1gmibZ7OVTQA6H\nSSYz8XW3e3ZrDj6nD5/Tx4pgM2BJai9EFRfvCgayEZ7ueYGne14AoMZTRUuwmRWBJlqCTawINlPh\nCl1VktpyZFHlnMADwD8Utx8Hvi6E8EsplzSNZL6g0zuU4lxfnI7+OB19cboGEuQLxoR2LqeK26nh\ndiqYQKFgEBlNY4yT7e07dfjCttul4XKo5AsGmdzENEQN1T7Wr6hgZX1wyfLjLyemaZIoxOjL9RIz\nhojpI8T0IUYKAxjo1j0g4MFHi7qOWrWZsNqEq+CBGFSEoGZzHEP18Yoc4omXLbVNZYVCS7NGXa1K\nfa2G13v1n8vFJJvNcKx9EJfLha5DLquSyajohSzJpEkuq6IbCnrBJOgzwfTg9ZpUV+fx+RQCAYVQ\nUMHnVWZ0zpqiUuOxFoDXV7UBMDw6Qn2wlv58hM74ec7HeybISAH8Th/1vlrqvLWsqWvBb4ao8VRR\n6a4g4PTbF4UFYLHlnBfaSClNIUQP0AScmsdxSaTzpLIFdN0gXzDQDbPofAvEknliqRyxZI6BkTQ9\nkSSD0TTjJdeaqtBc66e1IciqhhBGdhTDEZp0RB7wuxkYSpLM5EnFR6mtrSUymiYSzRBL5sjrBg5N\nJehzUl/to7HSSTSZpqZqdlLF5SJjJCmYBUwrazyGaWBiEmMYBYVCPkvBzJM3cxTMHAUzT8HMkTOz\nRNUhckqG/GiOjJHEGJl48VNQqNBq8edDVFLLqqoN+NTpk5m9eWsj7793AwdPDvLsq2do789y9Fjh\nwvvBgEJFhULArxIIKPh9Ci6XgtMBTqeCQwOluKJkXW91UimDTAZyOYX0FJkuZxtemM0qqAak0tPs\nOMVbqmqQSl0cdGSyCqquXHhtWlNmOJyuQzSugqKSyeuWc8+ZpNLWI5EwGRqtJJvVyOemd6DWLKPl\nIto7J0aJa5r1WYSCKsGAgser4HUreDzgcilompW3SVWttpoKPp+CW3OxsXIdN4Wut2w2TaK5GOfj\nPXTFezif6KYn2ce5WBdnox283HdgwnEdikalu4IKd8i6w3B48Tm8eJ3eC9sO1XHh4VQ1a1uxnmuK\nWvz+WdlSFUUpLj4qqIpChTuEqlz9d+ZLLeec9xk9dX6UL37nIKXGzgR9Tta1VNIU9rOyPkBrQ5Dm\ncGCCkz9xMsPZ3giTJUDQdA9kM/gVqKmC6zdVAlM79Xg8xsvHRkglp1/1z6STqKpjzu1UcqSS2Rnb\nTddfr97OwcIvJm849s2YrjsVMBU8ho+gUkXIWYlHDxJQKggolfiVEJriYHi0H1V1oHgV0ky9ZpFO\nJS8EHm1a4cWhuzgXH2I0pjEcUxmOaozGNM4nFIoZQkpgbPpCAerZ83K6xP1mYiw521z6u3Sfsb4W\nRtUDY/Pm2Sne13C5dAIBHZfLevh8oGpZXE4DVTPIF3KIlWFGR1LkdQcOZwXpDCRTkEhAIgmJpMlo\ntPQrZttqk83rUhNeUxSFSncFle4KtoQ3XnhdN3Qi6SEyziSn+joZyYwyko0ymokymh3lbLTjsgC9\nhWBn3TZ+Y8t/XvB+y43FlnN2AyuAw8U1gUZguhh8ZSZZUm1tkB/tXDF7a6ftcwe3LWB/O3ZsWsDe\nFpMbgAeX24gpaWtrmbmRzVVLQ3GAdX1z+eURutJ1/PMZgV+QcwohnFhyzseEEFuEEGPKnR8BDxe3\nHwAOLfX8vo2NjY3NRObs+KWUBlZFre9hJWN7Rkq5B8vRv7PY7FtAVgjRBfwZ8Ml5WWtjY2NjM2+U\nck00ZWNjY2OzOFz9y9c2NjY2NhOwHb+NjY3NNYbt+G1sbGyuMcoi65UQYgXwDUBgiY//Skr5leW1\nykIIoQJ7gLyUciFVn3O1pxb4RywtZgp4j5Ty0DLb9FEuLtxL4NeklEuaZKgYOf4WoF9KubX4Wgj4\nN2ADltT4fVLK/ql7WTK7vgg8VGxyAPh1KWVpFWAWyaZx7/0O8H+BtVLKs8ttkxDis8Anik+/LqX8\n3HLaJITYiPX7CwIF4L9KKZ9fQpsm9ZWz/a6Xy4jfBP5MSrkCuBn4g+IJLgc+ApylfEpHfhXYI6Vs\nBLbBHCuJLBBCiCrgfwJvklJuAmLAh5fBlH8A7r/ktd8Hjkgp1wDfxbJzqZnMrn3ARillKzAE/FEZ\n2IQQogFLkXfysj0Wn8tsKub3eg+wuegbvrHcNgFfAP6+eCH4NPDXS2zTVL5yVt/1snD8UsrzUsoX\ni9uDWKPGxuW1CoQQdVgRTn9HGaSVLv4wb8UqYI+UMimlHJl+r0VnLOW2TwihYWVi7V5qI6SULwCj\nl7z8APDN4vY3gXctqVFMbpeU8lEp5Vj47otYqU2W1aYiXwb+mGUY5Exh08eAPx+7G5JSdpaBTQYX\ny64FWeLv+hS+solZftfLwvGPpxj8tR5rVLTc/CXWD0GfqeESsRboBL4phHhDCPGPQohlzWsrpRwG\n/hA4jfUjcEgpv7ecNo1jfK6oGOAsBhuWBcVo9oeBH5eBLfcCKSnlK8ttyzjWAW8SQrwmhNgthLh+\nuQ0CPgt8WgjRiXX3/V+Xy5Cir1yH5Stn9V0vK8cvhKgE/h34zeWO8BVC3AUYxaC0ZR/tF3FgpcF+\nBNiCdUH67HIaJITwAx/CmltsBvJCiI8tp03TUG4Fgf4c6JFS/sdyGiGEcAGfZ+KUUzmcJwdQJaXc\niTUAW9bzVOTDwF9KKVcCvwV8ZzmMGOcrf2uK9bRpv+tl4/iFEB7gMeBvpJQ/W257sObP7hVCtAM/\nAK4XQjy2zDadB/qklHuklGbRrh3LbNMtWOm5z0spdazP8M3LbNMYY7miEEJUYFWGK62aziJTXES9\nHvj15bYF64LdBhwoft/bgF8IIdYur1mcB74PF6ZdfMXPcTl5GGsOHSnlj4HtQoglFclM4Stn9V0v\nC8dfnBv+D+BJKeU/LbM5AEgp/0JK2SKlXI01X3ZASvnOmfZbZJtOAxEhxJjq4S3AkWU0Cax03LuE\nEOHi1MUvAceW2aYxfgR8sLj9Qawfy7IjhHgI+C/Au6WUhZnaLzZSynYpZZ2UcnXx+34GuLP4fVtO\nHsP6jiOE2AlkpJTLXZKtk+KCb3FWoGspP8NpfOWsvutlkbJBCHE38DQTF0o+LqX84TKZNAEhxJuA\nL0kpby8DW27CUht4sBLlfWippZOT2PRprIU4AzhUtGlJp+qEED8A3gSEgX7gv2ONFv8Na1qsA0vi\n1rfMdv2P4sPHxTzML8j/384d2iAUQ2EY/SdgGNZgBGZgBfZAIRkDBR5F7iB4RA3iGUzfS+45tuYm\nbT7RNK06rjjTuaquP+vvJIfJzzmX9u+W8d/XPuO12KmqHivP9EpySbJL8sno1HPiTIutTHLPH2d9\nE+EHYJ5NXPUAMI/wAzQj/ADNCD9AM8IP0IzwAzQj/ADNCD9AM18E1DFkGbo9RgAAAABJRU5ErkJg\ngg==\n",
"text": [
"<matplotlib.figure.Figure at 0x7f1c859a1208>"
]
}
],
"prompt_number": 4
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"observed_sim = np.c_[sim_sample_dist1, sim_sample_dist2]\n",
"\n",
"# just a symbolic shuffle, because we should not know which sample is which\n",
"# `is_from_true_dist[i] == True` iff observed_sim[:, i] was drawn from true_dist\n",
"_shuffle_map = np.arange(num_samples)\n",
"np.random.shuffle(_shuffle_map)\n",
"is_from_true_dist = np.r_[np.ones(num_samples // 2, dtype=bool),\n",
" np.zeros(num_samples // 2, dtype=bool)][_shuffle_map]\n",
"observed_sim = observed_sim[:, _shuffle_map]\n",
"\n",
"fig, axes = plt.subplots(num_runs, 1, sharex=True)\n",
"for i, ax in zip(range(num_runs), axes):\n",
" sns.distplot(observed_sim[i], ax=ax, bins=40)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEDCAYAAAAyZm/jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXeQJFed7/vJLG+7u9pOm5kee8aKkYSQBQkh3D7Q4pe7\nnhuPgEfwNpb7HjeC5caL3eXGxg3gxt7dB/tYb1gPAi1GICSEBDIz0kgazUgzOuN6Wu27qk15n/n+\nyKqe6p42VT3Vrvp8InoqK/OcrPOryjmV9Tvf8z2aaZooFAqFYvugb3QDFAqFQrG+qI5foVAothmq\n41coFIpthur4FQqFYpuhOn6FQqHYZqiOX6FQKLYZ9pUKCCHeDnwDcAL/JKX8bwuO/zbw3wAbEAY+\nLaV8qXTs48B/x/qC+aqU8s/q2nqFQqFQ1Myyd/xCCA34S+DDwD7gASHEnQuKfR84IKXcDXwJ+Hqp\nbgD4KvBW4E3AfxFC9Na3+QqFQqGolZVSPceBGSnlq1LKIvCPwIcqC0gpp6SURumpEyjPCHsAeFZK\nOSaljAMPA79cv6YrFAqFYjWslOrpAYYrng8Bdy0sJIT4NPBFwAW8s6LuyIK6PatuqUKhUCjqwkp3\n/Av9HGyLFZJSfkNK2Qd8BviDJeqqgWSFQqHYBKx0xz8CVOble5n/C2AeUspvCyH+XghhK9W9r+Jw\nH3BpuRczTdPUNG2FJikUCoViATV1nNpyJm1CCB24CHwQOA88DXwOiAE5KeUFIcTNwBkpZVEI8THg\nS1JKURrcPQ/cDsSBl4F7pZRLfnEAZjgcr6X9W4r29gAqPgvDMEgk5pf1+wPo+ub9YdjIn18jxwbb\nIr6aOv5l/5eVBm2/DpwC0kBeSvks8FvAB0rFvgxkhRAF4M+B/7O03wR2AIPANNYXxXKdvmIbkUjE\neezkJZ4+O8bTZ8d47OSl674IFArF2rBsqqck5/wMcAvW3fszQog7pZSfryj2x8BHpJRRIcTvAf8Z\n+Enp2BUp5f41aLeiAfB4fXh9gY1uhkKx7Vgpxz8n5wQQQpTlnM+VC0gpH6ko/wvgvfVupEKhUCjq\nR13knBV8AmtCV5leIcQlIIqV+394Va1UbGu24niAQrGZWanjr0rOCSCE+CSwC/hkaVcK2C+lHBZC\n3AT8WAhxWkp5dbkXbG9v7J/+Kj4Lp9PA75vG53cDoJOjrS1AU9P19aPRKD85MYTX6wMglUry4H2H\nFy271jTy59fIsUHjx1cLdZFzCiEeBD4FvL00w7c8MDxc2j4jhHgGy7rh6nIv2OAj7yq+ErFYnEQy\ni0EGgFQySyQSJ5e7/i4+FotjmHYMnAAY5tJl15JG/vwaOTbYHvHVwkod/xmgWwhxFevu3wl8VAhx\nlGtyzj8FPg1MAN8RQnyidJffhZXv/2KpXhD4Qk2tUygUCkXdqWXmrq1iX6Wc8+1AsrR9G/BSaftW\nLIM3L5ABsqVHheI6DMMgHo8Ri0Xn/gzDWLmiQqGomWpUPaNSytsAhBCfBT5UKeeUUh4rbwsh3gr8\nUempE/iOlPJjpWNfxTJp+3r9mq9oFDLpFE+9NENzqBWAdCrJO2/fRzDYtMEtUygaj7VU9SiTNkVN\nuD1epetXKNaBtVT1rMqkrdFH3lV8FgtVPemkE113EFhE5VOLAmitaeTPr5Fjg8aPrxbWTNXDKkza\nQKl6tjI3oupJJnPoehGX53qVTy0KoLXkRj+/hfMRymMYlfMRNmp+gro2tzYboer5HFZe3w68C3io\nVPcE8F0hxChgACHgQE2tUygaiLI/kac0H2E6MoGu29W4hmLdqYeq5+NArvT350KIp0r7E8A4lpqn\nCPxXZdKm2O6U/Ym8vgBuj29uXMPrC8x9ISgUa009VD23l459E3hYSvlQRf2EMmlTKBSKzUW9VT0L\nUV49im2F8hVSbAXqpupZhFV59SgUW5mFeXyVt1dsRuq69CIVXxSr9eppdMmVis+iUeWcTqdBe3sI\nnz8IQDLhWjKO5WLeCNS1uX2oRtUTKt2xnwd+DfhcpaqnoqxGxbqPJa+elJQyJoTYi5UiWtGrp9El\nVyo+i0aVcy7X1lpiXm/Utbm1qaucU0ppCCHKSy/qwAkp5bNCiK8AYeDLQojfxVp+0QE8KIT4/ZKN\nw2HgX4QQrVhyzn+RUq6o41c0LpX573g8hmlYPxCLhkEsVSSZKzIWnyabK5LNZZmKF2kOTOPQi4Sj\nWTodXtxO25yvT5nNnEOvbGtlzArFRlKPpRf/A3gc627+ISnld0r7XwDyWBO3EsDLQoheJencvpTz\n326Pl6GRCaJZJzPpWSLRDMZch5icK39xJLngDFO4nTYCbo2zl8Ls6gnhJMu77ti/aXPolR5E05EJ\nvL4gvkBwo5ul2ObUY+nFgdIxg4pUD/AA8KyUcqx0/GGUSdu2Jp0tMjoLVy9MMxM3gAwa0BJ04XMa\nBD122ttacDtt5LJpbtrbhs3uZiw8y6kLEZJZk9l4lnCsQDgGFyfCuBw6k4kBbjvczZH+EF73Spf0\n+uN0ecDmIY+bWKqIHs+CBqmsgce1OX+pKBqbtZRzdqNM2hRAJJrmB88O8txrY+QLJpoGnU12ukMu\nDuzZgcthIzI5hq7bCLVZucpUskh/p49gsIm+Vhu5fG7OwG1oeITphEE8Z2c0nODUhWlOXZjGpmsc\n6GvmTfvaOL6vlY4W77rFaJomM/EsFwajvD4UJ5GNMxvPkkjnKBQBZitKx+bVdTnieFw2/G6ddA72\n7yzQ3xUg6HOuW/sV24u1lHMuRJm00XjxWTlsK28fjUZxOiEQsHLukdk0//74BR57fpBC0aS92U1f\nu4ebDuwgGZtE1x20tZRkjwsULhgZHA4Dp9PA4TDweZ34S8faWtx0tDpoa+8gEY+yr6+V828keP7c\nOOcHZzg/OMO//vQivR1+3nK4izcf7uTAzhYcNm2urWXKba2W9vYAqUyO85cnGJpM8MZEkqGJBEPh\nFMl0fl5Zh13H57LhctoI+r2YxQyapuP2eDBNiMcTZPIm+aJGIp1nNmEwHBmFk6MA9LZ7ObKnhSP9\nLRzc1YTbaUPX9UU9fmqNY6nYGplGj68W1kzOiTJpu45GVBbEYtE53brf5yIcnuYtR3fx81eneer0\nCIWiSUeLh1++ezeHet08+9o4RrF4naJl4fNIZIbvPj4+Lzduaq7ryqZSOQJOeOCWHh64pYeZeJYz\nlyO8cmmKc1en+c6Tl/jOk5ew6RrdrR50CrQ1e/C67NjI8r679xNqaZkXk2maZHJFkpk8U9EMEzNp\nJmfSzCRzXB6eJTyTvu6OqL3ZxaGd7bQ3OYgm0nS2NeP3OJgKj5d+yXRU/Kpps2KczM8dM02TyPQs\n3W0BwrEi8o1pLg7HGA6nePTkCLoGrX6d/h1B3MRwORx19fhpxGuzku0QXy3Uw6TNAfw18EHgbiHE\nOSnl6yiTtm1D2X9Gs9u4MF7gJ6fPki+atDW5ef/d/dx1tAubrhOLRWs6b9nHJpVMVF2nJeDi3uM9\n3Hu8h1y+yOtvzPDqwDRXRmMMjscpGiaD4dxc+SdffRmHXcdu07DbdEwT0tkCxSXUNz63nb3dfsCk\nPeSnJeDCqeW473gPwWATsViUp8+O4fXWlqbRNA2f286x3c2l87Ty1CujJPN2xiJJBkZnCccNwvFZ\nNA3aAkX2aQY7O/x41i+jpWgQakn1LDRpC2PJOP8Q+AhW596GpeYJMN+kTUeZtDUs2bzBeRlGvjFL\noWjQ7Hfw4D17uOfYDuy2jRu8dDps3LS3jZv2WnfY0zMz/PDEENminUQ6TzSewmG3UTQ18gWTYimF\n0hny4HM78LrttAbddDR76GjxcGhfO8Vsnng8ZnXuvvJ4RGFN2m/TNbpCXrpCXvqaC6SyMJtzcmV4\n2hrgfnWckxp0tLhwO53ceZMPj2vzDW4rNh83bNIGHAI+IqV8pCT/HBdClG0GlUlbA5PM5Hnk5AhP\nnJ6gUDTxuu0c7Q/w6w/sIdTSgmEY8+7y10LHvlDTv5zHvd2m0xp0znXYiXiUm/cECJTklZXzASrn\nHJTPaSfHbDx+XRz10uqvdB6/x8bOvla6AznSOYjmnAyMxRmfzvKPP73Kvz31BjftbeUthzq5aW8r\nLodtxTUANvMcCMXaUQ9Vz1wZKaVZSu10A2Mok7aGJJbK8dgLQ/z0xWEyuSIuh87x/W3ceqiLqcjU\n3F3+Yv7z9daxL1yrtxaP+8q6C8tVtr18zt6+bhLJ7HVx1EurX8t5fG4bfb2tHN3TykR4Bk238cqV\nKC/KMC/KMC6HjeP72zi2y8/weBi/33/d+6N8hLYva6HqKd8+KJO2BiM8m+bxU8M89coIubxB0Ovg\nXbd2oWtFgsGmRdM65fw/UFOuvhYq1+pNJRPouq3qtXuXW+e33PbyOX3+IAaZReNYzXjEcu2p5TwB\nr517ju3go/cfZCSc5OT5CV44P8nJcxOcPDeBw6bR1wk97T5cDi9up12tbbzNqYeqZwRLsXOmlOrZ\ngZUeUiZti7DV4jMMk9MXwvzgmSucOj+BaUJbk5sP37+fd96+i0wqwePPD84Zj/l91ZmSLZRvLvd8\ntcdgebO3yrILDdIqy5bLATfUnrWK+Vrbg3R0BLn5yA4+ZZpcGp7l8RNXeOr0GFdGY1wZtdJIbUEH\ne9MuOoI6oZCflhYr5q12bdZKo8dXC/Uwafse1mDvD4EHgdNSyqQyabuerSIpM02TockEJ89P8Py5\nSaZilsRyT3eQ+2/p4eZ9rdh0iEzOEovFSCQs47GA300snmZgYIRAwMqFx+MZDCyFS6UMcyU5Z7Vl\nVzpPtSZpiYp2A/PaXi7X1g7xxOrbs1YxL2w7WLn7Zredd93SicdeJGs4GQknuTo6QySWJ/LaOACP\nvTjO3p5m3nSgg+4WN3u6g7id13cLq11nYLOsT7BV/u+tlnU3aQP+GfiiEKKAtfzih0vVDwH/qkza\ntgbZfJELQ7O8NjDN2StTjE2lAHA5bdx9rIv7b+ll9w4r3/yLk6eJZix3jng8iqm58PqtC2+retMs\nNlawVdu+MHevaRqhoJtQ0M2OQI6CoZE2vQyNz5LMGrw2MM1rA9MA6JpGZ8hDT7uf3jYfPe0+utt8\nuG15nnjhcs3rDKj1CTYn9TBp+1XglJRyrxDi/cDvAj/C+rJQJm2bkELRYGImzeB4jMHxBFfHYwyM\nxSgUrSEdh13nVtHO7SV1iNMxf2jH4XThd1kdomFqJJLpecfrle9ebxaOFWwllhurWIjTrtPVFqQz\nqHHPsR1g9xCO53jx3DiXRqIMTyYYm0pxqqKOroHbacPvzeFz23HaTTyvhulszeL3OPB7nQQ8Dnwe\nO7YFd/OV4zyKzcENm7RhpXf+orT9A+CvhBB+lEnbumGYJvm8QbZQJJcrkskViadyxNN5Yskc8VSe\nWCpHZDbN5GyaqWgWw7w2bq9p0Nfh50h/iMO7Q+zvabqus1c0LkGvk727WtnbaSl/TNNkOpZlJJJk\nJJJgNJxkJBxnYiZNeCbNZKmeHFr8y9HltOF22nA7bDjsGplcAZczisOmo1EkHCsQ8EVw2G04bDoO\nu47Tbj1af7Zr2zYdp0OfK2e369h0DZuuoesauqahadqi7VAszVrKOZVJWw1cHY/xTz+5QDZfxDCt\n/3yGYWKYJqZpde7W88pj1t17vmBU/TpNPid7eoJ0tnjY1RmgvytIX4cfl7P6jr5YLJI3rNmv+XyB\nTDpFKhlHJ0cmnUTX7aSS8XnbQNXHaim70nnSqeQ8bXw6dc3qudbXSCZipJLZNWvresdcWc7pNIjF\nruXAHRr0t9vpb2+GQ83E4zFOnJvE5faSzhWZiSbpbfdTxEEyUyCRLliPmQKZXJFsziCVyZPJFckX\nTawssMXAeKrqa60ayl8ClV8IlduaZs3KLs/G1rBudsBKg2mlnVrpqFbaPrirhY+/ozGnIa2lnLPa\n/ZVojT7yvlR87e0Bbju2Nb4XP/DeO5c5etO6tWM1HD9+eKObsO5UG3NT0/J59+343jUqK3XGtcg5\nqZBzjixSt2+RugqFQqFYZ1bq+OfknCUztl8DHhZCHBVClA3XynJOqJBzAj8F7hRC9Aghglj5/e/V\nPwSFQqFQ1MKyHX9pElZZzpkG8lLKZ7E6+g9UFH1PSc75z8A3SvtMrLv/QWAaS/ev7vgVCoVig6nX\nmrt/V9L8vx/4PaC87u4VZdKmUCgUm4t6rLk7VVHeyfUDwgqFQqHYRNRlzV0hxKeBLwIu4J0Vh5Q7\np0KhUGwyVhrcrUrOKaX8hpSyDyst9Ael3WV3zn3AJ4A/E0L030BbFQqFQlEH6rrmrpTy20KIvxdC\n2KSURWp05zRN01Sz8BQwfxH3MvVYUFyhaFBq6jg101w6JS+E0LHSO3kq1twFYlxbc/f/AX4T69dA\nEbBLKftL7pzvxUoBOYEg8OYVjNrMRnfQU/FVR+Ui7rA5zL0a+fNr5NhgW8RXU8dfjzV3WwB36VgS\nq/MHSwn0l8AklkmbC0p+uApFFShzL4VibbjhNXellJ8DPlc6/mHg/yodcgHfkVJ+rHTsqyiTNoVC\nodhw1lLV04MyaVMoFIpNR11M2qSU3wC+IYT4CJaq5wOL1K1qVG67mrQ1CvWKb+EyiQuXRtwoGvnz\na+TYoPHjq4VqVD2HhBASa4D2AvBKZQEhxO8Cny2d6yJwtxDCBkwB/2/pywCs3P+XV2pQgw/AqPiq\nZOEyiZVLKG4Ujfz5NXJssD3iq4VqTNr2Yq2VexArzXNpgUlbAbhNStkPRIBCScr5JFZnfwdwpLSt\nTNoUCoVig1npjv9NwGXgfwD/C3gW2F/6K6t6uoGzQgiwOv6yXDNRev401hfMV5RJm2K7sXCx8Y1Y\naFyhWEg1g7vnpZQfBBBC/DLwK1LKXy0XkFL+HpYxG0KIvwFer6jfjJUumkZ58Su2IZWLjW+GuQgK\nBdTJsgFACPFJYBfwP0u7lGWDQsG1+QjlyWgKxUZTF8sGIcSDwKeAt5fy+2Uv/5osG6DxR95VfEtT\nadPgcBj4vE78W1zVM0+dZGRwOAyczmtrJG8mGwp1bW4f6mHZ8KfAp4EJrDTPJ6SUw8qy4Xq2g7Lg\nRuKrtGmYjkzg9QUJtXUAkErGuefYji1n2RCLRXn67BheX4DI5Bi5bJbmUCuwOWwoyqhrc2tTq2VD\nLamehZYN5RW43o5l1QBwG/BSaftWLMsGL5ZVQxZl2aBYgXJaxO1pzLSI2+PF6wuo1I9iQ6mHZcOx\n8rYQ4q3AH5WeOlGWDQqFQrHpqItlQwWfAL5fUVdZNijqTqVE0jCsfHllnlxJJhWK5amLZQPMU/V8\ncom6yrIBFd9yVA6EppNOdN1BYJHB3Wg0yk9ODOH1+oiEJ9BtdkKlvHkqleTB+w6v2SDwjQzuLhfT\nZkBdm9uHelg2PAD8ObAb+I2yqgdl2XAd22CA6QYHd6/ZNCSTOXS9iMtzvWVDLBbHMO0YODFMOxg2\nDJwAGObaWTusbnC3upg2GnVtbm02wrKhtfT4XSBdUfdJlGWDQqFQbDpW6vgrLRsucs2yoVLV8xkg\nBLwH+AshxFOl/ZWWDWeBP1aWDYpGwTAMYrHo3F95rEGh2ArUw7Lh3tKxbwIPSykfqqivLBsUDYmy\nYlBsZepm2bAIyrJBUTdM0ySZKTAVzTATz1EoGiw3+XA9UFYMiq1KXSwbKpj7n6gsGxZHxbc0lQqY\nmRk74zNFLkxOEJ5NMxvP8tDTY/PL2ycJenVaAk52aSl6OwL4fa41VcqU46vWiqEeqp5KK4vKc69V\nbI1Ko8dXCyt1/GeAbiHEVSosG4QQR7lm2fAA8BWsTn0c+A7AEpYNX1ipQY0+8q7iW5rpmShycJah\nyCQj4eTcXYTDptPid9DT5sPvdZHL5RmJJEnnTSKxHJFYgYsjKQBa/A7GIhnuPNZLX4cfTatpJvuy\nVMZXqdaJRGb47uPji1ox1EPVU2llsVZpJXVtbm1q/VKrRce/0LKh7MffAnRhqXY+JYR4T2k2b9my\nYRJroNeFsmxQLELRMHjm7Djf/fllosk8AEGvTm/Ixb5dnTT5naRTiTmvnkr/m/GxUZJZyOJmOJxk\nYjrFo6fGePTUGO3Nbm4VHbxZdLB7R6CuXwJlDMMkmioSS9kYjqdIpPPEkll+9uppigYUigZFw8Tt\ntOG0mbidOu1TGu3NbvzO4sovUKKcVlIo6kE9LBu+BXxrkcFdZdmgWBbTNDl9KcJDT11hNJLEYdfY\n1+3j0O42iukZdN1Gc8C17DnsNo0Wv41QW4jD/SGi0SgtAS/nhhK8cnmKH598gx+ffINQ0MWtBzq4\n5UAbe7qbcNhrT5WYpkl4Ns3AWIzzV8O8OjDLbGKMolG+P7J+dThsGq1BFy6XA800iKdz5AqQzOSJ\npQ0mo9Nz5zx1Icpth7p488EOett9a/LlpFAspN6WDZV0oywbFEtwaTjKt568xMXhKJoGb71pB+84\n3sarA1N4fW4i6fnlrTx3DIB4PIZpLD6wa9Nhb6eN4/v6+PDdO5DDcc5cmeXVq1EeOzXEY6eGsNt0\ndu8IsK+3ia4WL61Nblqb3Djt1o9a0zRJZwtEomnGwlHC0SwjkRQjkTTJTGHe67UEXPhdBi0+B73d\n7QS8Doq51KK/TsIToxRNHcMeIDKbZmwqwVQsy/efvcr3n71Ke7OLOw+18ZaDrXS1h9bMdmKxVcEU\n24u6WTZUgbJsQMU3NBHnmz86z3NnrYHa24908Zu/dIidXUGi0ShXJxOLDoSmk1O8ICcIhQpEwhP4\n/E0Eqiin2+wc3dPKrg4be/q6OD+U4NzANJdHolwcjtYUm9el0R2y090exGEm6e5opquri8mJEXTd\nQVt7MwDJRHFu0Hb+4K6rVK4VASQTMe453sPF0QxPnhrk1OthvvfcCD84McJbDnfw4L37Obqndd45\n6mHzUGl5Uba4AHVtbifqYdngAP4a+CBwtxDiNSnl6yjLhuvYDgNMS8U3m8jyH08P8ItXxjBMk709\nQT563z4O9FmdZTgcX3Yg1Hpum7NpSCYzuDwrlyvbOWiag54WJ4d27eZD9+wmnS1wdSxGOJphKpph\nOpYhXzTQNA0NcDlt+JwQnk0Rag7QEnRRzM6SThcJtbUTmSyQzeSIJ1a2l1hucDcRSyO6m9hx3046\ngzbGZg1eH5zmxGuTnHhtkh2tXu44GKJoFDBw1sXmYb7lhXW+pqambXttNgL1HtwtWzb8CvBDrJm4\nD1WqeoDfwBq4fRgrnfMnwLuZb9kQB15GWTZsO9LZAj86OchPXhgilzfoCnn5yH17uXl/24bmsz0u\nO4f6Qxxapsy1NI0XgHR2bdvkdOgc6m9iZ5uN7rYAL1yIckpO8t1nhrHpGru70+xqc6xtIxTbgpU6\n/krLhv/FNcuG/VxT9fw2cAjwYKl2moQQPuZbNujAV5Rlw/Yhncnz6Mkr/PTlCZKZAgGvnQ/c1cvt\nh9poCgbnOv3KfPNyufsbpXKMoPwcrtk519PKudrxiKXKaZrG3u4ANx/s5eOp/fz0hQGeeHmcS8NR\nLg3DxdEU73jzTm472IHbudJ/YYXiem7YsgGrw3+HlPJMqczLWAO7YyjLhm1HOlvgyZdHeOTEIMlM\nAbtNY0+7xq42HcMo8MQLl+fp0CutD8rLLfoCwbq3K5NO8dRLM3Na++nIBLpupznUWndtfOVrLRdT\nNeWCXifvuLkLp81gNq1zbiDCUDjF3z7yOv/02AWO72vj9kOdHN3TuiqlkmJ7shaDu+Wrr2zZMCyE\nuAn4sRDitJTyao1tVGwBxqaSPPSLAR5/4Q2yuSJup86hnX5u2t9FfGYSXbctqUMva9RTycSatrG8\n7CFAKplYtk31eq2VYqq2nKZp9LT7afGaHOlv5eUrcU6em+D585M8f37SShPtbOHY3laO9IfoaPEo\naahiSeph2TAC9AFnhBAasANL+68sGxahkeKbiWd49pVRfvHKKK9dmQKgtcnNR+/fz1uPtfLc2VF8\nfh9G7pryZqEqZSlLg+vVOosfq0e5pZQy82wZgHQSfD73mrRhufYsVPXs393Km4/v4X//oMnl4Sg/\nPz3CC+fGeeXyFK9ctj6HoM+J2NXCgZ0t7OwM0NcZoKvVh8OuL6oSgsa6Nhej0eOrhRu2bMAa9P26\nEOJrgAFckFImlWXD9WwlZcGJU2fQ7dbiJkGfi4P7d1MoGlwdi3NucJpzV2e4ODyLaYIG7O8J8KH7\nD7C3K4DdphOLRRdVsyTiaQYGRggEruX14/EMBs555RZX61x/rB7lKpUyC8ccym0rs5iaqN5tXe49\nWthWLZfg3sNN3Hu4ialYlisTWS4OR7k8EuOFcxO8cG5iru02XaO92UNr0EEmmyfoj2Mjj1bMceRA\nD0Y+T6i5CV3Xr9P6w9Ze0nIr/d9bDRth2VAuYwdyFeVvQVk2bFnGZvMU7F6iiRzR2ATfPTnNGxMJ\nsnnLZkADdnX68DqK7O5ugmKGY7sDK8oMF8u1r1VefzWs15jDclT7HlW2Fa55BL3j1j7AktBeHY8z\nPpVidCrJ+FSKsakk49Op0hmsx1MXo/CYNdfS57bREvDgd+skUml8Hhdup46NAnff1Et3Z4hmnwuX\n80am9Cg2mhu2bADeB3xGSvlIKdUzLoTwY3X0yrJhk5AvFElli6QyedLZIulsgVS2QCKdJ5rIMpvI\nMZvIEk3kmIplSKTzwLUJTpoG3a0+DvQ1c2hXCwd3tWDkU3OzUlPJ6u+mFubaNxvrNeawHNW+R8t5\n+DT7XRzf54J91/aZpsl4eJqfnR7F0JxMhqfI5sHm9DAdTQI64Wia4XDZRyg/V/elKxfmtl1OG80+\nJ00+J01+F01+a7vZ76LJ58TjtuN12XE7rUenQ1djDpuIelg2zJWRUppCiFEsVY+ybKiCyGyaR04M\nks0bgIlpgmFaj6ZpYsK17Yp988qYkC8aFAoG+aJBvmD9FSq2i1XKJJ12nVDQjd8FLU1+gj4nTfYY\nD9x+EKfj2t28kU8Rj8dIp5KAdbcZjUbJ560ylccy6SS6bieVjM/bXu7YepZLp5LzZJWLtRsgk0qR\nyRQ3ZVvJwB6KAAAgAElEQVTLn0GlZHUpjHwKl5bD43WAL4+u2+ntayYcNrjjcAeBQJDI9CxPn50A\nm4tMziCWTNPd3kw6j/UrMJkjmsgyOZO+TgGyGJoGHqcdl9OG3aZht+k4bDo2m47DpmG369htOjZd\nm5tEp5X+0bXyOTQ0jdIxDZfDxvvu6qdlBT8nxfWspaqn2v2VaI0+ALMwvvb2AIf2d2xQa26c48cP\nr+rYZmYrtXu1bV2p3t69vdx+29FVnXuz0uh9Sy2s1BnXouqhQtUzskjdvkXqKhQKhWKdWanjPwOE\nhBA3lTx5fg14WAhxVAhxoFTme1iDvQAPAqellEngp8CdQogeIUQQK7+vLBsUCoVig1m24y9p8T8J\nfBvLuuGnUspnsTr6D5SK/QOQFUIMAb8P/E6pbhz4PJZlw1ngj5Vlg0KhUGw81Rh9mKW/IpZOnwWq\nns8Cd5aOR7Ckm5SUPd/Esm4A69fA1+rSaoVCoVCsmmXv+Es5+78EPowlCntACHHngmIXgFullP3A\nz4CvVhwbkFL2lf7eVb9mKxQKhWK1VKPjn5FSvgoghPhH4EPAc+UCUspHKsr/Amu2rkKhUCg2KSsN\n7i6m419Oi/8J4PsVz3uFEJeEEC8KIT6wVCWFQqFQrB910/ELIT4J7MIaDIZVuHOapmmq2X2KarC8\n7K/NFg4Etq6PjEJRB2rqOOvhzokQ4kHgU8DbpZRFmFME1eTOqWlawxspqfjqQywWnfOpqbef/lI0\n8ufXyLHB9oivFm5Yxy+EeBvWCl3vK0k4Ke3vKun3EULsxbJ6eK2m1ikUy1D2qSmblCkUiuqoRsf/\ndeAUkAbyi+j4/wYQwLAQIiOEKA/8HgYuCiEKwHngcSnlpTWIQaFQKBQ1UI2c8zNYFssuwC6EuFNK\n+Xkp5ZdLxX4HCEkp7cAfAoOl/S9gWfv1Aa3A3UKIXhQKhUKxoaylnPMB4Fkp5Vip7sMoW2bFIlQu\n+rGWi6ArFAqLetgyV1Ip5+xB2TIrqmDh4idrtQi6QqGwWEs558K66rZNsSSVi5+s5SLoCoViDeWc\npbr3VRTrA1Yc3G10z2wV3/UsteD6UougL6yzXLl608ifXyPHBo0fXy1Us9h6qDQB6zyWnPNzlYut\nV8g576+Uc2LZMn9NCNEDxLHy+/eu1KBG19qq+K4nFosvujB75cLiy9VZrlw9aeTPr5Fjg+0RXy3U\nw5b5S1iLr7wghBgSQjxVqqtsmRUKhWITUg9b5i8BXwGOAh+XUj4EypZZoYD5iiW4plJaar9CsR4s\n2/FX2DJ/ACvV84wQ4odSyucqil0GfgP4AtcP6A5IKffXsb0KxZaiUrFUqVJaar9CsR7UQ8c/UDpm\nUKNRkEKxHSgrlqrdr1CsNfW2ZV6IsmVWKBSKTUbddPyLULMtMzS+5ErFdz2NLOdcqp0b1f7lUNfm\n9qEuOv4K5r4oVmPLDErOuZVZKb6lrBni8RjxeAYD5zw5ZyKeZmBghEDg+kHQpeScazlouprPb6l2\nVu5fGGfle7NeFhbb/drc6tT6pXbDOv6KshoVOX4hRBeQklLGKmyZv1BT6xQNxVLWDNORCby+IL5A\ncF75TDrFUy/N0BxqBahqEHQrDpoujHPhe6MsLBT1ZtmOX0pplKwYvg24gX+UUj4rhPgKEAa+LIS4\nB/gXoAV4jxDi96WUx7Bsmf9SCOECksAXlC2zYjFrhlQyAYBpmswmC8wk85wdHmUmmiRbMDHMcQDs\nOrw6/DrdbX56Wp3MJvK4vQuzkVtz0NTt8c61eeF7oywsFPWmHjp+NxABuoDfKuv4pZRPCCG+CPx3\nwAH469huRQORzBQZmsoyeuYymVxxbr+ugdup43U6AMjmCgyFkwxOJOfKOOxTdLW4CHjd3H5UXWIK\nRTWsmY5fCBEAvgrcBiSAl4UQ31OzdxVg3d2Ho3leHBhibCoFgMtho7fVQUeTk/7eTtLxMDabnVBb\nBwCpZJy7jnSRLjo4e2mcE+cmicQKDIXT/O2jV/jnJwY52t+ExwX9XvUloFAsxVrq+JUfv2JRItE0\nz19MMZWw7u5b/Db6O9wc3tfDTGQcXbfh9zrIJOZPCzEMg2QyTiAQ5Eivk3yuGa8/wPD4FIWCwbmh\nJC9enAbgxYtR+trc7OluvqGceOVgsd1eYHY2ft1A62KD1iYaE9NpBkZnOP9GgkwxQTyZ4eTrs+QK\nJulsnkLRxGGPYJoFPA4brREI+pxo+QIt/usHcK0F5mNzz9VsX8VqqbcffyXdKD9+RQXRZI4T56cZ\njmQAaA/aecvRHszMDLpuw6YvP/+vchC0ckDYY8uTK2S576ZWrg5NEEnZGZspcGEkyZf/7Rw7O97g\nrqNd3H6kiyafs6Y2Vw4WZ1KzZDLF6wZa4/EY//HzC6QKdsbCUWIZSGSgaFw//uCw5/G6HDgdNgrF\nAtl8kVzeIJYymIjOzJWz6Sk6WnIEXUW6Qy5CC+JXA72KG2EtdfwLqerWpNG1ttsxPsMwefTkIH/3\n/XOkskU6Wjwc6nXQFfLR1t7M5ERyTrtfqeOv3AZIJ50EAj7a2tvRyM0rZ+3vQNfy7NMdtITaeH1g\ngliqyCuXpvnXJy7x709e5qZ9bdx8oIObRTv9O4Jo2vJfNk6nQXt7CJ8/yOREDp/fgcffzHSiwM/O\nhBmcfIOLb8yQzBTm6mhAqMlNR4sXl54l6HXS19OJbmZ49x39NDU1EY1Gefz5wdJ5R8gXbdhcAWbi\nWd4YCTMZLTA2lWIMkKNZOkcL7GjW6O9qprOznWTCVXft/3a8Nrcra6bjZ5V+/I2utd1u8Y1NJfm7\nH73OxeEobqfOLfuaOLK3k6nwOMlkBpdnvhXzUttAVeWubedoC9j5wF198J5DvHB+kmdfHeP0hTCn\nL4T52x+A3+Ogr8NPd6uP7jYvAa8Tl9OG22nDMEzS2SLTszHOXJkmU5hmJpYiliqQzY/Ni7Et6CIU\ncNDZ6sduJGn2Oeno7AQgMjmGroNNM0mlcovq+K022wgGbfhcXtyGk4M9HjyBEPLKCGMzBSanU0xM\nw5mBJLu70/R3uOpqRb0dr81GYtPo+FmlH7+iMSgUDR55bpAfPHeVQtHk1gPtPHhnF2evTK14l11v\ngl4n77i1l3fc2stsIsu5q9O8NjDDxeFZzg/OcH5wZuWTlHA7Nfo6/AQ9Gm891sXhvV0Y+RRPnx3D\n6wsQmcyir5CyqhaPy05vq5Od7daXwKsXhhmM5Lk8EuPyCAyMp3nf3Xu4aW8r+jq/p4qtTTU6/q8D\np7BSNScW0fHfCzwCeICPCyGuSCkPYN397wAGS6e7qBQ924NLw1H+7sevMxpJ0ux38uvvEtxyoJ1Y\nLLrRTaPZ7+Kuozu46+gOALK5IqNTScanUiQzebL5IplcEU3T8LrsaGaONybitIWasJtx8jmDUFsH\nqWScgzuD+D0OYvm1b7fHZWd3p4s9XR7S+HjtSoQrYwn+9Ntn6Gnz8Z7bd3L74U7sNjXYq1iZauSc\nnwFu4Zqc884FOv69wA+klL8ihHg/8NmKY1eULXNjMjEZZmrG6shNTI6I/STSef7hUcmTL1tj+vcd\n7+bdt3bgcdmIxaLE4zHMRQY814vF7BxcThu7dwTZvSO4aJl4PEYhn8cXcJFOJshXnKussFnPuDRN\no7fNT7O7yI4WJycvJHjp0jR//cPzfOfnV3jXbX287U3deFzVTNFRbFduWM6JtcDKX5S2fwD8lRDC\nV++GKjYXoxPTRIuWVj4+M0HSmODfnrjETDxLd5uP33qPoDOozSligCWtGdaLauwcKsvA0m1eSmG0\nXmTSKeTsDP2drQRdAYq6hxPnpvi3Jy7xvWeucv8tPTxway9Nfte6tUmxdaiHnHOujJTSFEKMYkk5\nxyjZMgNR4EtSyofr0mrFpiGeyvGcTDJ+8jUcdp0Pvm0P7719J3abTiwWnWefULZm2EiqsXOots1l\nm4WNiqvS5uGeYzv48H2Cn708wuOnhvjhc4M8+vwQdx/r4t1v2UlXyLshbVRsTtZCzllOMq7Kllmx\nNcjmDV68OMn5q7MYpsnBnc387q/eivO6S0axXvg9Dt5/Vz/vvq2PZ14d59GTb/DU6VF+fnqUWw60\n8947drGne2N+bSk2F/WQc45gSTXPlMYEdgCjq7VlbnSt7VaPL5Mt8OjJQf7pqQnSWQO/18HNu338\n37/91utmkVZ6zgNLavSr2V5N/YU+99V44C/fZvD53Ktu81J+/PWOE+Bj3c18+AHBc2dHeeiJi7x4\nIcyLF8Ic3h3inW/ZyV03deN1O+bFvtWvzZVo9PhqoR5yzu8BvwX8ECvff1pKmVytLXOja223anyp\nTJ4nXhrhJy8MkUjncdg1bj7QxqFdLaSik1y5MkJ7e5BIJL6oZz7UqsO/UR3/9T73lb7/C49V02br\n+ernHlS+5lJrENQjzkoP/06vwf/xv+3myniKx18a49zANOcGpvn/HjrDLQfaefPBDo7sDtHb3Tx3\nbTbiAvFb+f9eNdRVx1+NLTPwD8DbhRBDWC6d/6lU/RDWQK+yZd6imKbJwFicn78yysnzE2RzRbwu\nO++/q59OX4aczRoYzWRSPH7yMu0dIcLh6U1jJbCYz315EHYj7A/WakC4Wj//Hn+Ktv1OZrIurk4k\nOXFughPnJnDadW4WHRzoCXJwVwtee57Hn7+sFohvYOphy6yVjheYvwLXz5Qt89bDNE2GJhOcvhjh\nBTnJSNiyQG4Nunj/Xf28/eYePC47L5+VVDgo4/H68PmDJJLZDWr54iz0uV/q2Hq3p94DwtX4+aeS\nCby6jb1tHRzaGaOvs4mLo2levhjh5GvjnHzNWvcg6HUQ8NroaHHgc9qIp/IES99PW3GtA8X11MOW\n+TcAl5Ryd0nH/yfAu5Ut89bANE0mZtJcHJ7l0nCUc1dnmIpZKQebrvFm0c7b3tTN4f5Q3WakKjYe\nTdPo7/Rx0/5uPnzvXvKaxjMvD/P64AyvD04zEskwUjLTe/q1aZr8TrqaXeSLRVqCeVy2AmPTaRwu\nn5ozsAVZKx2/H2XLvGkoFA2iiRwziSyz8SzTsQxj0ylGIklGw0lS2WsGYx6XndsPd3Lz/jaO7m7F\n61b/qbcD3W1+7jvew33He4hGZ3ns1DCpgp2JqRi6bmN0KoMcLuXIx6z1E549Z1lduJw2mv0uWvxO\nmv0umvxOmnwufB47frcDr9uOr+LR6dDX3bZDMZ+11PErW+ZVYpgmz706zmwii2GCaZgYZunPoPRY\n+jNNDBMKBYNMvkgmVyCTK5LJFsnmC6SzRZLp/KIiS02DjhYvR/eE2N/bzL6eJno7fNhWMWCXTiVJ\nJlykU8l5M1rTqWurZWXSSXTdTioZr3l7LetX3eZUikymuKZtXq/3qTJmsNRMsZhVP5GIoxlZ2vx2\nfLqNOw53EAgEiUzP8tQrExRwMBNL09LkJ5ExmU1kmU1kmZhOVXWt2HQNn9uO02HD5bDhsOs47ToO\nhw2nXcdZ2me36ega6JqGrmvomoaml57P7WPuWNkpTCttNPmc3HGkU33JLMJa6vir3V+J1uiSq2rj\n+8D9m1tv/a7731zx7OCS5Y4fP7z2jakzW7HN9aCp6dpA7WLvwd69vdx+29H1bFJdafS+pRZW6oxr\n0fFToeMfWaRu3yJ1FQqFQrHOrNTxz+n4hRAOLB3/w0KIo0KIA6UyZR0/VOj4sWyZ7xRC9Aghglj5\n/e/VPwSFQqFQ1MKyHX9p9m1Zx38Z+KmU8lmsjv4DpWL/AGRLOv7fB36nVDcOfB54GjgL/LFS9CgU\nCsXGUw8d/68Dd2Lp+POAd0HdYunRqEN7FQqFQnGDLHvHX6Hj/zCwD3hACHHngmLfBw5IKXcDX6Ik\n16zQ8b8Vy6PnvwghelEoFArFhrJSjn9Oxy+lLAJlHf8cUsqpUkoIwMk1JdCcjr+U9inr+BUKhUKx\ngdRDx48Q4tPAFwEX8M6KukrHr1AoFJuMuuj4pZTfAL4hhPgI8AdYA78L666o4zdN01STLRQKhaJm\nauo46+HHP4eU8ttCiL8XQthKde+rONwHLOvOqWlaw1unqvi2Lo0cXyPHBtsjvlqoxo+/WwhxFesO\n3gl8tNKPv2TR/MHSuWLAuJSyKIQ4AXy3ZOFgACHgwCKvoVAoFIp1ZKX0S2W6xlaxr1LHvxPwYHX8\nAeBiaX8CGAeyWJLO/6p0/IpqMAyDWCw691deWEShUNSHatw5R6WUtwEIIT4LfKhSxy+l/JXythDi\nrcAfVdRPSCn317G9im2AWvBDoVhb6qLqqeATWLr+Mr1CiEtAFPiSlPLhVbVSse1QC34oFGtHLake\nWMads7RE4y7gf5Z2pYD9Usp9WF8IfyaE6F9lOxUKhUJRJ+qi6hFCPAh8Cnh7aaJX2een7NN/Rgjx\nDNYM3qvLvWCjW6eq+CwMwyAev6ayCASuLdztdBr4fdP4/G50crS1BWhq2hzvWyN/fo0cGzR+fLVQ\njaonJIS4CWvpxV8DPrdA1fM24H8A95dm6AIghOgCUlLKmBBiL1aK6AsrNajRJVcqPotYLLpkHj8W\ni5NIZjHIkEpmiUTi5HK1Lw5Tbxr582vk2GB7xFcL1bhzfh04BaSB/CLunH8DCGBYCJERQpSXZTwM\nXBRCFLC+NB6XUi6r41dsL8p5fI/Xt9FNUSi2FdWYtH0GuAXLjsEuhLhTSvl5KeWXS8V+BwhJKe3A\nHwKDpf0vYLl19gGtwN3KpE2hUCg2nnqYtD0ipYyWnv6Ca348yqRNoVAoNiFrKedUJm2KG8YaBI7N\nbQNzg8AAfn9g3vPNhGEYJBLX8srlti61X6FYL+q22HqFnPOTS9St6spu9JF3FZ/FcsqdymPp5BQv\nyAlCoQKR8AS6zU4o1ApAKpXkwfsOr6vip5bPLxqN8pMTQ3i9vnltXWr/RqOuze3Dmsk5WYVJGyhV\nz1amNlXP0sqdymPJZA5dt2HgxDDtYFjbAIa5voqfWj+/WCyOYdpLbb/W1qX2byTq2tzabIRJ2+ew\nbBrswLuAh0p1lUmbQqFQbELqYdL2cSBX+vtzIcRTpf3KpE2hqBFlUKdYD+ph0nZ76dg3gYellA9V\n1FcmbQpFDSiDOsV6UG9Vz0KUSZtCUSPKoE6x1tRN1bMIZZO24ZLlw4+FEKellFeXq9ToI+8qPovq\nVT1OdN1BYME2sCE+PrV8fkvFWG3s6x2fuja3D3VdepGKL4rVmrQ1+si7is+iNlVPEZdn/jawpI/P\nQp081EcrvxpVTzmORDzNwMAIgUCceDxGPJ7BwLls7JXH1iqm1ca21dgO8dVCPVQ9DwBfwerUx4Hv\nwJxJ23uBL5bqBanCpE2hAMgXDKaiGSajeQyzSDQfI5XI43aYeIMF3M6lL93KPDmwKXLlmXSKp16a\noTnUynRkAq8viC8QrLr+ZoxJsXWpJdWzUNUTBr4MtABdWMqdTwkh3iOlPAbcCvwlMIml8HEBmfo1\nXdFIZHJFXnttnLOXp5BDM8zEcwtKJK9tvh7H47IR9NiZTRrcLAz29TThsF+7+92MeXK3x4vXFyCV\nTKyq/maMSbE1qYeq51vAtxZR9TiB70gpP1aq+1Usr56v1zkGxRbFNE3emIhzcWia/3h2jHzRus/w\nuW10NrtoCXowCmmcdh2vL0AsFiVXgKxhZzaeZWI2y8RL4zz+0jhOh47oa+FN+1rZ2+na4MgWxzBN\nUpk80VQRTTMp2tNk0jnGptJodg8+j2Ojm6jYJqylqqcb5dWjWIRcvsgzr4V59MVJEmlrondHs5s7\njnTx5oMdBJwFnnl1HK8vQGRyDF23EWprITKZKW13ADAbjdIV8nNlIsO5qzOcvTLF2StTADT77Ozs\nytLb4cdjW6hRWFsM0yQ8k+bcwDSvXIkSS80wE8+QK5jAbEVJK+f8s1ciANh0jSafA7dTp605i99l\nkswUCFafEVIoqmItVT0LUS5U25x8weBnL4/wyHNXiaXy6Brs621iZ6ud+461lPLVReLxOKaxcmft\ntOsc3tXEHcd2AjAVzfDK5Qinzo9zYTjGmctTnLk8hdupMzqd57bD3Rze1YLTcSOX8fzBY9M0yRQd\nDE4kuDoeZ3A8ztXxOOlsYV4dr0vD77YT9HugmEXXNTxeH/lclmafnUxeI5bKE4lmmI7nGJ2ysqLP\nnZumf0eQfd1eCoUCHq+JpmlVta2MMoFTLGTNVD2s0qun0SVX2zG+omHy5ItD/NOjrxOeSeNx2Xn/\n3TvxOEza20JMToxw6sIkoZB19x8JT+DzN10n4VxJztneHuDgvnbec0c3P3p2gKkEXB2LMTAa5blz\nEZ47F8HpsHF8fzsH+1vY19vM3t5mgj5nVbHl8kUSeYPXByZ44oVBYimDSDRbupO/Rk+7n/19zfS2\nuZiKpujd0crs1Di67qCtvYPJiZF529lsjlAoNBe77vBj2HwMT8yQzplcGo4xMGY5lAYuRtnX20xv\nm4PWVj/NzfPf70oDOKjNyG47XpvblRteerGirFb6K/NT4GtCiB6s37S/DNy7UoMaXXK1neIzTZOz\nV6b51pOXGAknsdt03v2WPn7pjl2YhTRPnx0jnphvxAZgmHaSycx1Es5q5ZyxWJxsNk9Hc4COZjdH\n+tz0tAe5OJrm9KUIz58b5/lz43Pl/R4HzX4XzQEnAY8DTdPQAMOEZCZPNJkjlswRTWRZ+EPE77Zx\npD/I/r5W+rsC7OoK4HHZS+2I8vTZNNlMfsk4FoudQp5QsxO37uWeYztwuHy89PoIj704ythUlpcv\nhHn5Apw8N8VdR7u582gX7c2eudjLBnDW+aozgdtu12ajUVc5p5TSEEKUl17UgRNSymeFEF+hpOoR\nQtwLPAJ4gI8LIa5IKQ9g3f3v4NqKXBeVV8/2YXA8zr//7BLnB2fQgHuO7eCX79lNa5N1tx6Lpdet\nLZqmsWeHn+Oih4++fR9T0YyVlpmIMTieIBJNMxVLMxxeXG3jsOsEvU4O7W6lvclNyKcTiabY0dFC\nMZfinmM71lRW6XHZOba7mWgijdPtYySc5PLwNBMzWR5+eoCHnx7gQF8zdx/tQvS416wdisZh2Y5/\nwdKL54FnyksvVhTbC/xASvkrQoj3A5+tOHZFefU0Jul0mnTG6rw1oLm5BYBINM13f36F516bAODo\nnhC/dFsX3a0eDCPN7GwaXdeJx2NV5fGXo3KRFlg6l71wMRcbsH+Hk72dIbgpNFcnmy+C7p6XQ/e6\nHbgcGslkgra2AJGINQHr9JUCLoeNRKa6NtxofOX3y27T2dUVoNVncLjPx+XJAi+8PsWFoVkuDM3i\nsGvsaHFzYJdOV6u36vdIsb2oRs45I6V8FUAIUV568bmKMg8Cf1Ha/gHwV0IItXp2g/OqHCCSsi6f\ndGKWe99ymB+eHOJ7v7hCoWiws9PPx96+j96QjcdOXuLKqI/pyAS6bl/1JKaFVE6KWm5C08LJU5Vt\nKG/D0pOiYrEoj528RHt7iEQyO6/t1bbhRuNb+H5l0ilOnLWOiR02/tP9R3l1MMkvzozyRjjNG+Fh\nvC47Xc06YxNT9OxoV5O+FHPUQ845V0ZKaZb897uBMZRJW8Oi67rlIJktcGG8yGN/fYps3qA16OJD\nb9vL7Uc60TWNWCw6N/EolUyg67YbmsS0kPKkqGrLLWxDeXslPF4fPn+wZKUwv+3VtmE1LDfpq/J1\nW4Mu3n93B2872sJ/PPsGI1N5ro7HuTJR4MoEtIan6WtzEU/llTxUsSZyzvLvSGXStgiNEl9Bs/Py\nxQjnr05TKJq0BFz8xi/t57139s+TS1ZjuLZQrbOackuZoNVyvqVM0crnA5Y9x2rM5tYi9v4dAY7s\nD1IoGrxy/iqDkznGpzMluesZxK4WbjvcxVuOdLGrKzCX2mqUa3MpGj2+WqiHnHMES6p5pjQmsANr\ntq8yaVvAVlcW5AtFXrk0xc9eHuH84AwAXredozvd/Of3HWN3fwcTE9F5OvJKQ7LllS3X1DqrKbeU\nCVot56s8R+XC7uXz+fzBChXS9eeorL+esVeqmypN3gBCXo22PV7cN/VyYTBMMmsg35jh9cEZvvmj\n87Q1uTncH+LWw510Nrlpb3JjmubcZ7jcAvdbadH4rf5/byXW3aQN+CHwdSHE17CWWLwgpUwqk7bG\nIF8ocn5wlufPT/DyxTDprKW172l1sq+vjb4OP+n4zJxPzkIzsXrk8qvhRk3QFjvHwvGIWurD+sVe\nDV63nQO9fu45tgPd4eXslSleuRTh7JVpfv7KKD9/ZRSAJr+T3Z0+Mpk0bc1ejOwsHqedltY2YP44\niFo0ZutSD5O2chk71vKLZW5BmbRtOXL5IkOTCS4MzXLu6jQXh6PkCtZdX2vQxb1v6uHuY12Mjw0T\nNxa/y6g0E6tXLr8abtQEbeE5VjMeUZl3X8/Ya8HvcXDnkS7uPNJF0TAYmkwwNpvh5dcnuTg0y+nL\n1q85Rqz/rg5bnpbgDEGfE5fN4MWL0+zsArctv6bjG4q144ZN2oD3AZ+RUj5SSvWMCyH8WB29Mmnb\nhBiGSTydt4zOZlJMzqQZn07xxkSc0UgKw7z2fd/b7uNwf4g3H+xgb3dwLh88PrZRrVfUE5uu098V\n5LZjPdx5sAPTNBkYDvPTl0ZI5XUmIlESGYPwTJrJGUu++9pgHBgAQNfA4wrjcmi8PpykrdlPk89J\nk9+J3+3A53Hgc9vxuu343A7cTtuylhOK9WEtVT3KpG2VzCayDE8mMEwTwwTTKD2aZmmfiWlaHbhp\nUnpuYhgm2bxBNl+c+8vlrMdUtkCsNAM1ns5jLiKhdzp09vQE2dUZYG93kEO7Wmjyb06nS8XaoGka\nbU0ueto8lkleMI+u22hqaSOezjM1E6Mr5CORhbFInKFwkmzeZCaRZzoexRLwLY1N1/C47HNfBk67\nDafDhsuh43RY2067jsthw+nQsek6Nl1D17XFHzXrUdM00K5ZB1jfLRql3TRNp4nH0uzpDi67lsN2\nYT9GOVAAABTRSURBVC1VPdXuVyzgT759hsHx+g9EeVw2gl4nnSEvQZ+TZr+LjhYPnS0eOlq8dDR7\n0PXq7sY8LjuJWUvp4tKyxONxolEH8XiMdOqad34mnUTX7aSS8aq2q62zEeWSiRipZLaur1uPtqZT\nyXkTvZZ6/yvLLcTpNIjF4tedo1zf7Uni1KDZXeR4v5tAIEg87ubEOROP10cqmeDu47spai6iJXuL\nRLpAKpMnmal8LJAsbU/Hs+RLacT14r6be/jNd4t1fc3NyFqpekZYnUmb1uiSq2ri+9rn71+HltwY\n97bfvOj+48ebOH788Dq3RlHJat//pqZrA7PVnkN91luTle7C50zahBAOLJO2h4UQR4UQB0plvoc1\n2AvWLN7TUv7/7Z15bFzXdYe/2ffhTokytVi0dS1Zjh05aazECRI3a9sYWduiG5I/nAZBEzRtExRt\n0boJULRpCiNA3LoN2saJi7Rp7KgumtiNXMNr5FheZcu5kmxJ3MnhMvs+b/rHe0MNR6TIIWc45PB8\nADF33tz7eM7c9+7M3Hvu7+gUpkjbUaXUVUqpMOb8/oONd0EQBEGohysO/FYs/h3AD4DXgUe01k9j\nDvQfsap9B8gppUaAO4EvWG0TwJeAJ4FTwF0i0iYIgtB6VrPKUbb+Sphx+tRE9fwWcBQoAgXAX9O2\nZD1u7GSeIAiCsCRX/MZvzdl/C/g4cA3wXqXU0Zpq/w0c0FpfDXwVK1xTKRUCvg68E3PH7h8opQYR\nBEEQWspKc/wL6pxa6xJQUedcQGs9a00JgblDtxIJ9F7gaa31hDXtcwxznl8QBEFoIQ1Jtq6U+iym\nNIMHeF9VW4njFwRB2GQ0JI5fa30PcI9S6hPAX2Iu/Na2XTGOv1wul2VXnyAIQt3UNXA2NNm61voH\nSql7lVIO1hDHb7PZ2l5BT/zburSzf+3sG2wP/+ph3eqcVv7dj1rnigOTWuuSUuoE8ENLwsEAuoED\nS/wPQRAEYQNphDrnHsxE62UgBGirXhKYBHKY0zxfljh+oR6q9d5rdeE3s/a7IGx21q3OqbX+tUpZ\nKfVO4K+q2icl2bqwVqr13qv18UX7XRDWR0Oieqr4NGZcfwXJuSusi6Xy9QqCsD5W+q28anVOpdQd\nwF7g76xDlZy712B+IPy9UmrfGu0UBEEQGkRDonqUUrcDvwu8x9roVdH5qTvnrqhzbm0a6d9yycqX\nS4q+EbRz/7Wzb9D+/tXDaqJ6upVSbwJew1Tn/GJNVM+7gL8GbrN26AJg5dxNa63jSqkhzCmiFXPu\ntnvIlfi3eqoThy+XXHwjaef+a2ffYHv4Vw+rUee8GzgJZIDCEuqc/wIoYFQplVVK/dQ6fgg4q5Qq\nYn5oHNdar6THLwiCIDSZ1Yi0fQ4zcboHcCqljmqtv6S1/ppV7QtAt9baCXwFuGgdfxZTrXM30AO8\nQ0TaBEEQWk8jRNp+pLWuJNp8gkt6PCLSJgiCsAlpZjiniLQJdVG9YQvM3K9lY4ms8FuIWp9k45mw\nGWhYsvWqcM47lmm7qqu93Vfexb/licVi/O+JEfz+AAAzkSkCwQ5CWziqp9qndDrF7e8+1BK7V4Nc\nm9uHpoVzsrZk622/8i7+LU88nsAoOzFwA2CUnaRSWTy+rRvVU+2TUW6N3atBrs2tTStE2r6IKdPg\nBN4P3G+1FZE2QRCETUg9O3drRdoq4Zy/DuStv39USj1mHa8WaSshIm2CIAibgkaItL3Neu27wDGt\n9f1V7UWkTRAEYZOx0jf+paJ66onMGVRKnVNKPaeU+sjK1QVBEIRm0zCRtiUQkTZBEIRNSENTL1L1\nQSEibUsj/i1PtSgbsCiEs7qMkcXlMnC7zeQstUlaQqHmxcrX698in2rshpVtNQyDRCKx6Dk0x1e5\nNrcP6xZpq6proyrhr4i0Xc52CClbbzhnRZStWDIYnU6TyYEeLxCPxSljwz+cpZhLc/LVMQb6uwj7\nncTmpjckSctawzkrPs3MzPPD45N0dvcArMrWeDy2kIwGaFpCGrk2tzYNDefUWhtKqYpImx04obV+\n2sqzGwG+ppT6fcwUjC7gdqXUnVrrGzBF2r6nlOrBDOf8noi0CVdiOppFjySYjM4xE8tSXvj9mK6q\nlVsonR6LYLdBwGunJwRDXhthj38jTa4br89fdzKZSjIaQBLSCA3higN/jUjba8BTFZG2qmr/BRzH\n/DZ/v9b6Aet4tUhbEnhBKTUoIZ1CNZlckadOTfDYS+OMRVIA2GzQE/YSdBuEfE76+7rJJOdwOBwE\nw11EIhGyBRv5sou5eI65eJZEJseF6THsdtCjKd52/S7efKCPoM/VYg8FYfOxmnDOea31KwBKqYpI\nW0V6Ga31ees1g6qpHqpE2qzXKyJtdzfMemHLEolm+MmzIzx5aoJsvoTTYePwvg68bhv7B3vxuh3M\nTE9gtzvo7g0wU46b5U4ftrzLOt4PwPTkONF0mUTBxchUgtPDcU4Px7n3Ic11ezu5WfVz5EAfHQF3\ni70WhM1Bo0XaqtmFiLQJFhWxsvlEnodPjvMzPYthQNjv4j039vP26/uglOHFN5J43fUEj4HdbqM3\n7ORAbz8HB32oPV2cGctyUkc4fWGe0xfmue9hzbW7O7lZ9XHzgT66w941+RCPxxaer1VwrVwuUyga\nRJN5zlyM4PWlMIwywWAQn8eJx+XA53HW9T7UisGtxz6h/WmYSNsqEJE2tq9/F0an+eax07wxkcEo\nm/PyRw70EHImcdpSvD7pXSTKBstH9SyK8KmpZyfPwaE+bjnSwe98GKbn0/z01ARPvzzOaxfmODMS\n5XvHz6L2dHHLDQMcHuph6KpOXM6VL89YLMbTr6wsuJYrlJiJZpiZz3BxIsm5iTT5UpbZaIZMrkwm\nH6NQNKNzjr+w/P/zuh10htxQLtPdkaU77MVegq7Q5WJ1tQJ3axGE267X5nakaeGciEjbZWyHyIJa\n/+KpPD86cZFHnx+lUCoT9LnY3+9gsNdLb183M9M5DMNhiZhdEmUDFgmzLVeurVcr4GYD3n6wn7cf\n7CeazPH8mQjP6Qh6OIoengfA6bBz9UCIq/qC9Hf62NHlozvsxet24PU48bjslIwyNnuRRAbSRYNo\nvMiPn7pAvuRgLp5jNp5lLpFlLp4jmSks+x65HDaCfjcBrxNbOY/Tbsfn91MsFhjo8YPNSa5QIp0t\nEk3kmEtkSWaKTM5lq99Vgr55uoNOEqkih4d2EvaWagTu6hOE247XZjvRCpE2F/DPwEcxs2yd1lr/\nHBFp29bE03ke/tkwjzw3Sr5g0Bl0sX+nn0P7dzA3M4ndZlv5JA2mM+jhtiOD3HZkkEQ6z6sX5nh9\nNM7ZsSjnxmKcHY2tfJIqnnxlbtFzt8tOd8jL3h1BusJeukMe/K4yYzMJujvDZBKzuF3OhbWJS2sY\n/aRTCW69YeCy0Mx4PMZjL41TxE00mWdiapZ4pkw0XWI4UmA4MsL9T4zgddvpDrnZvaPErl7/un6a\nC+1PPVM9tSJtEcwwzq8An8Ac3Hsxo3lCLBZpsyMibW2PYRiMT83w6ItTPHEqQr5o0BF088l37+PN\n+wOcOD2F3d7cAd/c8BRfKMOlzU7Vc94Br5NDgz4ODfowjD5yhRLziQLT0SwzsRzxTJFcvkS2UKJU\ntuO02/G4bUzMJPF7PThsJQ5f3c2Ong66wx66w17zW7zNtmi+PZGIUyh4CAQ9FNLL+76c3YlEHDvQ\nFfLSFfIScqSw2x109fQxOT1H0OdgMlpCj8QYn80yPmv+Mgj6HExFC7z14C6uHQyTy14Kia28D9V2\nut0G8XhC1gW2CesWaQMOAp/QWv/ICv+cVEoFrNdEpG2bEEvleeDxs/z4xAglAzwuGx+7dTcfuGU/\nLqdj0aJoM8lm0jz2/Dyd3T1X3OyUTCYWNkZV16uU+7t7AKfV7mrC4Q7cboNjj57BHwiRTiU4eqh3\nyc1Ttef2B8IEQuE12b1ce5vNhsuWJxHLcVVPD76yQdkZJl3yMj6TZmI2xROnIjxxKoLbaacraGew\nL0Cnz+DDtx4gHO5YZGcwMEckMte0zW/C5qIRUT0LdbTWZWtqZxcwgSXSBsSAr2qtjzXEamHTMDyV\n4CcnR3jm9BTFUhmv286RoV4Gux286039uJwbP+lQ2SS10manysao6nqN2iBVfe712L1S+9o2u3u7\nUHu6SCbiDPSGODue4YWz00xFc0xFzQ/fs5OvceTADoYGvAvtA0EvyVTuiv9LaB+aEdVT+Z1YEWkb\ntSQfHlJKvai1vnClxu2+8t4O/mVyRZ56aZzjzw7z6huzAOzqDfC+t+6iVMzT0dFJKhlflB6xWrNm\nLdE6661Xm65xNfYAl0XOBAMeAiukf1ztuVdj91rfEzt5jt64iw++q4NYLMb9j55jOmbwxugcYzMZ\nhqfPA+D3ONi3K8e+gTBdflfLUlpuBO1w7zWKRkT1jGFG7LxsTfUMYE4PrUmkrd1X3reKf7Vx4S6P\nn59fjHJSR3juzDT5gjkPfXBvF7de38PBvWE87jL/d3ISu+Py6JpqzZq1ROust14ykeH8+TFCoUtz\n74lEFgP3Fc9d3c7lMhbaVB+vXUtY7blXY/da35Nq+xKJOHajxNCuMDtCBgcH/YzNwwvnIrw2nOT0\n+TlOn5/DboOfnY5w4zU9HNrbwZ6B3raZ799K995a2PCoHuB/gLuVUt/EXOA9o7VOWSJtHwL+1GoX\nZhUibULr+Pm580TmzUXA6FyESNpLquhibCbFfLJEoWT+AOzr9PKOwwMcPbwTjz3PT545x3wiTTYd\nBZtnxfnsVlA9hw6sae692r/l5uTrOXczqbWvYk82k+aZV8zjPZ4077uxg5IzzHQ0y9mLM5wdT3N2\nPA2MMNDt48Zr+zgw2Mk1gx0if9FGNCKqp1LHiZl+scIR4FvANGaEjweoDkYWNgnlcploMs+rF2KM\nRW3MxnNMzhoUSpciQXZ2ebn5uh3cdG0v+wfC2KxwzHg8vzCfbSNPJlNqlRsrUi2Qtpa591r/lltL\nqOfczaTavuWO22w2+rt8DO3uYmcgS7YAyZKX4YkYkViWh54Z5qFnhgEY6PFz7WAHQ7s6GOwPclVv\nALdLAke3Io2I6vkV4HM1UT1BzIH+Aa31r1ptv45o9bSEcrlMKlskmswRS+aZS2SZns8wNZ9hej7N\n9HyGbH7xgO11wc5uL4P9HXT4ynzwF3ZLtMc2wO9xMNjbxZ4eJ2+9rp/pBJwdMfc5vD4e5/GXJnj8\npQnAFNPr7/Kzuy/Art4AfZ0+eju89HR46Qp5cLTJNFE70syoHtHqsSgUS6SyRexuJ3NxU264XC5T\nxnosg2FpEBvWa1jHKq8VigaFkkGhaFC0ysWqY5lckXS2aD7migvPk9kCsWSeklG7Tm/ictrp7/Kx\ns8uPkyyBYJjusIfk7Bi+UAehcCfpVPvOjQrL43E5uH5fB9fv6wagZBiMTqc4PxFnNJJkNJJidDrJ\nybk06Miitnabjc6Qm5DPTdDvIuRzEfS5CPhceFwOPC47bpcDd6XsdOBy2rHbbdhtNmw2FsrmIwtl\nm/U6mHXCfhHfq5dmRvWs9nhbUzIMvvwPPyWWyq9cucF43A4CXid7doToDLrpCHroDLjpDHno7/TR\n3+WjM+RZ2EX7/MunmZxPQy5NMZcg43DhcDjIpFMLm4tqSSTiZNKmnHI2nSabLZFOJS5rs6heJoXd\n7iSdSixbbnS9hpy7yr8tZfcqynbyi55X+qoah93O3p0h9u68tJBYLpeZT+SYmE0zG88yE8swE8sy\nGzPlKybn0uSmmjv998l3D/GhW/Y29X+0G82K6hljbVo9tnYMubrvKx9qtQmr4gO/+LY1tbvppkMN\nrSe0ijetqVV/P6ihBpvSBNpxbFkrK30LX0i9aGny/CZwTCl1WClV0d15EHOxF+B24EWtdQp4BDiq\nlLpKKRXGnN9/sPEuCIIgCPVwxYHfisW/A/gB8DrwiNb6acyB/iNWte8AOaXUCHAn8AWrbQL4EvAk\ncAq4S7R6BEEQWo+tXF560U8QBEFoT7blgqsgCMJ2RgZ+QRCEbYYM/IIgCNuMlcI5Nxxrh++nMdU9\nAe7QWj/UQpPWjVLqPcA9mJpF/6a1/rMWm9RQlFIRLslxJLXWB1tpz3pRSt0HvB+Y0lrfYB0LA/8O\nXIcZ0vxJrfVU66xcO8v41xb3nVJqN/CvgMJMAnWX1vrudum/K/hXV/9txm/8ZeDzWuvd1t+Wu/iq\nsfY2fAv4OHAN8F6l1NHWWtVwilX9taUHfYt/An6p5tgfAae01vuB/8TMPLdVWcq/drnvysCdWuvd\nwFHgj5VSB2mf/lvOv7r6bzMO/GDmyG4XbgLmtdavaK1LwH3Ax1psk3AFtNaPA9Gaw7cD91rlezFz\nTG9JlvEP2uC+01qPaq2ftMoRQGPKx7RF/13BP6ij/zbrwP83Sqk3lFLfVkp1ttqYdbKU3lG7aRY5\nlFJnlFKvKKU+02pjmkS1JlUccFmbGtuJdrrvsDaZXgs8Qxv2n+XfAeCEdWjV/deSgV8pdUwp9cQS\nf7cBdwF7MefiksDftsLGBrIWvaOtxlu01geAXwb+UCn1jlYbtAHYaINvyFW01X1nDXz/AXxGa72U\nTvaW7r8q/+6wlBLq6r9WLe7+Nku/6WmtddEql5RS9wDf3TizmsJq9I62NFrrYevxolLqQeAtwFOt\ntarhVDSpXlVKdWAmItp45b0mobUet4pb/r5TSnmBY8A3tNYPW4fbpv+W8q/e/mvJwG/JOSyJUkpp\nrbVSyo75AfHyxlnWFBb0joDXMPWOvthakxqH9c3DrbWeVkr1Y2Zd+3yLzWoGDwKfwpQh+RTmjdc2\ntMt9p5RyAN8HHtJaf7vqpbbov+X8q7f/Np1kg1Lq+8CtQAl4Fvis1nq6tVatD2sK6x7AC9yntf6T\nFpvUMKyIgh8CQcwMbPdorb/WWqvWh1LqAeAWoBeYAv4cuB8zHPAwcBEzHHCyZUaugyX8+wvgg7TB\nfWfda8dZnAvk94BHaYP+W8a/zwO/QR39t+kGfkEQBKG5bNaoHkEQBKFJyMAvCIKwzZCBXxAEYZsh\nA78gCMI2QwZ+QRCEbYYM/IIgCNsMGfgFQRC2GTLwC4IgbDP+H+RRyK8Tbsm7AAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x7f1c79f71f60>"
]
}
],
"prompt_number": 8
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"class ChooseDist(pymc.Continuous):\n",
" \"\"\" Mixture model of two distributions according to the probability 'from_first'.\n",
" \n",
" The probability `from_first` must be logit transformed.\n",
" \"\"\"\n",
" def __init__(self, from_first, dist1, dist2, dist_params=None, *args, **kwargs):\n",
" super(ChooseDist, self).__init__(*args, **kwargs)\n",
" self.from_first = from_first\n",
" self.dist1 = dist1\n",
" self.dist2 = dist2\n",
" self.dist_params = dist_params\n",
"\n",
" def logp(self, value):\n",
" \"\"\" Return a theano variable that evaluates the log probability of `value`.\n",
" \n",
" It can depend on the value of `from_dist` and on the dist_params. They\n",
" can all be theano variables themselves\n",
" \"\"\"\n",
" from_first = self.from_first\n",
" dist1, dist2 = self.dist1, self.dist2\n",
" dist_params = self.dist_params\n",
" \n",
" # write the parameters in an array so that we can pass them into logp_score\n",
" \n",
" n_dist1_params = len(dist_params[0])\n",
" n_dist2_params = len(dist_params[1])\n",
" \n",
" dist1_param_types = [T.dscalar] * n_dist1_params\n",
" dist2_param_types = [T.dscalar] * n_dist2_params\n",
" \n",
" # remember which parameter is at which position\n",
" dist1_param_positions = {}\n",
" dist1_params_list = []\n",
" for i, key in enumerate(dist_params[0]):\n",
" dist1_param_positions[key] = i\n",
" dist1_params_list.append(dist_params[0][key])\n",
" \n",
" dist2_param_positions = {}\n",
" dist2_param_list = []\n",
" for i, key in enumerate(dist_params[1]):\n",
" dist2_param_positions[key] = n_dist1_params + i\n",
" dist2_param_list.append(dist_params[1][key])\n",
" \n",
" itypes = [T.dvector, T.dmatrix] + dist1_param_types + dist2_param_types\n",
" @theano.compile.ops.as_op(itypes=itypes, otypes=[T.dscalar])\n",
" def logp_score(from_first_logit, value, *dist_params):\n",
" dist1_params = {key: dist_params[pos] for key, pos in dist1_param_positions.items()}\n",
" dist2_params = {key: dist_params[pos] for key, pos in dist2_param_positions.items()}\n",
" dist1 = self.dist1(**dist1_params)\n",
" dist2 = self.dist2(**dist2_params)\n",
" if any(param < 0 for param in dist_params):\n",
" return np.array(- np.inf)\n",
" \n",
" # compute log(P(value | dist1) * from_first + P(value | dist2) (1 - from_first))\n",
"\n",
" # there is probably a better way of doing this...\n",
" from_first = special.expit(from_first_logit)\n",
" from_dist1 = np.log(from_first) + dist1.logpdf(value)\n",
" from_dist2 = np.log1p(- from_first) + dist2.logpdf(value)\n",
" joined = np.logaddexp(from_dist1, from_dist2).sum()\n",
" return np.array(joined, dtype=np.float64)\n",
"\n",
" return logp_score(from_first, value, *(dist1_params_list + dist2_param_list))\n",
"\n",
"\n",
"with pymc.Model() as model:\n",
" # logit-normal prior on the probability for a peptide score to end up in\n",
" # the 'good' distribution.\n",
" # Maybe a negative mu? What sd is sensible? -> look at real data.\n",
" # Logit transformed.\n",
" from_first_logit = pymc.Normal(\"from_first_logit\", mu=0, sd=5, shape=num_samples)\n",
" \n",
" # the distribution of 'bad' scores\n",
" dist1 = functools.partial(stats.distributions.t, df=6)\n",
" # the distribution of 'good' scores\n",
" dist2 = stats.distributions.gamma\n",
"\n",
" # these should be fairly uniformative priors (check real data!)\n",
" dist1_loc = pymc.Normal(\"dist1_loc\", mu=5, sd=8)\n",
" dist1_scale = pymc.Uniform(\"dist1_scale\", lower=0, upper=10)\n",
"\n",
" dist2_scale = pymc.Uniform(\"dist2_scale\", lower=0, upper=10)\n",
" dist2_a = pymc.Uniform(\"dist2_a\", lower=0, upper=100)\n",
" \n",
" score = ChooseDist(\n",
" \"score\",\n",
" from_first_logit,\n",
" dist1,\n",
" dist2,\n",
" dist_params=[\n",
" {\n",
" 'loc': dist1_loc,\n",
" 'scale': dist1_scale,\n",
" },\n",
" {\n",
" 'scale': dist2_scale,\n",
" 'a': dist2_a,\n",
" },\n",
" ],\n",
" observed=observed_sim\n",
" )"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 29
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Choose starting values for the mcmc (only for faster convergence)"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"estimated_dist1 = observed_sim[observed_sim < np.median(observed_sim)]\n",
"estimated_dist2 = observed_sim[observed_sim > np.percentile(observed_sim, 60)]\n",
"\n",
"start = {\n",
" \"from_first_logit\": np.where(observed_sim[0] < np.median(observed_sim), 1, -1),\n",
" \"dist1_loc\": np.percentile(observed_sim, 40),\n",
" \"dist1_scale\": np.std(estimated_dist1),\n",
" \"dist2_scale\": np.std(estimated_dist2) / 10, # ???\n",
" \"dist2_a\": 70, # ???\n",
"}"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 10
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"start"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 11,
"text": [
"{'dist1_scale': 1.0429859229210188,\n",
" 'dist2_a': 70,\n",
" 'dist2_scale': 0.12943885786196582,\n",
" 'from_first_logit': array([ 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, 1,\n",
" 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1,\n",
" -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1,\n",
" -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1,\n",
" -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1,\n",
" -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1]),\n",
" 'dist1_loc': 7.8375411746890151}"
]
}
],
"prompt_number": 11
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"with model:\n",
" # NUTS would probably be much faster, but it needs the gradient of logp\n",
" step1 = pymc.Metropolis()\n",
" trace = pymc.sample(50000, step1, start=start, progressbar=True)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 0% ] 101 of 50000 complete in 0.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 0% ] 204 of 50000 complete in 1.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 0% ] 285 of 50000 complete in 1.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 0% ] 377 of 50000 complete in 2.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 0% ] 480 of 50000 complete in 2.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 1% ] 585 of 50000 complete in 3.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 1% ] 685 of 50000 complete in 3.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 1% ] 789 of 50000 complete in 4.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 1% ] 893 of 50000 complete in 4.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 1% ] 997 of 50000 complete in 5.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 2% ] 1098 of 50000 complete in 5.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 2% ] 1201 of 50000 complete in 6.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 2% ] 1304 of 50000 complete in 6.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 2% ] 1404 of 50000 complete in 7.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 2% ] 1499 of 50000 complete in 7.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 3% ] 1597 of 50000 complete in 8.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 3% ] 1693 of 50000 complete in 8.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 3% ] 1785 of 50000 complete in 9.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 3% ] 1879 of 50000 complete in 9.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 3% ] 1981 of 50000 complete in 10.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 4% ] 2085 of 50000 complete in 10.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 4% ] 2189 of 50000 complete in 11.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 4% ] 2291 of 50000 complete in 11.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 4% ] 2396 of 50000 complete in 12.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 5% ] 2501 of 50000 complete in 12.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 5% ] 2605 of 50000 complete in 13.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 5% ] 2707 of 50000 complete in 13.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 5% ] 2812 of 50000 complete in 14.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 5% ] 2915 of 50000 complete in 14.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 6% ] 3011 of 50000 complete in 15.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 6% ] 3105 of 50000 complete in 15.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 6% ] 3209 of 50000 complete in 16.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 6% ] 3314 of 50000 complete in 16.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 6% ] 3417 of 50000 complete in 17.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 7% ] 3519 of 50000 complete in 17.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 7% ] 3624 of 50000 complete in 18.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 7% ] 3729 of 50000 complete in 18.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 7% ] 3831 of 50000 complete in 19.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 7% ] 3934 of 50000 complete in 19.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 8% ] 4038 of 50000 complete in 20.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 8% ] 4143 of 50000 complete in 20.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 8% ] 4245 of 50000 complete in 21.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 8% ] 4345 of 50000 complete in 21.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 8% ] 4442 of 50000 complete in 22.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 9% ] 4542 of 50000 complete in 22.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 9% ] 4634 of 50000 complete in 23.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 9% ] 4727 of 50000 complete in 23.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 9% ] 4829 of 50000 complete in 24.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 9% ] 4930 of 50000 complete in 24.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 10% ] 5027 of 50000 complete in 25.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 10% ] 5125 of 50000 complete in 25.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 10% ] 5221 of 50000 complete in 26.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 10% ] 5320 of 50000 complete in 26.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 10% ] 5419 of 50000 complete in 27.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 11% ] 5519 of 50000 complete in 27.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 11% ] 5623 of 50000 complete in 28.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 11% ] 5723 of 50000 complete in 28.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 11% ] 5820 of 50000 complete in 29.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 11% ] 5922 of 50000 complete in 29.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 12% ] 6020 of 50000 complete in 30.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 12% ] 6124 of 50000 complete in 30.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 12% ] 6221 of 50000 complete in 31.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 12% ] 6323 of 50000 complete in 31.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 12% ] 6426 of 50000 complete in 32.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 13% ] 6528 of 50000 complete in 32.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 13% ] 6624 of 50000 complete in 33.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 13% ] 6721 of 50000 complete in 33.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 13% ] 6819 of 50000 complete in 34.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 13% ] 6921 of 50000 complete in 34.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 14% ] 7017 of 50000 complete in 35.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 14% ] 7116 of 50000 complete in 35.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 14% ] 7218 of 50000 complete in 36.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 14% ] 7318 of 50000 complete in 36.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 14% ] 7415 of 50000 complete in 37.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 15% ] 7510 of 50000 complete in 37.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 15% ] 7613 of 50000 complete in 38.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 15% ] 7716 of 50000 complete in 38.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 15% ] 7818 of 50000 complete in 39.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 15% ] 7923 of 50000 complete in 39.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 16% ] 8027 of 50000 complete in 40.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 16% ] 8132 of 50000 complete in 40.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 16% ] 8234 of 50000 complete in 41.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 16% ] 8339 of 50000 complete in 41.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 16% ] 8444 of 50000 complete in 42.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 17% ] 8550 of 50000 complete in 42.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 17% ] 8652 of 50000 complete in 43.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 17% ] 8757 of 50000 complete in 43.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 17% ] 8862 of 50000 complete in 44.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 17% ] 8967 of 50000 complete in 44.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 18% ] 9069 of 50000 complete in 45.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 18% ] 9174 of 50000 complete in 45.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 18% ] 9268 of 50000 complete in 46.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 18% ] 9371 of 50000 complete in 46.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 18% ] 9472 of 50000 complete in 47.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 19% ] 9577 of 50000 complete in 47.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 19% ] 9681 of 50000 complete in 48.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 19% ] 9786 of 50000 complete in 48.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 19% ] 9881 of 50000 complete in 49.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 19% ] 9980 of 50000 complete in 49.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 20% ] 10079 of 50000 complete in 50.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 20% ] 10179 of 50000 complete in 50.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 20% ] 10265 of 50000 complete in 51.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 20% ] 10362 of 50000 complete in 51.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 20% ] 10459 of 50000 complete in 52.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 21% ] 10557 of 50000 complete in 52.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 21% ] 10658 of 50000 complete in 53.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 21% ] 10762 of 50000 complete in 53.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 21% ] 10866 of 50000 complete in 54.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 21% ] 10971 of 50000 complete in 54.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 22% ] 11072 of 50000 complete in 55.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 22% ] 11177 of 50000 complete in 55.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 22% ] 11282 of 50000 complete in 56.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 22% ] 11387 of 50000 complete in 56.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 22% ] 11488 of 50000 complete in 57.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 23% ] 11593 of 50000 complete in 57.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 23% ] 11695 of 50000 complete in 58.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 23% ] 11794 of 50000 complete in 58.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 23% ] 11892 of 50000 complete in 59.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 23% ] 11996 of 50000 complete in 59.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 24% ] 12100 of 50000 complete in 60.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 24% ] 12204 of 50000 complete in 60.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 24% ] 12302 of 50000 complete in 61.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 24% ] 12406 of 50000 complete in 61.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 25% ] 12511 of 50000 complete in 62.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 25% ] 12616 of 50000 complete in 62.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 25% ] 12717 of 50000 complete in 63.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 25% ] 12822 of 50000 complete in 63.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 25% ] 12927 of 50000 complete in 64.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 26% ] 13032 of 50000 complete in 64.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 26% ] 13134 of 50000 complete in 65.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 26% ] 13238 of 50000 complete in 65.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 26% ] 13343 of 50000 complete in 66.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 26% ] 13448 of 50000 complete in 66.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 27% ] 13550 of 50000 complete in 67.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 27% ] 13655 of 50000 complete in 67.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 27% ] 13760 of 50000 complete in 68.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 27% ] 13866 of 50000 complete in 68.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 27% ] 13968 of 50000 complete in 69.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 28% ] 14072 of 50000 complete in 69.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 28% ] 14177 of 50000 complete in 70.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 28% ] 14276 of 50000 complete in 70.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 28% ] 14377 of 50000 complete in 71.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 28% ] 14482 of 50000 complete in 71.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 29% ] 14587 of 50000 complete in 72.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 29% ] 14692 of 50000 complete in 72.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 29% ] 14793 of 50000 complete in 73.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 29% ] 14897 of 50000 complete in 73.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 30% ] 15001 of 50000 complete in 74.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 30% ] 15105 of 50000 complete in 74.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 30% ] 15205 of 50000 complete in 75.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 30% ] 15310 of 50000 complete in 75.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 30% ] 15415 of 50000 complete in 76.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 31% ] 15520 of 50000 complete in 76.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 31% ] 15621 of 50000 complete in 77.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 31% ] 15726 of 50000 complete in 77.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 31% ] 15831 of 50000 complete in 78.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 31% ] 15927 of 50000 complete in 78.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 32% ] 16017 of 50000 complete in 79.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 32% ] 16121 of 50000 complete in 79.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 32% ] 16225 of 50000 complete in 80.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 32% ] 16329 of 50000 complete in 80.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 32% ] 16421 of 50000 complete in 81.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 33% ] 16524 of 50000 complete in 81.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 33% ] 16627 of 50000 complete in 82.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 33% ] 16731 of 50000 complete in 82.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 33% ] 16825 of 50000 complete in 83.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 33% ] 16923 of 50000 complete in 83.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 34% ] 17026 of 50000 complete in 84.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 34% ] 17130 of 50000 complete in 84.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 34% ] 17232 of 50000 complete in 85.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 34% ] 17336 of 50000 complete in 85.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 34% ] 17440 of 50000 complete in 86.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 35% ] 17539 of 50000 complete in 86.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 35% ] 17626 of 50000 complete in 87.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 35% ] 17724 of 50000 complete in 87.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 35% ] 17818 of 50000 complete in 88.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 35% ] 17917 of 50000 complete in 88.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 36% ] 18018 of 50000 complete in 89.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 36% ] 18112 of 50000 complete in 89.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 36% ] 18213 of 50000 complete in 90.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 36% ] 18314 of 50000 complete in 90.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 36% ] 18413 of 50000 complete in 91.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 37% ] 18514 of 50000 complete in 91.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 37% ] 18613 of 50000 complete in 92.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 37% ] 18715 of 50000 complete in 92.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 37% ] 18808 of 50000 complete in 93.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 37% ] 18908 of 50000 complete in 93.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 38% ] 19009 of 50000 complete in 94.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 38% ] 19112 of 50000 complete in 95.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 38% ] 19211 of 50000 complete in 95.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 38% ] 19306 of 50000 complete in 96.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 38% ] 19393 of 50000 complete in 96.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 38% ] 19482 of 50000 complete in 97.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 39% ] 19568 of 50000 complete in 97.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 39% ] 19667 of 50000 complete in 98.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 39% ] 19768 of 50000 complete in 98.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 39% ] 19868 of 50000 complete in 99.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 39% ] 19962 of 50000 complete in 99.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 40% ] 20061 of 50000 complete in 100.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 40% ] 20163 of 50000 complete in 100.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 40% ] 20257 of 50000 complete in 101.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 40% ] 20353 of 50000 complete in 101.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 40% ] 20449 of 50000 complete in 102.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 41% ] 20547 of 50000 complete in 102.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 41% ] 20644 of 50000 complete in 103.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 41% ] 20736 of 50000 complete in 103.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 41% ] 20830 of 50000 complete in 104.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 41% ] 20931 of 50000 complete in 104.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 42% ] 21028 of 50000 complete in 105.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 42% ] 21121 of 50000 complete in 105.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 42% ] 21215 of 50000 complete in 106.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 42% ] 21315 of 50000 complete in 106.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 42% ] 21414 of 50000 complete in 107.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 43% ] 21509 of 50000 complete in 107.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 43% ] 21606 of 50000 complete in 108.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 43% ] 21705 of 50000 complete in 108.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 43% ] 21807 of 50000 complete in 109.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 43% ] 21901 of 50000 complete in 109.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 43% ] 21999 of 50000 complete in 110.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 44% ] 22091 of 50000 complete in 110.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 44% ] 22192 of 50000 complete in 111.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 44% ] 22274 of 50000 complete in 111.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------44% ] 22372 of 50000 complete in 112.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------44% ] 22473 of 50000 complete in 112.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------45% ] 22572 of 50000 complete in 113.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------45% ] 22670 of 50000 complete in 113.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------45% ] 22772 of 50000 complete in 114.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------45% ] 22870 of 50000 complete in 114.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------45% ] 22956 of 50000 complete in 115.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------46% ] 23023 of 50000 complete in 115.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------46% ] 23123 of 50000 complete in 116.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------46% ] 23196 of 50000 complete in 116.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------46% ] 23269 of 50000 complete in 117.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------46% ] 23358 of 50000 complete in 117.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------46% ] 23450 of 50000 complete in 118.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------47% ] 23516 of 50000 complete in 118.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------47% ] 23600 of 50000 complete in 119.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------47% ] 23691 of 50000 complete in 119.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------47% ] 23787 of 50000 complete in 120.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------47% ] 23887 of 50000 complete in 120.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------47% ] 23985 of 50000 complete in 121.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------48% ] 24072 of 50000 complete in 121.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------48% ] 24170 of 50000 complete in 122.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------48% ] 24263 of 50000 complete in 122.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------48% ] 24363 of 50000 complete in 123.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------48% ] 24448 of 50000 complete in 123.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------49% ] 24541 of 50000 complete in 124.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------49% ] 24639 of 50000 complete in 124.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------49% ] 24740 of 50000 complete in 125.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------49% ] 24838 of 50000 complete in 125.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------49% ] 24936 of 50000 complete in 126.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------50% ] 25038 of 50000 complete in 126.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------50% ] 25142 of 50000 complete in 127.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------50% ] 25243 of 50000 complete in 127.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------50% ] 25347 of 50000 complete in 128.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------50% ] 25451 of 50000 complete in 128.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------51% ] 25554 of 50000 complete in 129.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------51% ] 25655 of 50000 complete in 129.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------51% ] 25756 of 50000 complete in 130.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------51% ] 25857 of 50000 complete in 130.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------51% ] 25959 of 50000 complete in 131.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------52% ] 26059 of 50000 complete in 131.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------52% ] 26163 of 50000 complete in 132.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------52% ] 26266 of 50000 complete in 132.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------52% ] 26368 of 50000 complete in 133.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------52% ] 26465 of 50000 complete in 133.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------53% ] 26550 of 50000 complete in 134.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------53% ] 26643 of 50000 complete in 134.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------53% ] 26745 of 50000 complete in 135.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------53% ] 26840 of 50000 complete in 135.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------53% ] 26942 of 50000 complete in 136.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------54% ] 27043 of 50000 complete in 136.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------54% ] 27142 of 50000 complete in 137.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------54% ] 27209 of 50000 complete in 137.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------54% ] 27303 of 50000 complete in 138.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------54% ] 27394 of 50000 complete in 138.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------54% ] 27489 of 50000 complete in 139.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------55% ] 27584 of 50000 complete in 139.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------55%- ] 27683 of 50000 complete in 140.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------55%- ] 27780 of 50000 complete in 140.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------55%- ] 27879 of 50000 complete in 141.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------55%- ] 27969 of 50000 complete in 141.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------56%- ] 28068 of 50000 complete in 142.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------56%- ] 28167 of 50000 complete in 142.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------56%- ] 28262 of 50000 complete in 143.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------56%- ] 28356 of 50000 complete in 143.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------56%- ] 28453 of 50000 complete in 144.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------57%- ] 28530 of 50000 complete in 144.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------57%- ] 28604 of 50000 complete in 145.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------57%- ] 28675 of 50000 complete in 145.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------57%- ] 28742 of 50000 complete in 146.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------57%- ] 28808 of 50000 complete in 146.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------57%- ] 28899 of 50000 complete in 147.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------57%-- ] 28998 of 50000 complete in 147.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------58%-- ] 29098 of 50000 complete in 148.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------58%-- ] 29166 of 50000 complete in 148.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------58%-- ] 29264 of 50000 complete in 149.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------58%-- ] 29361 of 50000 complete in 149.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------58%-- ] 29436 of 50000 complete in 150.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------59%-- ] 29525 of 50000 complete in 150.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------59%-- ] 29588 of 50000 complete in 151.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------59%-- ] 29653 of 50000 complete in 151.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------59%-- ] 29753 of 50000 complete in 152.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------59%-- ] 29849 of 50000 complete in 152.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------59%-- ] 29908 of 50000 complete in 153.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------60%-- ] 30004 of 50000 complete in 153.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------60%-- ] 30074 of 50000 complete in 154.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------60%-- ] 30143 of 50000 complete in 154.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------60%-- ] 30229 of 50000 complete in 155.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------60%--- ] 30283 of 50000 complete in 155.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------60%--- ] 30335 of 50000 complete in 156.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------60%--- ] 30433 of 50000 complete in 156.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------61%--- ] 30522 of 50000 complete in 157.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------61%--- ] 30610 of 50000 complete in 157.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------61%--- ] 30687 of 50000 complete in 158.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------61%--- ] 30781 of 50000 complete in 158.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------61%--- ] 30876 of 50000 complete in 159.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------61%--- ] 30972 of 50000 complete in 159.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------62%--- ] 31067 of 50000 complete in 160.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------62%--- ] 31162 of 50000 complete in 160.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------62%--- ] 31257 of 50000 complete in 161.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------62%--- ] 31356 of 50000 complete in 161.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------62%--- ] 31454 of 50000 complete in 162.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------63%--- ] 31553 of 50000 complete in 162.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------63%---- ] 31652 of 50000 complete in 163.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------63%---- ] 31743 of 50000 complete in 163.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------63%---- ] 31819 of 50000 complete in 164.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------63%---- ] 31888 of 50000 complete in 164.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------63%---- ] 31968 of 50000 complete in 165.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------64%---- ] 32068 of 50000 complete in 165.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------64%---- ] 32163 of 50000 complete in 166.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------64%---- ] 32245 of 50000 complete in 166.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------64%---- ] 32342 of 50000 complete in 167.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------64%---- ] 32415 of 50000 complete in 167.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------64%---- ] 32490 of 50000 complete in 168.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------65%---- ] 32588 of 50000 complete in 168.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------65%---- ] 32666 of 50000 complete in 169.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------65%---- ] 32764 of 50000 complete in 169.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------65%---- ] 32863 of 50000 complete in 170.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------65%----- ] 32955 of 50000 complete in 170.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------66%----- ] 33044 of 50000 complete in 171.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------66%----- ] 33143 of 50000 complete in 171.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------66%----- ] 33243 of 50000 complete in 172.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------66%----- ] 33342 of 50000 complete in 172.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------66%----- ] 33438 of 50000 complete in 173.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------67%----- ] 33540 of 50000 complete in 173.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------67%----- ] 33642 of 50000 complete in 174.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------67%----- ] 33744 of 50000 complete in 174.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------67%----- ] 33836 of 50000 complete in 175.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------67%----- ] 33926 of 50000 complete in 175.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------68%----- ] 34020 of 50000 complete in 176.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------68%----- ] 34121 of 50000 complete in 177.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------68%----- ] 34205 of 50000 complete in 177.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------68%------ ] 34309 of 50000 complete in 178.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------68%------ ] 34412 of 50000 complete in 178.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------69%------ ] 34516 of 50000 complete in 179.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------69%------ ] 34616 of 50000 complete in 179.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------69%------ ] 34720 of 50000 complete in 180.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------69%------ ] 34806 of 50000 complete in 180.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------69%------ ] 34886 of 50000 complete in 181.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------69%------ ] 34942 of 50000 complete in 181.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------70%------ ] 35004 of 50000 complete in 182.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------70%------ ] 35106 of 50000 complete in 182.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------70%------ ] 35193 of 50000 complete in 183.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------70%------ ] 35252 of 50000 complete in 183.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------70%------ ] 35306 of 50000 complete in 184.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------70%------ ] 35393 of 50000 complete in 184.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------70%------ ] 35492 of 50000 complete in 185.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------71%------- ] 35586 of 50000 complete in 185.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------71%------- ] 35683 of 50000 complete in 186.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------71%------- ] 35778 of 50000 complete in 186.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------71%------- ] 35873 of 50000 complete in 187.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------71%------- ] 35967 of 50000 complete in 187.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------72%------- ] 36063 of 50000 complete in 188.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------72%------- ] 36165 of 50000 complete in 188.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------72%------- ] 36259 of 50000 complete in 189.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------72%------- ] 36347 of 50000 complete in 189.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------72%------- ] 36437 of 50000 complete in 190.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------72%------- ] 36495 of 50000 complete in 190.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------73%------- ] 36565 of 50000 complete in 191.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------73%------- ] 36651 of 50000 complete in 191.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------73%------- ] 36749 of 50000 complete in 192.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------73%-------- ] 36846 of 50000 complete in 192.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------73%-------- ] 36947 of 50000 complete in 193.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------74%-------- ] 37040 of 50000 complete in 193.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------74%-------- ] 37142 of 50000 complete in 194.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------74%-------- ] 37234 of 50000 complete in 194.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------74%-------- ] 37332 of 50000 complete in 195.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------74%-------- ] 37426 of 50000 complete in 195.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------75%-------- ] 37527 of 50000 complete in 196.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------75%-------- ] 37630 of 50000 complete in 196.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------75%-------- ] 37733 of 50000 complete in 197.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------75%-------- ] 37830 of 50000 complete in 197.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------75%-------- ] 37914 of 50000 complete in 198.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------76%-------- ] 38011 of 50000 complete in 198.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------76%-------- ] 38113 of 50000 complete in 199.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------76%--------- ] 38213 of 50000 complete in 199.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------76%--------- ] 38313 of 50000 complete in 200.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------76%--------- ] 38410 of 50000 complete in 200.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------77%--------- ] 38513 of 50000 complete in 201.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------77%--------- ] 38606 of 50000 complete in 201.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------77%--------- ] 38702 of 50000 complete in 202.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------77%--------- ] 38800 of 50000 complete in 202.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------77%--------- ] 38896 of 50000 complete in 203.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------77%--------- ] 38983 of 50000 complete in 203.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------78%--------- ] 39086 of 50000 complete in 204.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------78%--------- ] 39179 of 50000 complete in 204.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------78%--------- ] 39273 of 50000 complete in 205.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------78%--------- ] 39374 of 50000 complete in 205.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------78%---------- ] 39478 of 50000 complete in 206.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------79%---------- ] 39581 of 50000 complete in 206.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------79%---------- ] 39681 of 50000 complete in 207.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------79%---------- ] 39781 of 50000 complete in 207.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------79%---------- ] 39882 of 50000 complete in 208.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------79%---------- ] 39985 of 50000 complete in 208.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------80%---------- ] 40085 of 50000 complete in 209.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------80%---------- ] 40185 of 50000 complete in 209.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------80%---------- ] 40283 of 50000 complete in 210.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------80%---------- ] 40380 of 50000 complete in 210.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------80%---------- ] 40471 of 50000 complete in 211.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------81%---------- ] 40564 of 50000 complete in 211.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------81%---------- ] 40647 of 50000 complete in 212.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------81%---------- ] 40720 of 50000 complete in 212.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------81%----------- ] 40815 of 50000 complete in 213.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------81%----------- ] 40905 of 50000 complete in 213.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------82%----------- ] 41004 of 50000 complete in 214.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------82%----------- ] 41105 of 50000 complete in 214.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------82%----------- ] 41196 of 50000 complete in 215.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------82%----------- ] 41292 of 50000 complete in 215.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------82%----------- ] 41393 of 50000 complete in 216.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------82%----------- ] 41496 of 50000 complete in 216.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------83%----------- ] 41600 of 50000 complete in 217.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------83%----------- ] 41698 of 50000 complete in 217.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------83%----------- ] 41793 of 50000 complete in 218.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------83%----------- ] 41892 of 50000 complete in 218.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------83%----------- ] 41992 of 50000 complete in 219.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------84%----------- ] 42087 of 50000 complete in 219.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------84%------------ ] 42189 of 50000 complete in 220.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------84%------------ ] 42289 of 50000 complete in 220.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------84%------------ ] 42392 of 50000 complete in 221.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------84%------------ ] 42487 of 50000 complete in 221.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------85%------------ ] 42591 of 50000 complete in 222.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------85%------------ ] 42694 of 50000 complete in 222.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------85%------------ ] 42797 of 50000 complete in 223.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------85%------------ ] 42894 of 50000 complete in 223.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------85%------------ ] 42998 of 50000 complete in 224.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------86%------------ ] 43099 of 50000 complete in 224.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------86%------------ ] 43198 of 50000 complete in 225.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------86%------------ ] 43299 of 50000 complete in 225.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------86%------------ ] 43403 of 50000 complete in 226.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------87%------------- ] 43507 of 50000 complete in 226.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------87%------------- ] 43611 of 50000 complete in 227.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------87%------------- ] 43712 of 50000 complete in 227.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------87%------------- ] 43817 of 50000 complete in 228.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------87%------------- ] 43922 of 50000 complete in 228.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------88%------------- ] 44027 of 50000 complete in 229.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------88%------------- ] 44129 of 50000 complete in 229.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------88%------------- ] 44232 of 50000 complete in 230.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------88%------------- ] 44336 of 50000 complete in 230.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------88%------------- ] 44432 of 50000 complete in 231.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------89%------------- ] 44517 of 50000 complete in 231.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------89%------------- ] 44606 of 50000 complete in 232.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------89%------------- ] 44699 of 50000 complete in 232.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------89%-------------- ] 44801 of 50000 complete in 233.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------89%-------------- ] 44894 of 50000 complete in 233.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------89%-------------- ] 44994 of 50000 complete in 234.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------90%-------------- ] 45088 of 50000 complete in 234.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------90%-------------- ] 45190 of 50000 complete in 235.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------90%-------------- ] 45289 of 50000 complete in 235.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------90%-------------- ] 45392 of 50000 complete in 236.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------90%-------------- ] 45496 of 50000 complete in 236.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------91%-------------- ] 45599 of 50000 complete in 237.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------91%-------------- ] 45652 of 50000 complete in 237.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------91%-------------- ] 45711 of 50000 complete in 238.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------91%-------------- ] 45769 of 50000 complete in 238.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------91%-------------- ] 45866 of 50000 complete in 239.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------91%-------------- ] 45965 of 50000 complete in 239.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------92%-------------- ] 46027 of 50000 complete in 240.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------92%--------------- ] 46101 of 50000 complete in 240.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------92%--------------- ] 46162 of 50000 complete in 241.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------92%--------------- ] 46256 of 50000 complete in 241.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------92%--------------- ] 46359 of 50000 complete in 242.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------92%--------------- ] 46461 of 50000 complete in 242.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------93%--------------- ] 46563 of 50000 complete in 243.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------93%--------------- ] 46663 of 50000 complete in 243.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------93%--------------- ] 46737 of 50000 complete in 244.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------93%--------------- ] 46824 of 50000 complete in 244.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------93%--------------- ] 46907 of 50000 complete in 245.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------93%--------------- ] 46990 of 50000 complete in 245.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------94%--------------- ] 47087 of 50000 complete in 246.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------94%--------------- ] 47176 of 50000 complete in 246.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------94%--------------- ] 47261 of 50000 complete in 247.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------94%--------------- ] 47326 of 50000 complete in 247.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------94%---------------- ] 47390 of 50000 complete in 248.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------94%---------------- ] 47454 of 50000 complete in 248.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------95%---------------- ] 47509 of 50000 complete in 249.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------95%---------------- ] 47600 of 50000 complete in 249.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------95%---------------- ] 47700 of 50000 complete in 250.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------95%---------------- ] 47798 of 50000 complete in 250.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------95%---------------- ] 47899 of 50000 complete in 251.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------96%---------------- ] 48002 of 50000 complete in 251.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------96%---------------- ] 48105 of 50000 complete in 252.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------96%---------------- ] 48190 of 50000 complete in 252.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------96%---------------- ] 48267 of 50000 complete in 253.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------96%---------------- ] 48327 of 50000 complete in 253.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------96%---------------- ] 48375 of 50000 complete in 254.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------96%---------------- ] 48428 of 50000 complete in 254.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------97%---------------- ] 48527 of 50000 complete in 255.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------97%---------------- ] 48629 of 50000 complete in 255.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------97%----------------- ] 48732 of 50000 complete in 256.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------97%----------------- ] 48799 of 50000 complete in 256.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------97%----------------- ] 48861 of 50000 complete in 257.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------97%----------------- ] 48913 of 50000 complete in 257.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------97%----------------- ] 48974 of 50000 complete in 258.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------98%----------------- ] 49047 of 50000 complete in 258.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------98%----------------- ] 49125 of 50000 complete in 259.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------98%----------------- ] 49195 of 50000 complete in 260.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------98%----------------- ] 49259 of 50000 complete in 260.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------98%----------------- ] 49362 of 50000 complete in 261.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------98%----------------- ] 49463 of 50000 complete in 261.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------99%----------------- ] 49566 of 50000 complete in 262.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------99%----------------- ] 49670 of 50000 complete in 262.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------99%----------------- ] 49773 of 50000 complete in 263.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------99%----------------- ] 49854 of 50000 complete in 263.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------99%----------------- ] 49948 of 50000 complete in 264.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------100%-----------------] 50000 of 50000 complete in 264.3 sec"
]
}
],
"prompt_number": 145
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"with model:\n",
" trace2 = pymc.sample(50000, step1, start=trace[-1], progressbar=True)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 0% ] 97 of 50000 complete in 0.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 0% ] 198 of 50000 complete in 1.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 0% ] 298 of 50000 complete in 1.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 0% ] 401 of 50000 complete in 2.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 1% ] 503 of 50000 complete in 2.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 1% ] 606 of 50000 complete in 3.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 1% ] 706 of 50000 complete in 3.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 1% ] 809 of 50000 complete in 4.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 1% ] 907 of 50000 complete in 4.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 2% ] 1009 of 50000 complete in 5.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 2% ] 1094 of 50000 complete in 5.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 2% ] 1196 of 50000 complete in 6.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [ 2% ] 1299 of 50000 complete in 6.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 2% ] 1402 of 50000 complete in 7.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 2% ] 1495 of 50000 complete in 7.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 3% ] 1597 of 50000 complete in 8.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 3% ] 1699 of 50000 complete in 8.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 3% ] 1800 of 50000 complete in 9.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 3% ] 1900 of 50000 complete in 9.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 3% ] 1999 of 50000 complete in 10.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 4% ] 2095 of 50000 complete in 10.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 4% ] 2197 of 50000 complete in 11.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 4% ] 2291 of 50000 complete in 11.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 4% ] 2393 of 50000 complete in 12.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 4% ] 2490 of 50000 complete in 12.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [- 5% ] 2590 of 50000 complete in 13.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 5% ] 2685 of 50000 complete in 13.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 5% ] 2786 of 50000 complete in 14.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 5% ] 2881 of 50000 complete in 14.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 5% ] 2975 of 50000 complete in 15.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 6% ] 3073 of 50000 complete in 15.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 6% ] 3173 of 50000 complete in 16.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 6% ] 3264 of 50000 complete in 16.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 6% ] 3350 of 50000 complete in 17.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 6% ] 3437 of 50000 complete in 17.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 7% ] 3532 of 50000 complete in 18.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 7% ] 3629 of 50000 complete in 18.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 7% ] 3719 of 50000 complete in 19.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 7% ] 3813 of 50000 complete in 19.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-- 7% ] 3907 of 50000 complete in 20.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 8% ] 4003 of 50000 complete in 20.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 8% ] 4102 of 50000 complete in 21.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 8% ] 4202 of 50000 complete in 21.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 8% ] 4304 of 50000 complete in 22.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 8% ] 4407 of 50000 complete in 22.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 9% ] 4504 of 50000 complete in 23.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 9% ] 4603 of 50000 complete in 23.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 9% ] 4705 of 50000 complete in 24.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 9% ] 4808 of 50000 complete in 24.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 9% ] 4909 of 50000 complete in 25.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 10% ] 5010 of 50000 complete in 25.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 10% ] 5114 of 50000 complete in 26.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--- 10% ] 5218 of 50000 complete in 26.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 10% ] 5319 of 50000 complete in 27.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 10% ] 5420 of 50000 complete in 27.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 11% ] 5522 of 50000 complete in 28.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 11% ] 5624 of 50000 complete in 28.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 11% ] 5725 of 50000 complete in 29.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 11% ] 5825 of 50000 complete in 29.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 11% ] 5928 of 50000 complete in 30.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 12% ] 6031 of 50000 complete in 30.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 12% ] 6131 of 50000 complete in 31.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 12% ] 6233 of 50000 complete in 31.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 12% ] 6333 of 50000 complete in 32.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 12% ] 6435 of 50000 complete in 32.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---- 13% ] 6536 of 50000 complete in 33.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 13% ] 6638 of 50000 complete in 33.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 13% ] 6741 of 50000 complete in 34.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 13% ] 6841 of 50000 complete in 34.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 13% ] 6932 of 50000 complete in 35.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 14% ] 7031 of 50000 complete in 35.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 14% ] 7130 of 50000 complete in 36.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 14% ] 7230 of 50000 complete in 36.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 14% ] 7325 of 50000 complete in 37.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 14% ] 7419 of 50000 complete in 37.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 15% ] 7513 of 50000 complete in 38.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 15% ] 7613 of 50000 complete in 38.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 15% ] 7710 of 50000 complete in 39.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----- 15% ] 7811 of 50000 complete in 39.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 15% ] 7912 of 50000 complete in 40.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 16% ] 8012 of 50000 complete in 40.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 16% ] 8110 of 50000 complete in 41.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 16% ] 8208 of 50000 complete in 41.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 16% ] 8307 of 50000 complete in 42.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 16% ] 8400 of 50000 complete in 42.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 16% ] 8487 of 50000 complete in 43.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 17% ] 8590 of 50000 complete in 43.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 17% ] 8667 of 50000 complete in 44.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 17% ] 8734 of 50000 complete in 44.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 17% ] 8786 of 50000 complete in 45.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 17% ] 8879 of 50000 complete in 45.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 17% ] 8981 of 50000 complete in 46.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 18% ] 9083 of 50000 complete in 46.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------ 18% ] 9181 of 50000 complete in 47.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 18% ] 9283 of 50000 complete in 47.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 18% ] 9379 of 50000 complete in 48.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 18% ] 9476 of 50000 complete in 48.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 19% ] 9564 of 50000 complete in 49.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 19% ] 9660 of 50000 complete in 49.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 19% ] 9763 of 50000 complete in 50.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 19% ] 9866 of 50000 complete in 50.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 19% ] 9966 of 50000 complete in 51.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 20% ] 10069 of 50000 complete in 51.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 20% ] 10172 of 50000 complete in 52.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 20% ] 10253 of 50000 complete in 52.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 20% ] 10338 of 50000 complete in 53.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------- 20% ] 10436 of 50000 complete in 53.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 21% ] 10539 of 50000 complete in 54.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 21% ] 10642 of 50000 complete in 54.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 21% ] 10742 of 50000 complete in 55.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 21% ] 10844 of 50000 complete in 55.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 21% ] 10946 of 50000 complete in 56.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 22% ] 11047 of 50000 complete in 56.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 22% ] 11145 of 50000 complete in 57.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 22% ] 11248 of 50000 complete in 57.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 22% ] 11351 of 50000 complete in 58.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 22% ] 11454 of 50000 complete in 58.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 23% ] 11538 of 50000 complete in 59.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 23% ] 11625 of 50000 complete in 59.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 23% ] 11709 of 50000 complete in 60.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------- 23% ] 11784 of 50000 complete in 60.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 23% ] 11867 of 50000 complete in 61.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 23% ] 11962 of 50000 complete in 61.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 24% ] 12054 of 50000 complete in 62.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 24% ] 12152 of 50000 complete in 62.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 24% ] 12252 of 50000 complete in 63.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 24% ] 12355 of 50000 complete in 63.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 24% ] 12458 of 50000 complete in 64.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 25% ] 12561 of 50000 complete in 64.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 25% ] 12661 of 50000 complete in 65.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 25% ] 12764 of 50000 complete in 65.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 25% ] 12855 of 50000 complete in 66.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 25% ] 12940 of 50000 complete in 66.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 26% ] 13007 of 50000 complete in 67.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------- 26% ] 13111 of 50000 complete in 67.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 26% ] 13215 of 50000 complete in 68.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 26% ] 13302 of 50000 complete in 68.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 26% ] 13386 of 50000 complete in 69.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 26% ] 13479 of 50000 complete in 69.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 27% ] 13582 of 50000 complete in 70.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 27% ] 13685 of 50000 complete in 70.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 27% ] 13785 of 50000 complete in 71.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 27% ] 13888 of 50000 complete in 71.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 27% ] 13991 of 50000 complete in 72.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 28% ] 14092 of 50000 complete in 72.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 28% ] 14188 of 50000 complete in 73.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 28% ] 14283 of 50000 complete in 73.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------- 28% ] 14379 of 50000 complete in 74.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 28% ] 14475 of 50000 complete in 74.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 29% ] 14574 of 50000 complete in 75.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 29% ] 14676 of 50000 complete in 75.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 29% ] 14779 of 50000 complete in 76.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 29% ] 14882 of 50000 complete in 76.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 29% ] 14982 of 50000 complete in 77.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 30% ] 15086 of 50000 complete in 77.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 30% ] 15190 of 50000 complete in 78.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 30% ] 15294 of 50000 complete in 78.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 30% ] 15394 of 50000 complete in 79.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 30% ] 15497 of 50000 complete in 79.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 31% ] 15600 of 50000 complete in 80.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [----------- 31% ] 15703 of 50000 complete in 80.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 31% ] 15803 of 50000 complete in 81.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 31% ] 15898 of 50000 complete in 81.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 31% ] 15976 of 50000 complete in 82.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 32% ] 16056 of 50000 complete in 82.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 32% ] 16126 of 50000 complete in 83.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 32% ] 16199 of 50000 complete in 84.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 32% ] 16285 of 50000 complete in 84.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 32% ] 16383 of 50000 complete in 85.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 32% ] 16480 of 50000 complete in 85.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 33% ] 16575 of 50000 complete in 86.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 33% ] 16677 of 50000 complete in 86.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 33% ] 16781 of 50000 complete in 87.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 33% ] 16881 of 50000 complete in 87.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 33% ] 16984 of 50000 complete in 88.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------ 34% ] 17086 of 50000 complete in 88.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 34% ] 17188 of 50000 complete in 89.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 34% ] 17287 of 50000 complete in 89.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 34% ] 17390 of 50000 complete in 90.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 34% ] 17492 of 50000 complete in 90.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 35% ] 17595 of 50000 complete in 91.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 35% ] 17693 of 50000 complete in 91.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 35% ] 17793 of 50000 complete in 92.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 35% ] 17892 of 50000 complete in 92.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 35% ] 17991 of 50000 complete in 93.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 36% ] 18080 of 50000 complete in 93.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 36% ] 18182 of 50000 complete in 94.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 36% ] 18283 of 50000 complete in 94.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [------------- 36% ] 18384 of 50000 complete in 95.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 36% ] 18478 of 50000 complete in 95.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 37% ] 18581 of 50000 complete in 96.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 37% ] 18683 of 50000 complete in 96.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 37% ] 18785 of 50000 complete in 97.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 37% ] 18877 of 50000 complete in 97.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 37% ] 18978 of 50000 complete in 98.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 38% ] 19081 of 50000 complete in 98.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 38% ] 19179 of 50000 complete in 99.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 38% ] 19266 of 50000 complete in 99.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 38% ] 19366 of 50000 complete in 100.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 38% ] 19468 of 50000 complete in 100.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 39% ] 19566 of 50000 complete in 101.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-------------- 39% ] 19661 of 50000 complete in 101.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 39% ] 19763 of 50000 complete in 102.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 39% ] 19865 of 50000 complete in 102.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 39% ] 19964 of 50000 complete in 103.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 40% ] 20060 of 50000 complete in 103.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 40% ] 20133 of 50000 complete in 104.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 40% ] 20235 of 50000 complete in 104.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 40% ] 20337 of 50000 complete in 105.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 40% ] 20417 of 50000 complete in 105.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 41% ] 20509 of 50000 complete in 106.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 41% ] 20605 of 50000 complete in 106.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 41% ] 20709 of 50000 complete in 107.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 41% ] 20811 of 50000 complete in 107.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 41% ] 20914 of 50000 complete in 108.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [--------------- 42% ] 21006 of 50000 complete in 108.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 42% ] 21110 of 50000 complete in 109.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 42% ] 21214 of 50000 complete in 109.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 42% ] 21318 of 50000 complete in 110.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 42% ] 21419 of 50000 complete in 110.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 43% ] 21523 of 50000 complete in 111.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 43% ] 21627 of 50000 complete in 111.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 43% ] 21728 of 50000 complete in 112.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 43% ] 21816 of 50000 complete in 112.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 43% ] 21892 of 50000 complete in 113.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 43% ] 21989 of 50000 complete in 113.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 44% ] 22087 of 50000 complete in 114.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 44% ] 22187 of 50000 complete in 114.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [---------------- 44% ] 22288 of 50000 complete in 115.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------44% ] 22393 of 50000 complete in 115.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------44% ] 22497 of 50000 complete in 116.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------45% ] 22569 of 50000 complete in 116.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------45% ] 22670 of 50000 complete in 117.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------45% ] 22774 of 50000 complete in 117.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------45% ] 22878 of 50000 complete in 118.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------45% ] 22983 of 50000 complete in 118.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------46% ] 23087 of 50000 complete in 119.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------46% ] 23188 of 50000 complete in 119.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------46% ] 23292 of 50000 complete in 120.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------46% ] 23396 of 50000 complete in 120.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------47% ] 23501 of 50000 complete in 121.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------47% ] 23606 of 50000 complete in 121.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------47% ] 23711 of 50000 complete in 122.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------47% ] 23811 of 50000 complete in 122.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------47% ] 23915 of 50000 complete in 123.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------48% ] 24020 of 50000 complete in 123.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------48% ] 24125 of 50000 complete in 124.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------48% ] 24229 of 50000 complete in 124.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------48% ] 24334 of 50000 complete in 125.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------48% ] 24434 of 50000 complete in 125.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------49% ] 24539 of 50000 complete in 126.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------49% ] 24643 of 50000 complete in 126.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------49% ] 24747 of 50000 complete in 127.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------49% ] 24851 of 50000 complete in 127.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------49% ] 24955 of 50000 complete in 128.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------50% ] 25054 of 50000 complete in 128.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------50% ] 25158 of 50000 complete in 129.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------50% ] 25262 of 50000 complete in 129.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------50% ] 25366 of 50000 complete in 130.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------50% ] 25467 of 50000 complete in 130.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------51% ] 25567 of 50000 complete in 131.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------51% ] 25664 of 50000 complete in 131.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------51% ] 25765 of 50000 complete in 132.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------51% ] 25867 of 50000 complete in 132.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------51% ] 25969 of 50000 complete in 133.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------52% ] 26073 of 50000 complete in 133.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------52% ] 26176 of 50000 complete in 134.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------52% ] 26274 of 50000 complete in 134.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------52% ] 26379 of 50000 complete in 135.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------52% ] 26483 of 50000 complete in 135.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------53% ] 26588 of 50000 complete in 136.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------53% ] 26693 of 50000 complete in 136.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------53% ] 26796 of 50000 complete in 137.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------53% ] 26898 of 50000 complete in 137.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------54% ] 27002 of 50000 complete in 138.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------54% ] 27104 of 50000 complete in 138.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------54% ] 27206 of 50000 complete in 139.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------54% ] 27310 of 50000 complete in 139.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------54% ] 27413 of 50000 complete in 140.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------55% ] 27514 of 50000 complete in 140.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------55% ] 27617 of 50000 complete in 141.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------55%- ] 27717 of 50000 complete in 141.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------55%- ] 27820 of 50000 complete in 142.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------55%- ] 27923 of 50000 complete in 142.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------56%- ] 28022 of 50000 complete in 143.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------56%- ] 28124 of 50000 complete in 143.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------56%- ] 28228 of 50000 complete in 144.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------56%- ] 28332 of 50000 complete in 144.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------56%- ] 28437 of 50000 complete in 145.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------57%- ] 28540 of 50000 complete in 145.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------57%- ] 28642 of 50000 complete in 146.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------57%- ] 28744 of 50000 complete in 146.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------57%- ] 28849 of 50000 complete in 147.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------57%-- ] 28953 of 50000 complete in 147.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------58%-- ] 29058 of 50000 complete in 148.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------58%-- ] 29163 of 50000 complete in 148.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------58%-- ] 29264 of 50000 complete in 149.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------58%-- ] 29365 of 50000 complete in 149.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------58%-- ] 29469 of 50000 complete in 150.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------59%-- ] 29572 of 50000 complete in 150.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------59%-- ] 29676 of 50000 complete in 151.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------59%-- ] 29780 of 50000 complete in 151.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------59%-- ] 29881 of 50000 complete in 152.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------59%-- ] 29985 of 50000 complete in 152.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------60%-- ] 30089 of 50000 complete in 153.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------60%-- ] 30193 of 50000 complete in 153.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------60%--- ] 30297 of 50000 complete in 154.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------60%--- ] 30402 of 50000 complete in 154.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------61%--- ] 30502 of 50000 complete in 155.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------61%--- ] 30601 of 50000 complete in 155.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------61%--- ] 30702 of 50000 complete in 156.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------61%--- ] 30805 of 50000 complete in 156.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------61%--- ] 30902 of 50000 complete in 157.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------62%--- ] 31001 of 50000 complete in 157.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------62%--- ] 31087 of 50000 complete in 158.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------62%--- ] 31184 of 50000 complete in 158.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------62%--- ] 31281 of 50000 complete in 159.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------62%--- ] 31379 of 50000 complete in 159.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------62%--- ] 31469 of 50000 complete in 160.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------63%--- ] 31559 of 50000 complete in 160.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------63%---- ] 31656 of 50000 complete in 161.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------63%---- ] 31724 of 50000 complete in 161.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------63%---- ] 31782 of 50000 complete in 162.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------63%---- ] 31842 of 50000 complete in 162.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------63%---- ] 31916 of 50000 complete in 163.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------64%---- ] 32003 of 50000 complete in 163.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------64%---- ] 32078 of 50000 complete in 164.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------64%---- ] 32171 of 50000 complete in 164.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------64%---- ] 32270 of 50000 complete in 165.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------64%---- ] 32361 of 50000 complete in 165.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------64%---- ] 32455 of 50000 complete in 166.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------65%---- ] 32531 of 50000 complete in 166.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------65%---- ] 32620 of 50000 complete in 167.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------65%---- ] 32716 of 50000 complete in 167.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------65%---- ] 32800 of 50000 complete in 168.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------65%---- ] 32857 of 50000 complete in 168.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------65%----- ] 32931 of 50000 complete in 169.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------66%----- ] 33015 of 50000 complete in 169.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------66%----- ] 33096 of 50000 complete in 170.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------66%----- ] 33196 of 50000 complete in 170.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------66%----- ] 33293 of 50000 complete in 171.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------66%----- ] 33396 of 50000 complete in 171.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------66%----- ] 33498 of 50000 complete in 172.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------67%----- ] 33599 of 50000 complete in 172.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------67%----- ] 33680 of 50000 complete in 173.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------67%----- ] 33769 of 50000 complete in 174.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------67%----- ] 33873 of 50000 complete in 174.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------67%----- ] 33976 of 50000 complete in 175.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------68%----- ] 34079 of 50000 complete in 175.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------68%----- ] 34180 of 50000 complete in 176.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------68%------ ] 34280 of 50000 complete in 176.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------68%------ ] 34383 of 50000 complete in 177.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------68%------ ] 34484 of 50000 complete in 177.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------69%------ ] 34584 of 50000 complete in 178.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------69%------ ] 34684 of 50000 complete in 178.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------69%------ ] 34786 of 50000 complete in 179.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------69%------ ] 34885 of 50000 complete in 179.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------69%------ ] 34987 of 50000 complete in 180.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------70%------ ] 35091 of 50000 complete in 180.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------70%------ ] 35195 of 50000 complete in 181.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------70%------ ] 35291 of 50000 complete in 181.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------70%------ ] 35385 of 50000 complete in 182.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------70%------ ] 35471 of 50000 complete in 182.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------71%------- ] 35570 of 50000 complete in 183.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------71%------- ] 35673 of 50000 complete in 183.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------71%------- ] 35767 of 50000 complete in 184.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------71%------- ] 35857 of 50000 complete in 184.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------71%------- ] 35949 of 50000 complete in 185.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------72%------- ] 36033 of 50000 complete in 185.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------72%------- ] 36114 of 50000 complete in 186.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------72%------- ] 36214 of 50000 complete in 186.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------72%------- ] 36318 of 50000 complete in 187.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------72%------- ] 36422 of 50000 complete in 187.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------73%------- ] 36525 of 50000 complete in 188.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------73%------- ] 36626 of 50000 complete in 188.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------73%------- ] 36731 of 50000 complete in 189.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------73%------- ] 36836 of 50000 complete in 189.5 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------73%-------- ] 36938 of 50000 complete in 190.0 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------74%-------- ] 37034 of 50000 complete in 190.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------74%-------- ] 37129 of 50000 complete in 191.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------74%-------- ] 37226 of 50000 complete in 191.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------74%-------- ] 37325 of 50000 complete in 192.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------74%-------- ] 37428 of 50000 complete in 192.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------75%-------- ] 37530 of 50000 complete in 193.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------75%-------- ] 37629 of 50000 complete in 193.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------75%-------- ] 37726 of 50000 complete in 194.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------75%-------- ] 37804 of 50000 complete in 194.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------75%-------- ] 37889 of 50000 complete in 195.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------75%-------- ] 37991 of 50000 complete in 195.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------76%-------- ] 38093 of 50000 complete in 196.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------76%--------- ] 38196 of 50000 complete in 196.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------76%--------- ] 38296 of 50000 complete in 197.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------76%--------- ] 38380 of 50000 complete in 197.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------76%--------- ] 38466 of 50000 complete in 198.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------77%--------- ] 38550 of 50000 complete in 198.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------77%--------- ] 38643 of 50000 complete in 199.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------77%--------- ] 38738 of 50000 complete in 199.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------77%--------- ] 38829 of 50000 complete in 200.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------77%--------- ] 38927 of 50000 complete in 200.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------78%--------- ] 39031 of 50000 complete in 201.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------78%--------- ] 39136 of 50000 complete in 201.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------78%--------- ] 39240 of 50000 complete in 202.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------78%--------- ] 39344 of 50000 complete in 202.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------78%--------- ] 39433 of 50000 complete in 203.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------79%---------- ] 39526 of 50000 complete in 203.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------79%---------- ] 39623 of 50000 complete in 204.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------79%---------- ] 39726 of 50000 complete in 204.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------79%---------- ] 39830 of 50000 complete in 205.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------79%---------- ] 39930 of 50000 complete in 205.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------80%---------- ] 40025 of 50000 complete in 206.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------80%---------- ] 40124 of 50000 complete in 206.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------80%---------- ] 40229 of 50000 complete in 207.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------80%---------- ] 40333 of 50000 complete in 207.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------80%---------- ] 40427 of 50000 complete in 208.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------81%---------- ] 40524 of 50000 complete in 208.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------81%---------- ] 40626 of 50000 complete in 209.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------81%---------- ] 40726 of 50000 complete in 209.6 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------81%----------- ] 40826 of 50000 complete in 210.1 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------81%----------- ] 40926 of 50000 complete in 210.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------82%----------- ] 41029 of 50000 complete in 211.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------82%----------- ] 41132 of 50000 complete in 211.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------82%----------- ] 41227 of 50000 complete in 212.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------82%----------- ] 41326 of 50000 complete in 212.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------82%----------- ] 41430 of 50000 complete in 213.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------83%----------- ] 41534 of 50000 complete in 213.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------83%----------- ] 41638 of 50000 complete in 214.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------83%----------- ] 41742 of 50000 complete in 214.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------83%----------- ] 41844 of 50000 complete in 215.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------83%----------- ] 41945 of 50000 complete in 215.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------84%----------- ] 42048 of 50000 complete in 216.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------84%------------ ] 42151 of 50000 complete in 216.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------84%------------ ] 42254 of 50000 complete in 217.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------84%------------ ] 42358 of 50000 complete in 217.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------84%------------ ] 42459 of 50000 complete in 218.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------85%------------ ] 42559 of 50000 complete in 218.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------85%------------ ] 42662 of 50000 complete in 219.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------85%------------ ] 42765 of 50000 complete in 219.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------85%------------ ] 42868 of 50000 complete in 220.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------85%------------ ] 42971 of 50000 complete in 220.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------86%------------ ] 43072 of 50000 complete in 221.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------86%------------ ] 43169 of 50000 complete in 221.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------86%------------ ] 43265 of 50000 complete in 222.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------86%------------ ] 43363 of 50000 complete in 222.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------86%------------- ] 43464 of 50000 complete in 223.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------87%------------- ] 43556 of 50000 complete in 223.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------87%------------- ] 43657 of 50000 complete in 224.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------87%------------- ] 43757 of 50000 complete in 224.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------87%------------- ] 43860 of 50000 complete in 225.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------87%------------- ] 43963 of 50000 complete in 225.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------88%------------- ] 44067 of 50000 complete in 226.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------88%------------- ] 44171 of 50000 complete in 226.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------88%------------- ] 44268 of 50000 complete in 227.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------88%------------- ] 44365 of 50000 complete in 227.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------88%------------- ] 44462 of 50000 complete in 228.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------89%------------- ] 44553 of 50000 complete in 228.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------89%------------- ] 44640 of 50000 complete in 229.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------89%-------------- ] 44739 of 50000 complete in 229.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------89%-------------- ] 44840 of 50000 complete in 230.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------89%-------------- ] 44943 of 50000 complete in 230.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------90%-------------- ] 45046 of 50000 complete in 231.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------90%-------------- ] 45146 of 50000 complete in 231.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------90%-------------- ] 45250 of 50000 complete in 232.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------90%-------------- ] 45354 of 50000 complete in 232.7 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------90%-------------- ] 45456 of 50000 complete in 233.2 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------91%-------------- ] 45556 of 50000 complete in 233.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------91%-------------- ] 45660 of 50000 complete in 234.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------91%-------------- ] 45764 of 50000 complete in 234.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------91%-------------- ] 45868 of 50000 complete in 235.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------91%-------------- ] 45968 of 50000 complete in 235.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------92%--------------- ] 46062 of 50000 complete in 236.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------92%--------------- ] 46159 of 50000 complete in 236.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------92%--------------- ] 46259 of 50000 complete in 237.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------92%--------------- ] 46352 of 50000 complete in 237.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------92%--------------- ] 46446 of 50000 complete in 238.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------93%--------------- ] 46546 of 50000 complete in 238.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------93%--------------- ] 46641 of 50000 complete in 239.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------93%--------------- ] 46742 of 50000 complete in 239.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------93%--------------- ] 46846 of 50000 complete in 240.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------93%--------------- ] 46948 of 50000 complete in 240.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------94%--------------- ] 47047 of 50000 complete in 241.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------94%--------------- ] 47133 of 50000 complete in 241.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------94%--------------- ] 47230 of 50000 complete in 242.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------94%--------------- ] 47333 of 50000 complete in 242.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------94%---------------- ] 47429 of 50000 complete in 243.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------95%---------------- ] 47516 of 50000 complete in 243.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------95%---------------- ] 47610 of 50000 complete in 244.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------95%---------------- ] 47706 of 50000 complete in 244.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------95%---------------- ] 47800 of 50000 complete in 245.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------95%---------------- ] 47892 of 50000 complete in 245.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------95%---------------- ] 47996 of 50000 complete in 246.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------96%---------------- ] 48099 of 50000 complete in 246.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------96%---------------- ] 48202 of 50000 complete in 247.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------96%---------------- ] 48303 of 50000 complete in 247.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------96%---------------- ] 48407 of 50000 complete in 248.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------97%---------------- ] 48510 of 50000 complete in 248.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------97%---------------- ] 48613 of 50000 complete in 249.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------97%----------------- ] 48714 of 50000 complete in 249.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------97%----------------- ] 48818 of 50000 complete in 250.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------97%----------------- ] 48921 of 50000 complete in 250.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------98%----------------- ] 49024 of 50000 complete in 251.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------98%----------------- ] 49126 of 50000 complete in 251.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------98%----------------- ] 49230 of 50000 complete in 252.3 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------98%----------------- ] 49334 of 50000 complete in 252.8 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------98%----------------- ] 49437 of 50000 complete in 253.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------99%----------------- ] 49540 of 50000 complete in 253.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------99%----------------- ] 49644 of 50000 complete in 254.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------99%----------------- ] 49748 of 50000 complete in 254.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------99%----------------- ] 49851 of 50000 complete in 255.4 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------99%----------------- ] 49953 of 50000 complete in 255.9 sec"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\r",
" [-----------------100%-----------------] 50000 of 50000 complete in 256.1 sec"
]
}
],
"prompt_number": 146
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"ax = pymc.traceplot(trace2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAALKCAYAAAAxj8DnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmsZ1le2Pc5y11/y9vqVVXXdHX3rJcZswQCjjF4gThg\nK5BYgYxQImScRIFIJiSO5ESxHaFEUUxkrMiSbWwCFhY4thFgITmJCDFEicEo1kBmxsCd6Z6e6drf\n/lvvdpb8cX/v1auq96qrurq6qrrPp/RU793f+d37vecu5/s93+UI7z2BQCAQCAQCgUAgEHjnyGct\nQCAQCAQCgUAgEAi86ATDKhAIBAKBQCAQCASekGBYBQKBQCAQCAQCgcATEgyrQCAQCAQCgUAgEHhC\ngmEVCAQCgUAgEAgEAk9IMKwCgUAgEAgEAoFA4AnRz1qAQODdpiiK14CfBz4K/KWyLP/mM5bhLwPf\nCHy+LMsff4rH/AHge8qy/O53YV8OuFCW5cETCxYIBAKBhxLGrTBuBd4fBMMq8H7kPwV+vSzLb3pe\nZCiK4tuBvcfdSVEUHwN+uyzL0bss39vx54DFSoafXcnw1AbXQCAQ+IATxq0nJ4xbgWdOMKwC70de\nAf63+zcWRSEAUZale69lKMvyn57XsCgKVZalfQ9kemSexWxpIBAIfIAJ49YTEsatwPOA8N4/axkC\ngXeNoih+BvheYAnMgc8AN4CvpR80vhvIgb8OfBL4EvDny7L89dX3/8Fq2x8Gvgn4f4B/D/gfgX8X\neBP4dFmW5SPKMAO+E/iLwOfKsvzxoij+JPA/rPb9rwO/CPwvwN9ZyWSBXyrL8j8uiuJzwKeAt1a7\n/zfKsnz9nOP+AKdCKoqi+KaHnOc68FPAt632/Y+A7y7L8ptXnzvgAvBdwN8AWmAK/JOyLP/ceece\nCAQCgccjjFth3Aq8fwjFKwLvK8qy/DPArwD/ZVmWHwY6+kHp+8qy/AhwHfhfgZ8EtoD/Dvjloigu\nn9rNv08fUnARGAC/BfwTYBP4VfrB5VFl+EhZll8E/OrnmK8D/nlZlp8qy/IvAX8F+IWyLDeBK/SD\nFcCfBpZlWX549XPm4HQ/RVGM3+Y8/yf6gfAK8G8B33+ffMfn8veAfwz896vjh8EpEAgE3kXCuNUT\nxq3A+4FgWAXe73jg58qyvL36+zuAG2VZ/nRZlrYsy1+iH4C+51T7nynL8vNlWS6AXwBulmX5i2VZ\nGuBnga9/xGOLh3x2syzLnzv1dwt8vCiKq2VZdmVZ/otH2MfD+E4efp7fC/xoWZZ1WZZvAT/xNsd6\np3IEAoFA4PEI41YYtwIvKMGwCnwQuH3q9yvcDU845sur7cfcOfV7dcbfw3dZJoAfATLgM0VRfK4o\niu97wv2fe55FUazRh5VcO/XZ9bfZX4gZDgQCgfeOMG71fJkwbgVeIIJhFfggcPrlegN49b7PP7za\n/jSP+9DPyrK8XpblD5RluQ38F8DPFEWxBbzThOWbnHOeZVlO6AfaV059dvUh+3KEmb9AIBB4Lwnj\nVk8YtwIvFMGwCnzQ+BX62a8fKIpCF0Xxp4E/SJ+I+25z/0v93Jd8URTfWxTF9urPHfpBwQC7QHZf\nLP2j8Hbn+fPAjxZFkRZF8QrwQ5w/oO4AH3vM4wcCgUDg3SGMWz1h3Ao89wTDKvBB4OTFW5blFPg3\n6V/Ie8B/A/zbp2LZ72nPg8m793/+SMc9Z7+n+Tbgs0VRHNJXWvozZVlOyrKcAT+2+uygKIribY7n\nAVazew87z/8cUPQzhL8M/H36ePmz5PufgW9eHf/vPuyEA4FAIPCuEMatMG4FXkCeu3Lrq9mPn6Iv\nGbqkL8P5O89WqkDg/U1RFH8e+PqyLL//WcsSCLyIFEXxQ/QLrAKUwPeXZTl/hiIFAu9rwrgVeB55\nHj1WPwH8RlmWL9Gv4fCVZyxPIPC+oyiKjxVF8dWr3wv6Mr2/9GylCgReTIqi2AD+W+APlWX5Kfq1\nc/7DZytVIPD+IoxbgRcB/awFOM0qHvdbgE8DrMqGLp6pUIHAGRRF8TLwf5/z8beUZXnzKR33r3K3\n9Oxpfr4sy7/wGLtaA/5BURQXgCPgJ8uyfBrx+oHABwGx+smLoljQV0p7GoUFAoF3TBi3AoGnz3MV\nClgUxbcCfw34Av2aC/8c+OGyLJfPVLBAIBAIBB5CURT/Ef0CpnP6qIt/5xmLFAgEAoH3mOfKY0Uv\nzzcA/xnwm8DfBv4C8KNnNfbeeyFCNc1AIBB4xnygX8RFUQyAPwt8FXAL+PtFUfwnZVn+rbPah7Er\nEAgEngve9Rfx82ZYXQdul2X5GwBFUfwifXWYMxFCsLs7e69ke2K2t0cvlLzw4skc5H36vGgyB3mf\nPtvbo2ctwrPmDwOHZVleByiK4h8D3wWcaVi9aGPXe8mLeP+/V4S+OZ/QN+cT+uZ8nsbY9VwVryjL\n8nVgryiKr1lt+g7gc89QpEAgEAgE3o5rwDcURXGhKAoBfCfwu89YpkAgEAi8xzxXhtWKHwR+tiiK\nkn5V7R97xvIEAoFAIHAuZVn+PvDj9HnBJZDT51sFAoFA4APE8xYKSFmWvwV83bOWIxAIBAKBR6Us\nyx+nN64CgUAg8AHlefRYBQKBQCAQCAQCgcALxXPnsQoEAoFA4P3MF946ZDGriWNFGiuGaYSUZxen\nurW/4MbuAiFgfZgQR4rNcQLAII2eSA7nPVII2s7SWUcWa4x1QF9gY39a473He3hr527y+8X1nJ2j\nfhWUjWHC+ihhez1DhkqHgReIqjHUreXW/oK2c2yOEzrruLI1II4kxngiLU+eTWMdy8awP6m5vJmT\nJUGFfi9oOkvTWox13DlYcvXSiGF2991nrKMzDus8bWeRUmCsY5BGRFoyW3ZY67i+u2BjlKC15NrO\njLVB8lSKV4S7IhAIBAKB95Bbewums+rMz7JYU7XmzM92J/13buzNz/z8wjgjSzWXNjLaztEZy7Xd\nvu04j9mf1DTGPrH8x0YVwOG84XDe8Oat6ck2JSVf+5Etklg98bE+KEyXLbNFy2TRnijwaaSREqzz\nNJ1lY33K4dGSWCuUFBSvrJNEiuPS/c578DxgpNdVx+Sw4uhwiUo0o80c5zyxksSJJI01R4cVXWNQ\nUjJeT8ny+LHkd85jrMMDSgqc83ggiRTGOmbLjumiZZBp1gYxSknqxlK3hvVhghBQNZZbBwt2j/r7\n/NJGznTRnjwP2+sZaaSItKSzns5YOuO4tJFjxII7ewuMcdSt4XDecPXiiPmy5XDenMgZKUVnz34G\nbu73xzk+/sO4c/jg8qpKStYGMUfzhisXBmglyVPNKIs4b3kF5z2zZcc4j2g7h9YCJV+cYLJlbTDO\nEWtJEvXPe2scs0WLcZ6LGxnzqmOYRUyXLV3nqBrD7qTmcFZzNGtYHyXMFi3LxiIF5GkEHuJIcjBt\nkBJGecT6MEVKePPWjKo1VM3d92QcSZSU/b3i+/ZNZ0kixXgQIwR0xnHncMG8MjSdJUsUf/QbX3nX\n+yQYVoFAIBAIvIdsb2Qkslemm+5eJe88o+pR2JtWMIVrOw+WVp5X3SPvRwpBGmuWTcfmKGVZG+rO\nMMpirHOsDRJuHSx49dKI6aJXXLWUGNd7u6xz/Pbruw/sd5zHfOLqOlpJlnWv3FjrWBvGRFoxrzrs\n/oJbO3PWhjGjx1Tu323m05raWKq2V9b35w15EnH14pA80RjnWNSGURYhheC3X9/FGk/bGCaH9yrn\nUoKUko9/ZJPDZXuy3XaOtu3vgbY1mM4CAmv6vnTOE8WSrnVM9iuqU9fx5s0pQgjyYYyOJNW8ZTFv\ncc4jBOSxIk80e7MG708J86WDh573xXHChVHClavrJFmENY5l3fF7bx2RrM57mEaMBzEHs4b6Hdyz\n1niEhGre0jQGax1bF4fgeg+EUvIB4+U8g2d/WjMeZQ9MVpz1HNxjVHm4tJkzmbfUnSGJFE1nyZOI\nZdOdtEH08koleJhT1jrHwawG4PruGZMfHurWYp0nS3qj+fQxTpp5To7ziZfX0VoyXN1jx17mJ8V5\nj7WeedWxbAzjPGK2bFnUHW/cmOI9vHZ5hPW+fxfUfbtjBILedD6W2XNrf8my7tusDWMm8xYheuO6\nbs+f0Lm9f/c6Ww+z4+djdTmt6ycXvnJnShwpBNzz3hQC2s6RJ5JjkTrb91PTWnbaikhJupUXK109\nF+PB03m/CH/P0/bC4V+k2vwv4loCL5rMQd6nz4smc5D36bO9PfrAx4AVRbEN/BTwTcAS+J6yLH/n\nnOb3jF2LuqNp+xCWedWxqDoubuQMUk0cne/18d5z57Diy7d7b9FHr6zxxs0JAGmkWRvGJ8rph18a\nM1t0XFhPibREsJoZPsV00ZIlmki/sxlz730/Ez2tmS27E0PrcThLQf7wS2MubeRArxAua8PtgyV7\nk7vteu+OYNl0XNrIOZjWdNbx4ctj1ocxTWuZ7i2oaoO3js46ppVhfRAz2ki5vV/Rec9oGPPlrxwi\nEbTmXvnlyhMTJwql+xny5aJBKok1jsdVp6QE50AKcB6yWFGtFNBICS6MEoZpRKwlznuyLOFgsqQ1\njt1pjRD3yhhriXUOe1+3CwFRpGhbSxYrZlWHdR5resPQeo+KJDpSeNsbhsdsDOPe6+Q8zvUnWLUG\nYz2dcSSRZLAKyzKmD8naWMuQwmPMo3VIpESvCK/6A/o+uXIhx1rorCMfRHTLDikExjnuTBqSRIGA\nprZsrWfkecSFzZzOOq5dP+LW3hIRSS6ME9plRyMEWgkUMBglYBwqUnxdcZE0Vrx1Z8b1mxOkkkgL\nrbHk6ylNa9BaIUUfIruWRuwfLBmkEVkkEUKggTTRIAVv7S2Y1R0H+0sSreikwDrHctmtjDSL9AIn\nwNneYEsSDVqiVs+ed55USyQCISGWgnyUkCaapnPc2J2jpGQ00AgEUgrSSHG0aPjQhSGXNnLyVPHW\nnTky0pim49bBkrrtvUIPM3QevE/FybU/TRxJOtOHEAMnhlccKbrO3WN4HXN5M8cDeawZDSJ2Disu\nb+a8dWeOcY6LGxmjPOLLt2ZkseJTH95ilEe9t72z7E9rpBCsDWImi5Z/5WMXiCOFdY79SU0Sa4SA\nprUsa0Nn3T1GYRr3HtOXt4cIAS9dXnvXx65gWL2HvKAK0wslc5D36fOiyRzkffoEwwqKovgF4P8t\ny/KvFEUxAOKyLA/Pae53dnpjyHSO+aymXnbMZ33IUhQpxCqcS0qB956mvtcrsHlhwMaFHPkChA21\nneXW/pJbB4t7tnsH4j7xL22PuHPW/e/BGocxFh1plBI0tcE5j3OO2aQhG0QkiSZONdW8ZTZtHtzP\nY5LFirU8Ik8j2tZw/eCuMXdsEJ3mte0B6SosaThOiCJNPoy5tbfg9760jwISLbm8nhEpifcerRV2\nZQ1duDRkOEpoW4vWEiklUgmUkmxvj7h+7YDpUc3RwelZfs/uYYVAoAYRRsLOYYV1njzVbI0zXrk8\nou3smSFsJ13sPTuHFQeHFe2iwwNSiV75lyC1ZHuY0LWWxjgiJZECslPhiKc5NkQiLU8U+bWVl6Dp\nLAiBk6BiRT1vEAjWRwmL1mJaQyTlmQbAxjCh6ew9HpQ8i1g+hlf2NFGi6JonD5F9O7z3/TVJ9ANG\n+2mc97TGUXeWxcrDdYwQnBjwSktUJLGdQ8cSqRVSCwT3Xossi6mqlrNYH8ZUrUVw19ga5RFNa9la\nS9mb1Bjr8d4zymOkgCRWJx6040Mde7AiJcnTiFEe0RnH2iBmfZicm0P6buK850s3p0RK0po+DPA4\nJPM8nsbYFUIBA4FAIBB4AoqiuAx8C/BpgLIsF8DivPaf/8yNc3OsALru4Uqe930Y2G/9zs2TbYM8\nJh0njBLNxnrG+nqK870Sd15+x7tF01nkyhvQNoabb00wp3K5olhx6cqYkZLs787x3vcyrfQdtyqQ\noaQgry1XBwlpHuGE4P/7vTvMqwdDzQaJ4spGhvewOzMMEkWMoJo1xMYhjWN9EDFvLabrldg0kqik\nN3SEFHSNoW0sXW1ojSNPFOMsYpRGDNdSfKJ49dLopP+893y99RjjWC6ak+1ZHrFoLYu6Y/eo5shY\nwLM/7cPCxlXM9nrGv/b1H2KYRSSRZDbvaI1la+Psoh9R/KB6Npk3fPHmlHl9nwEhINrM7n4X+NDF\n4T1NzgqLu7SRo6RglMeMB30eUGccgj6f74vXJqwPE/JUsb/ykOWJZlF3OOvJ0t5AiKSgWXQYY9nY\nzBkN4t5j6T1H+0t0osji3vg6vvb5fbJko+TutV39770nsR5nHW7lEUzyCA+kUqBqQ9cY6lmLkL3H\nzXS29/AohVOCq9sDtrZy7tycYQVsrqU442lbQ9s5ru/OUR6Oe3SUR2wME5z3CCloOouxntY6DuYt\nSvT3+6K1pHlE19k+NyqSKA+LRctw1Bt+g0ijY8lHL425uJUTRxLrIUkUUgl2D5b87uv7SCmJZO91\nSpQgUpJhGhElmjdvHGGNJ40VWgm87z3cVevYGMWMBwl1Z5ks2hNvbr3KPZOxwjvPWh6TJZqbBwuG\nWZ/fNkoUn3h5nTzRNJVBR5LN7QHOeZbzlvm0wXvPJzYHWO95c2dO7ft7v64Nlzcyilc3keJ48oeH\nGjDH17M1dwtNZHGff2dcb5BVjWFRG7zvi4YoJdmf1OA9k+WDhuEgjVjc/yzcx839B1/DWvYeYOc9\n3/3H3v3iFcFj9R7ygs5Ev1AyB3mfPtvbI37zi5/ltfFVtHz+52ZetD5+0eSF4LEqiuJbgb8GfAH4\nevqFgn+4LMsz3QM/+bP/wo/SqM+xkBLTWSrg8lbOsu6gcxxO+pCXUR6xsZlxtGzJhgmTO3O880SJ\npq07/NtE22XjBLUKVxKi95DZziKEYPvSkHndPWB4jfOYtWFC1Zj+O8YxijXbF/ITz9GbX9zrFbp5\nw7KxKClOZtZjLckSTawlo0GMeoTZau8AAeNxymyVp3Ka08bXsQLdGceXb8+QAjbGKaMsOgljlFJy\n4dKAtY28V5LhsQ1M53rl61hhdN7TtJa2swyyiOmiZdkYDqbN3Zycd8DGsK+q2If2WcZ5zHTZcm0V\nHnXMWWGSxyRa8dGX17DWI6XgaNZw62CBlpJRHjFbdqSJori6TqTfu6IibWdZ1Ia6NRzNW5QUDFJN\nnkYoJdCyD190Hm7uLbiw1oeqaiWJtOy9Yqv7Z1513Nids72eoZRknN8tCrG9PeLOnSmIPkfwWLcV\nQlA1ps+3MRZjHM557hxVzJYteaKZLzq6zhInvadYyz6n6WjxmB7P+3Kl3hEerPUo3e9IS8mHtgds\njlKu7czZm1RUyw5rHB+9MsLaPvx2Pmvw9OGLxyGYWgmM9WRZdE9u3mnO8rqeDsl8GEmmwcP6Zm8m\nW2NpGkua9df2nr7w0NQdCEGSvkO94VT/OuNPJmaayqBX3jspxUmRk2u785PcqvP47j/28fd/KGBR\nFLvA8Vt1XpblJx/SPBhWT5kXTeYg79PnQOzwl//Pv8rXXPgUP/S1P/CsxXlbXrQ+ftHkhWBYFUXx\nx4FfBf4o8JvA3wZulmX5o2e1/4lf/OwTDbyjPGJtmHBxI6dpDbO9BRt5TN1aDqf1SVjZ4yCkxN+j\nTQk4I0fiUYkSzfqlEdP9JV3dEa2ME60EH3p5jcE45cb+Eu891axBxwodKRZHNdXKsEqHCXnWV/fK\nxylpqmkeITdkkEUsqu7c3JC3I0v0PRXHHpU4kozymI+9vH4Spua95/Nv7N/TTimBte+sbz/52iZb\naykIcRJq936g6SxayXuMcOs8e6uCFWvD3kB/8+aUprMcTB40vp8U5wxttY+Oey+Gd4YrF9dYG6Z4\nEWEsDLO+yEMaKyazKVrCbFERuf4af2WnZWus2Rwq8ixjZ9KxO/GYrkKtKjxKAUkkaW2EkJJIdHzi\n6oAsjdk7mLIzdVQmpWv6cUCqiDS/AEJiuiVSaHQ8OPc8jLHUlUFK2N+912OTZhFpqjGNxQLDcUJT\nG6ZHFaO1lK6xmNbi8Yw3cuJE4azn8GDJaFXI5Lhq5aOQ5/FJcZITGSJF3VmSVJPGmjjWqFjRNB1p\nGnFlc8CN60fcPlwySiPGw5hYSkZpxLI1WOfRUrBsLUqIk0qKg1X5+2wQUS16Q1KIvhiKc/SGeqzo\nWouQgosvjdi+9MEIBTRlWV591kIEAoGz+eL+mwB8bu93n7EkgcBzw3XgdlmWvwFQFMUvAj90XuPN\nccp8XvdKRSSZzFsQ/XSssQ61Cq0Z5TF1Y5jXHWmkubSV9WWsPXhrubO3MsBjyZ4xIOG1j22xNU5Q\nQjA5qpjsL4kTzWRanxRIEEIwXfbeg9Y46sYwjCWtgboxVK3tw3acY3uc9cZPY9iftwxW3zfOMdrK\nuLw95JWLQ4SQHExrhBLkscYBr984QqaSOL0b5mWBtw4WcDrfSoDpDHSG8VaOj+/qOktnQcFsUTM7\nJ7hyey2jM+7Ew/CwMMuH4X1f1lxJiXOeG3sLkkgSR4okUlxYS+/JjZFCsD5M2BwlbK2lJ0bObFrh\nvcfZCiljPvnyCGeWOFPhXINpjgCI0gs0fpPfv3bIvOqYVx3GOrSSyFXY3adeHXFxc4y1HVsbEUdT\nw8HBAmcbvHeARwiN9xZnFnTNPt6e7Z1Q0QCdbPbtXYvppgihETIC73CuIUov4hF4IoSw3NqdcPug\n5aULa9St7StPrki0wjqPMQZBxYe2cgZ5zO2dPY6WllzXzKr+fk5jwbyWbI5z9o6m6HhMEvf3RdO2\nOFuBd2xtXmKydAj5eF61h3nzTuNMRawFrQHvWj7y0pC62mcQe5JUoEeCzu7Rdp40FigzoTu6+/15\n7xSjAdLVtg0FrMT9Ax9S9BMSBlPP2Exg8yKAXIVBng6Xu2ucmHrOrIZEwtV1gCXOSQ4Xjt1JzdHe\nW6wPFFsDyZ0jw+H+XcM8Srcorq4zyGKU9FStZtlEDPOUQbHNxYtjdnYmeGf6a43HmcXKASSRKsF5\nyazqGKQKJQzeddTLI5RW4A32wt3lFLL1Aikj5tOanVuzByZynIe6NSeGssoeYmp437urG9eHh9Yd\nhzePyCV8ZCu/28Za5ot+UkUA1kIiADyx1ESxZFk1GOPOvQ/u3zqZLNm+FNaxCgQCzxjjnn6SbyDw\ntCiKIgKulmX5pXdrn2VZvl4UxV5RFF9TluXngO8APnde+0//iU88tlfSOc8Xrx89kLR/Pzf25nfX\nufJQ2ZpUSuRAYKxlYyujbj2t78MBK9PhY2hWVfVSF5NJgWn7UugiUmgtiYDxGcc7mC9563CPpVky\nivu8noPqkCxKGUZDhlGfPH7ncMnhrGGcx1y5MCBfhYNd2shIYnWSZzRay3jjy/ssV+Fbddd74W4f\nLPkT/+pVIi3PrZR4nL/TdPak+lkk5pjqxkkfHq8RFOcvUS9vsT9p2Js6KpMghEZ68AyIpOOVLYPt\nloBHR+tUyxZrZuh4HakzlBQczGr2jqbYN46QMsG5Bmf7fJArm5pI9+GLaSRIIsHh3LE3tcxrR2+P\nXwf6qKa1SCKSCGdXIWgGfv+N23z+i30hiVGeoURNxxIvKz61fYVIP7hItMcjEDSdpzWeUdbnlEwn\nM+b1hJsH5qQS34M8WCYf4I35rZMwLKVyPI4OcOau5+iN5b21WtrVaVjXywGOvaNV0ZZ2ilmlzehT\noWe7ezdOvq9UjPcWRESUbp3UIP/Uqxs4ZxFmlyRSzGvHy5di9nf3+r7UGcng5dVxJnTVzpnn1PfV\nHkMN824OIgc0WoGSIMSjxfZF2Ta2m6GicW9cC4WUEUKlCKExpqJtjzC25s3JNYjXuTK4QNctEUKS\nRQPqbsHSVGRAqhMG0YBEZ/h0yUJ/iQ1vUEIy8fDRl4bEKqVz/TYpFuAX2GU/caGAkQAqWFZwYFOW\n07M9fJ4+Blcg0HhuTg6Ytme/m9biEVmU0ex/FpAoIdi+INHRALzFe4t3FhUN6JoF1q8hVYRkH7yh\ncS0SQRwN8a4D72kaw2LWraoIZniRMVzbxHSOK1fXEMLjvUCq+B7vbGs7rs9vYp3hoFtinYG4N+qO\nQ55znTFZzpFakEQRUgm8dzjv6VoLnQQ+9rbX93F5Hg0rVRTFF4AW+OtlWf6dZy1QIBC4S22evNJW\nIPAsKIri24C/Sx9u/lVFUXwz8CNlWX7fu7D7HwR+tiiKFPgs8GfPa/i7O1/kK3du3bNNSsVXbXwc\nIQQ35rc4qvtp8vV0HSUk+9UBIhH42HPpwhajeMDRsqI2NZ/c/gizdsZnb7/OtRst025OYxoynZJH\nOUr0a79Yb/nywS3k/aX4AFHLlQfkXgZ+QFu1OO+wq0mVQZqwqBuiqM/balsPojeojqm6mqqr2WVv\ndR5rbKeKg3qHO4sRcZ0wjHJurzxX3nuWXYVMPbqLUULfU3Xs0mbO595chdR5uDRuaOo5L2+nCNfP\nRfeLxnocGi0MaSwxx4UyYOUJ9Nw+tNx4/U1OdoagtlOmzYxRkqFFgl/lj6axpG57BX0lKF3dy3H/\nm/DYoDrm5sGDBrBUCSCQ0uGcOTk+eBpTYZgybyqkhGEqQTiOdeKFm6/WvPKA5MbubYaZZ16t8nEU\ntOR4IfFytUaPN4BiHKXkAjrX4WyNIUcLiXMGh0MikEJhvKUxNa3tiyFsZRs479BKEWuoW7g0rrm0\n3ofGaZUwWToWtePOUX9/JJFgY32LPImQ0RqzZccoj9DSMkh6z5oQIP0CrQcIqQFB20xpLXjbIuhL\nuZ8k0rC/uloOU90mWl0f20IqPU3d4LzrjYJmgpldf8BASHSCc5bOGbxQCG/xMsKoAV7GeOO5W8bi\nGMtmtkljGhbdop8okIqtbAspFF+afBk7ucnLow8xbxZUpiKSEY1t6WxLFuVU3alUy2gM3nFtfsrY\nq+96g44ATAf1qXWw1PCeSjhvGI+q99FmATiI11jTKbPmCOsswt9732Xt3aqAXqi+FKd3OBkjvEX4\nfu20+79nVX5izDoZsyNjksWd1af3hgorqfur4z3eO4SQrCUjqrqmtd2Z75YT4v5nEOUsuyWxGLGQ\nS3732uqFozvjAAAgAElEQVR9E+UsTvWhkzFOpjiVILxD2hqNx6q8NzRNTWKX4ASjZLA6D4+Wms46\npFiVt0/OkecJeR5zrF4py/KtoiheBX4F+A/Ksvxn5zR/voQPBD4A/PRn/iH/+xd/HSEE//DTf/M9\nOebtX/lVpv/yX/LxH/lhxAtQXvoDyAuR6FEUxW8B3wv8vbIsv221rSzLsngv5finv/9bfrmo8c73\nIS2D3qNQ2V6hVUKSRwPAM2mmaKlpTIcXjlE0JFbxyWeTZoJE9zO2HvDgWoGrJWpkce2QRPdKqHGO\nW3u9EfKhlxRpKlhP14llhPAC5+4uTuo8xNHjX9aNdIOjakFlFjhpcc5xZ7GD8JrlXHI0uTtsa6kw\nziKF7JV3qdGRQLuY1ja0rkU6A96ynW2wkWZgXB+y51o625GplEjHpKo3JCpTY71l2fXn6U8Uw2yl\nTDukq+gVyV5xk3HGaCjZXrdouzL0hMYDR9Zy2E4YxxscNEfYuuHgMEX7lI9tjRHSI5WBzLPXLunq\nGaPBGrcnoJXGGEG10HjvMc6wNcoZRgmjoSfPI7TSvWet6RftNXoEQuKFBNF75rz3VEtNbTymklg6\n5suORCc0pya6lOpDpO7//TRSQpr2eSl4uLDZH+O4jLdSq8p9xxuPWSnGwncI71BSc7xMldAp7pxI\nhov5NtN2Rm1qsijno2uvIYRg2S05bCYcVAdsZht01uDxSCGpTU0kNcvmCLwnbvfO3LcSkk7EeKnJ\n84hqvsQLjfAd0h0buQITjXErQ/PE4DyFlhrj3vnC3I9CpCK6VYjmWjImVjFHzQQPrCdjWtvROUNt\n6jONkA+NrmCcZWe5ixDi3P6+B28ByWicMps9+oRoohOuDC6znqwhheT6/BY7y91eLiGQop+EGUUD\nOttSd3Ok63qvldA4laC7CcrWHKvpRo/wOqevOSlXRu3Kt+M9wluUmfWGHg6xMn6BBwy+06wla2ys\n5ARYmiW3FzsoqRjqnCzKyOMRSuXYrje0PY7bix1EvMEf+uo//v7PsSrL8q3V/18piuKXgW8EzjOs\nXqgk7xc0Kf2FkjnI+/Q5VlgiGb1nsr/xN/4WAPm3/0mSK1ce67svWh+/aPJCL/MLgirL8lpR3GNH\nPV2N6gyOrrXENqc2NYMo5+bNO8y6+X3K0hQpFIlKEMIAfdjeEUe4Y4NAKpw7DgWLSHTKQGdoFSER\nDOsBla0xnSHfkNgOLmyOsa2HGehO0E3BSEe6JjGNp114GmqWZsnacMSFdAudwJpeRyoBicF6y2F9\nxIfXXqOxNZGM6Jxhvz7gsNpD2oZMRXgRUduaRDiEhGw4ZZxWOJXhZAJ4rBXUlSJJYJhpiBqq/Zvs\n7WesZYa1tWMFecaSXvmfzyO8hGmVgepwjeckyQVYHymOqj7UKFIJiUpouorOmdW6XxYtNRcvW2Kt\nWEtinLe8Uc+QQhKrmMY0vbEKIDP2TA0qhThlnGhk6rgjpwjlERFgwLUSZ9aZVp4UgT2ACE8kOmTq\ncJWE2ZI5S+YHIMQpL6EE4SWJWqCFIotT4o2WfBgz1EN8smT7YgatYtEZ+ml+T2ciPrz2GpaG9XSN\nVCUIIbDOcthMWIvHXJvfoDY1zjs20nUSlVDbmp3F2WF/iU7YTDfYqfZO7kkpI5y3eJHgAXdqQSX/\nECV/Z3n3GFW35PNn5Oae9nQe09oWVkZQk31opXwbhDc42RfvUFKfXCOfZXTd3SLuF/ItBnrAMM7R\nMuqNMGcQCCKpT0q/w/kFQLz3eDxHzeRkbajWtljvWJrqxKscqQglFK3r2M62GEaD/l4TglznZDo9\n8xiv8vjlBK6OruCcw1iLkorJ0ZL9ownWesbjnHpmaGVNvOURAtaTNTY3B9wREzKdMoqHJ+d1luf6\nvGNeHT183G1sS21qYhxK5+xWvYcx1xnjeIQ6J2fuOHzXOsvCLLkxu0UeZSihuJBtEauIebtAAsNk\n1OcWuo6u2sGaZZ+L5z1S59huTq5zikvfAKs8Qu8MzixPjCro88peGlx+tA5/BzxXhlVRFOv0iyru\nFEVxEfhTwA8/Y7ECgcApqq6PS4nEe//6cNX5i1sGAo/AfDW2AFAUxXdwHGP0HlLv3WRmPSodYusd\nht6R65TIG+I4x+mURdsCvdKtVYbpFmyo43CeGKsHJNGQznZYZ3lpdJk8ypBSYIxDiLteCOccrvVo\nqbC6praHzOp9uvq4cpagOvQ4oZHe9sngIsV3sNMHJ3Fz9b+yixNvwAF9PoyMIR5qlG8QAppG0DUC\nZwTrawlbbU6sJTobszy6yFo8xuGxznJjuc+r6YhLW55ZNyeVKfVwmz9yZZNIxry52OXANDhnaJxD\nqIhUgYo0Fy6nZDrm5tEhvpNESYOUsD7IeWkzo7sToaXGWsdhZxlEKYlOiAYQDyVRpPtwRilwxiPb\nvhxBPXWkscDbvvS1845hPCDTGdNmytJX1PMaEFhvyXW2CqdTRCpiQ64xMwvECPSqMERnDfE4JlYx\nlalxwjLKBhzNZzjvHnT5ejCHEZMDy4Q+DLHKBPWphV7zLYUz8IXZl2imDmffAiDKJF3lMN4iEORR\nysvjK1y8PCZLY5raoKqUTw63Wcwa2sbS1IYoVljjkEqgW81WnRDFisWsX7NLKUE+TBivp8SJRkg4\nqA/ZTDeQQmKdxXSWOI5oreH2zSPeunOHSk+ZdQt0Ct4IpFVESqOFZj5vGF9I2PO3eXn4MiM9wtiO\nSTPjanqVQZIzWy7QXcogT7HWkcQaaxxpHHH9+gF42FZjXhoJDuoj9rpd9pb77N33aG/nF4A+TzhW\nEZ3rOKgOWU/XqU1NbWrW03WurJTu3WqPzhpuL3d4bXyVSEX41b/1ZMxH1147eX4eF2sd1aIlijVS\nwtFBxdHBkiSNGK31lfpmD6l86D29h8gZhBB9MYn9tv/dxyzeWtK6ml27z8bWGm8d3CIeKqJIsam3\naBYLErNGpOcMBhG1a7gzP8TojlfGQxa25qipeDXfJlUxcZIjdYpONlA6xzSHeG9wpsK0fSijpn9j\nealYXxnbkbq48nD5M/vpbpiuYhyPGG/dO0nnvWOoI/CsDGGPaSdE2UViGfchjbYCoUiGrxzv9Z5j\neWdpq5uYZkI6+jAIgW2n2G7K0+C5MqyAl4BfKopiSJ9j9RNlWf7aM5YpEAicol4lK583A/U0cdU7\nq/YVCKz4r4H/A7hcFMX/BXwS+K73WojxpZq2NcCCRCYkdkAeRURxgjUepVrWX8mIotNDdAxs0HW+\nzxfQYjWLfvwczoAZUqcnBQW891z7SkuSSpYLR5xJoghM7bg42mA0liSpZDF3mM6DsEymHa3tc38W\nK8VDxx7TnlKKTnkrAFwL9YFhGI/JdMZAxfjEQNyvvCr9iNdvdOSxZGlgFjmWjQOpwW1xcwE39wES\n1oYRWynMu5cRQrDBVTZOd17vvMO1bhX56HklUngN4Glsi5t4UhXTjFquz2+ipGA7H5FHeW/QNQZa\nxZ36EOcdLw+v4PB9qoeMiJPuJOTyfl1wPRkjpWBja0DXWSaHFX1lPkFnDbvVPnmUs5H2Ul+4OMQY\ni1KS4TghSe8Wm+ic4drsBjvzHWwLbWM4XMzIkwHU62hlGbq0N1ZtTT5W0ElSlTGMMmbzBfv1AZGM\nmLdLHK5/P9cCiTjx5uxXcHN+B3fDcXlwiUTFJzkrAmidYdktcL73YvQ/gsa2vDq+ykDnDNOc2/M9\n3MSR3NZ4oRjoHFzHF+uvcNQdYbsGLSOk1DgZ9x4FoUEIMmKkSU8MSN9B6x0REeZQotoxN3cmwBTj\nDMZ1XOfg1C23Cj+LR3TOomVf8KSzhkxn7LQJddOd7F/FfWir6zwy8cQjyWJxs18DLlbEicbT5/W9\nNbvBRrrOpJny+tGX+/XLrEMquQqNhDf3r53c+mkUsxlvIrzkzuEBWZzgcJjWYZxBi5iPX77KOBnB\n6lFZTGtsJWh9y8xPqVbP6IbawLqOzCscjmoyodlpmZopkYzIonUaV9OaOdY7BmpIIiIWbn6SDJNm\nAqUFdeWQSmE6f8/SCbu7qs/NWw2ft1YFU064b2rp9t7k5PcbfOXkdyUU1lu21SaDTKFdhG/VPZ4v\n5x1aC4zpC6iM129guuv9Ysu1wzmNEI4068NVx2OF0v3yA9ZAkoqTZRKUjvsiF2dgmge9nKeRKsF7\nS5y/hIqGJIOrxPnLGGe4ubjN7nKPrWyTVx66l3fGc2VYlWX5e8BXPWs5AoHA+VRdH6vtn0GKo2sf\nXH09EHhUyrL8jVUBi2+l1yn/WVmWZydwPCZFUUjgN4CuLMs/8rC2r2z/AZb7e8TpZZpqidCrSmk2\nAeGxtmF/p8/1iZN+3RXvwXnJxvY2ijlN57DWMZvcnzsxwfl+vZrxesrLr0bM5zUy7lgbZcRRzMZL\nMdNqDxtdpHVrMJrTHLQIGzMc3GRqJiTqAhfihKSPtCEfRKikV27HG5+i7SSL6QG3b+wzGA9p6yW3\nJrt4tYYxMYeLmsm0Il3TtJUlSYZ0eYSpOrpEMV6PyJMIYy3zyRzT9S42qyLemtu+rvUpNlYLDQ9T\njRf9jP+k6ki1pBNHVLY5UaqjRGAW/fspzTTZhiTKJLbrqKcOWs+y6lA6J1uFeq3WJ0atpSy845pv\n0c5TG4HSMNQKkToaJxhox6hzWC+IN/t8pMoKEunJBTRi/6SwxdTCIB4wbRdUu4I02kAZmHb7GAOH\nS2hFhECgVIzIckgEInNUCKY0jCPHQFmGGzF+0OLcnMPZlM55tFAI5dnaGvT950Y4bekaRTZU6MSx\nM91ledhhasn1+R0UvVHqEolRESqq8bR40aCMABMhnEfGmi/rz+PsEtmCVx5nJXYnu+faDFRCojRK\nCRpbYzqLjiTWeub5IUOV0s4dygic8CAdkpjFvPf+5PEI4zqUUtSmQeWAMjgj8G2C1R3dQsCgY9Eu\noVJID2QG1wpIPcmsX9MNQAvFUI6w3pLJjM53dLe6k3ILMvY4PCY/Ni4l+81t8BCTUDNHCI+0Dp2D\njlKWdtEXfcDTujm77vbqb8dhE4EVqMUAKxqQsHd0E5JTRoGR0MXYDqhjJB6vBNf9LfAgIo/0Ai89\nathhWoHK5sRMaecKlTjaJuKIKdmFJVLBlWyjL/DiNMbAaF3hnSCOBc5ahABrwPgxe/sdKRoZLxjE\nKWQL4iSirRtSuU4aZdyZzPFWMMxT8niIxdGqGYvFDIHA2t4Y3LUH7C56i1HoGClicI5I55iVl93L\nDmeW+L3ec7Uuxyx9Res7lFBsdxvEImL30OOFp/Edne+YuSUSwcwvqXwN2uKkY+gHHHXL/hmVgmGc\nYKXnQrZBqmN0JFhMlgjlyaOESAuOmgqtf4+Faal8TesMUigQGmdb0njEH/zYVz/sVf2OeK4Mq0Ag\n8PxznCztHlbl5xTOeX7uV7/A135ki6/72IUnOrbvgmEVeDLKsjwAfvkp7PoHgS8BL79dw5upx2zm\nbCSe0eWLjPXH2TtqmVcd7bwlleJE0T9qHAeu5tAuWbgF+sYEgyeRKdtSgkvYt0cI0eFQOCQtMbIV\n2KMKgSWhRgiPPezoREpfXlni2SfnNhaBRWKQ9GrBNliIW4vrU8lx046cDjwsv/LZVTEGT9sB1YK2\n9b1hWB2uvgF+CN4KlHY4WRFbMKpfPFhLyKxHaoncFiRmwGJZM21vY8RKOfMnuiz+WK+d9+qxkhIv\nJYkaggepBM4K0lTjPRw72HwrYSKJFrCWeJb0oWBGg7OQZIKGfm0fpQXSexwK6/oS4HXjSazn2sKj\n5n3JdI+iqlcLHmsYpYJBIjGdZ95YWqdw3hF1hmEuUKqi6wR17eHEC3PaFeYZJUMiF/WFKqoGaxq8\ngNp23DBLcpXgr0/wdLSdo+0giTydE4xiTzuJGGUxrhMYJ9FSEXURSbZGrK8gNwxWVRws5nhlkdbh\ncCznHa6OyCKBaRUbicYoy9w2LF3HYBYTxw2KhukkoVooosggrKcxgiSChZco5xjGHh1LfOe4M4n7\nu2o5xkZ9XlvT9n22Pu6IEkc2kMyWEclgjrKCWChSEzGdRoxVjljdqRdzwaGxTJcd2aChU547M4Ov\nItYGjo2xRUUt1dLSdRLpPPNqytE8xWtLqyRCxiihiBS4yYxh0oFNsELilCL1itZKDlvNQK4x8B0b\ndIilwyIYuiGHtaNzDpcvUDLFdikJnstjgRf9M9W4hNbULBqFlzECCU7TCcmi1rTOkekY23b4+XJ1\nFwjkUNLKPrconsZY6Wilp9MRUijsXKKkxnnHYtZ/diuKUDomto6oqohkTKM9wgmsEkTWYZVExZq5\n1gytYK27yFFj6A4G4B0WRRorNvKMy9k28wrWiNmI+vw2pSTxZY1JDOlQ8MbO6xgnaIVhPtuBw110\n0yAbh3CWRIBCczRb4gYpW21CoxUzdxsTR73B1y7ZQ3I0WMNFGd5YBrN9lhsZ9TgHYbH0yyWARDqY\n0iC0xiNpSdkxfUm//dYg6NAYKjGC1Spsfdhg3AduOsFJCUAP0nsuHQh8+vgLqT8KwbAKBAKPRb0q\nKWzdo72Uru3M+bXP3ODXPnODn/6vvv2Jju2bYFgF3jlFUdwtU3UXX5Zlflb7x9jvReDTwF8Efuzt\n2t9eatpKc3NZIcUS63dwHloHNhIkSuC9oGla5lYQxQoiQVunJ4txzmzHkZToRCHF5vGpYK2nqTtO\nK+4zsrtn7fucA+87wDMREbFMiCKPU/2aQYK+Qt+0bTBWUreCtu5QOuE49NDe//ifqowtETgMmfYY\n59BxX7wCoA+Esxhg5v5/9t4kVrY8z+/6/P7DGWK643svMytraFd13263W24LYZoNq0aIDbCzQYgN\nG4QQg0UjJDaszAJbCBksRnmFhBFCSMDOstTYVgNq3FK5p+uursrMyuG9d++7N+JGxBn+04/FiTdk\ndmblVK+o7HrfzY17Is4QJ+Kc+P/+v+/AoQJSoKetBk5bJaVMKYZ9b6irTD9kUjJoMTiTSMWRcoFc\n2MVIcTVWHJWBooKxbhK1y8FyIEAKcL1/qumYDkYshHCwii6BMmZKFhgDBSWQqbHUKAtnCEGm1zvH\n3DoIiXHIdIOyKwVrBTEWb80UvFu1dMFQyhTkW5mBEO5oSsf57Jij+Rk3N7fMdcM8XdO2Feu9EnJi\nDJ6mrehHw132jHZy8xtHg6dM5zFZHIY4WIxx7A5dOl8Kg0R6M8L6QJkSMAJ2svsjq5IV5mpABB0V\nJ45+8CAtXmuOtEAaKMOSgmNmWlbzGfnAj2xyosSOwkQR36yHw/fO0NqGsQwoQmWW5JSp2y1nFdjc\nEO/ADMIxEW7BKCTxaO5ZiIM0oBTECde7qeg9bmFIDS2Jnz9qKMYRRImjgMzIRskeRi2oiyyXiuW5\ny6UV6MVRZseMUcnWkTCUAnsFpFC1SkJZ+yWPsmJiIcs0DZGBKkSaeARFmdUCJJ4MQEnImBiNxbkl\nTiHvAy5msrNoUzFf1rRGSVaYFdCThCODcxMN09fYmKizslOLolNWWOWRQ+KUMlmlJ526jrkkggjV\nvCZlBWMoTx38Dw66khMmR7aibJiojbZEjFNM7Ng/STweWtQIyVtkK1PEsbVTwVj0mbu6KLicwRmK\nvo7q61RSEH+4BaSCtVCfFqwmOq+M1uJU8SlCZUkuoZoQAqmfbhzrRYtkRTcGqRocBhd75lqIDqpS\n2Lct9D2lrjkXIdx15GVLyQU1FbPdDVBwvkZyxqhQHa0w1PhtR8mOMYExPQVLM/7JDLgfB14VVq/w\nlcMfv7fh7333A/7lX/956k8IinyFl4fnHavPFhTcDR/Pkf6seJErXl51rF7hy2HxwuOKSV/14+CC\n/DWmouozXRSVPSPakZgjqiN343M6nwJjSmRNeB2ZWUWK0hqDX9YsqyWhFDIzYolsxx0WDoYTmdms\nZmwT5+0JHuU2FPoilBw4sgUrUHKm8S37LGwT5BJZiWIFxph51FuGAgvcNKAzQj9rUJ3sy73AXCeH\ntaKZrIoYy+unntoJVoQ+16zTNBpbkbHeYIZbxBh8VZNiII4jD4Mnlh1FIp4K4yFbxy+u7pFzZGE2\nbNMJxtR402NyxTaChMgQO7IqTtIhEwqywjYathlWZiRpzTY7kliWBCyKd5ASWOuoPfghMUsBYzz7\nUSg5UTlovbLpCydtYB8sQ1A0KbVTHiwKd9Fyly1hEJIavBeSdyxtBic8XNtp1l2nENyjttA2MJWX\ne/r9ntfrkQUBEIJGVjPhmjlOhWwKzVw5ijtcPSM3c4ZeiUXZdIlGBkK23G8Kd1pTOcHbQoMySkWV\ne4YM+2TYDIa514M0TrHF4lOmiOeqVPjW4MfMbAloh1QVj+6EIA0tmSFCbQfUj6w8uBwRJ3QDONPS\npBludLTLmsobvIHjxXKi3hnBWRi2FYwZqS1dEYbD7VwqYRuF2sI9P2fMgquEHkMxwk1X6D/i3dlQ\niAgZmbQ0KojNoEqImRzB5sgD12FFCcUyqkPKZO3tMNiiLBQqnbYhtoZoUYGUIlaUbGtmBqwIzsAe\nS6kiuyh0RvAWjEwdK7QgmhjhkBvXHmzrp6IjKxzXBfdszsOh7YJQpokUN2bmczA50ziDeeaX//w3\nVA53iaJCRcahBJ0oiTFngijeVpCUYso0OSCZlAsZQ8FMn8lcqMWT1bFdGgxTJ1e0gJ06hbY8VTHK\n5Lav07EVhVI8xkyFXK4mh88ClKocMsqmJSWU6c0XqNpmMjZRQVTRXGhzxFeGMUzU2qCGKim1yUS7\n4A4BKewNlBGsXTGOliyRUB9jAlhRJEJqTpmnkaUPzE2ij4a4FXJOZKYOXKksezvDaWGwL2f8+FIK\nq4uLi78M/M+Xl5c/cRvbV/jTj//u//gDHt10/OI3j/m1P/vyLDNf4eMxHrI48mekAg7hsxVgnwTN\nz28jGr9ckfYKP9v4yG9SAv6ni4uLf+nLbPOg2SoH/davfZZ1zjZvceQrno6wxNb02oMOeNNOxgNU\nOJm0LN+ZFypRcimU/jFp/wgxgqaMOZ4jIgxj5uo64W/W7G3DvDU01tI0M147d+ATY4Qf3lg2YXJw\nQ2GGYRRLZzx7FVYa+KZMA82shXpWs8uWoyZybJWuD7x5qngL9hPcmgWheI81Da5aHZYWuuUxd1G5\n70aMnQML0IyYI3YJ3u4Nbevp++k698aRaGktYAzO3yeNN6wah3EzTtwcEYtNA6vxPfLQ0XUjWiWk\ndHiN6GGYo9QIf3JiRkiIiyAZVJCl0s5ntLMjRCJaEmpfo9sLd3d5Ol4iRjrOTmqQFSITDVLTNTE6\nlBYjHb90vp5cBa2jS0KHZ8QQ8SgGEbgzNXvZkcRhioCbgRhs3IETQso8qZZYI3yjyTRtQ84j58eG\nTufcBOX28A4HICrsMtROCWWG8ZZKauZxGhmLLDGuwtvCGEacBM6ffY4OLREtk7/b/QcVIg6loDlQ\nYkSLkmKms55SIDQOCRG1wAwk7djnKZD6qhNaTXjv0BhQDLZqYZ+pyoA7OZpG4GJZNNPvxG1OYECH\nDBnEOWalMEsRM1sgxqIhY+qpC1v6DpNHziUh/Q7j53jZk2ZzjF0CHx8FsSiZrLCy0KbEzHkChduz\nc0iZsF5TlQFPBOMREa5Lpj1TNjHz/iBkY6diyliMFmrNlFlLZZTQB2hbUlXjHOQcKTlhDJzXhopE\nBrRM2sCz2hKlJtoT4niDiKVNO2ZS8V5qOXKFr/lCdfIaN8kyt5mm7DAIUWp2/QbrW7AzTtsFkpQ8\n3pG3d6zuVdwNI1IMwwcPeVIcN0EJVcV1cRznjB/3hBg5KR2zUli3x8yGHWdW0TAgx55mVrFzFZUR\n3tkqQxb2o+FkEagrqEvkuq/oYiFiyQramoPJjCAojkmnlZMlqRCzJSeLM+CkUCnM+57B1qQxIZWb\ncu4OwdgZwZuJwmhzmsxBUp5y1qqKXbtiVwyUMo0djCBWaBwEcRgLy1mh4JnVL6e39LI6Vv8K8Ncv\nLi7+e+C/vry8fO8l7ecVfgbx6GYSnG52r7oXP2moKiFN5/2zaqy+dGEVXxVWr/BycHFx8TrwnS+5\nmX8a+PWLi4sfMBH5Ty4uLv7Xy8vLTyzY+kfvU0phlTtWBGxJzF6I07KrGfmuAwTrakQcY+4mKo5x\n/P4TR8iGsyZzGyYdRFEhpxGoEaasp1ICpax5+D3AVowlkUrm3te/iZs3iHOHVNiK9bDhzDhqt6Tv\ndhzVN8zpWc1PWZDJVxuaB+c03/kaMfaM/RXOz6maI1LY4ZtjzEecQosq2wi3AdZPb9cO1vN7VPEJ\nJ3ZyjYvWc98aXj+BMcOjaqJGjdJwOp9ztet44AO12yP1axA2GAL74X2O2xXeOGDJkBdcDVAJvNcp\nsRR+edER+luq5h71rEaLIKKUkhm3G8LVI4b5PR7uE6/1t5jbO7jdo1xh/RyA+Z8942w1R8+F8HAz\ndd3OziljxLc14ixFMnb+orzu9PlDt+BJUK62O0KBWGDhYB3hgx7gnJmdli/9RNmb2SMAfrgv3Kfg\nDFwPheXME9yKuRFmux2VFJavPcBZwWokxn4qrkadOhDbPbWJfPN8DqpkErd9IFnHvBL6XqhTwO52\njFhGsXiUlbWYtGY0NfOqpRFPlpobA4MrqBZKDpRD5+o5ntOrprBpjwLbak7CYFGcUbLxVNsdRxpo\npaBNQ5cnvmI/ZtZ4HmjPcdqBwLdkD/0VFcpbzJAIIMyJnEmgykr15imaIxoEaTKcOmorFDWUnFic\nvca4e4LUU6FkXM3R+S+yX79NHLeIcTzIT/tNJ6geQymERzdoKfzcG/cR82GbyHJwxywKzgixKLsE\nR35yzn0e9lt/0u3gIyjA8eHxVBT+/Iee7549+4x7S+B03j57HrqJsVsDq2m/q2qKElgef4N7H7vf\n049d+iLq2RnN/D4ihl9TuHtyiYjQLt+crN+14OsV1tWUomz3AzknQow8uuk5P1mxmFVAYd8HKmfY\n9heRIMoAACAASURBVIXNfuR04TEUiir7ofDopifnESMTJXLsb9nvEjEKdbvg22+es94OhG6krgOY\n6X1+790t2wrm3qFj5KhtOT6Z4wwYa5/lkY2l4L6ATf5nwUsprC4vL/+Fi4uLbwH/BvDbFxcX/wD4\nm5eXl3/3ZezvFX42sf+SFLNX+PxImp+5ASpTvsunhQyO6Xlh9UlZFj8KrzpWr/DjwsXFxYuJqMIU\n6/Fvf5ltXl5e/lXgrx62/08Bf+1HFVUAVjxZCxt7PGkeJEKJrKxjpxXNeiR0CzbJEEgMSXHF0Fhl\nk+DOLdBmxvthxMc9mi1bqanGKd9JZg2KUnf6TBxPAWccp62gN+/BbaR2U7AqQ+C+OQhR4ECagT2w\nL48BSMYShg353QFrLCUGdl64Su9zD8v8XmKc10TJbEPPmIUTW2G6gVX7BmbYk9aTr/N1SRgxyMGZ\nwp2sSFc3YCzOKrlyWC04Z3jczslh5LpuKJWjqbbU7Ii5p8vg5Ja+OLriOV5+i7lpyJs78mYKBP2H\nABxTSs9pfoI7OubxbsQYzyRufxO2kOOOnf0Gspg0HzqJ0ZiFNfH31tQ8YVEiLgUe9ULX9EQxuHyN\nVpPpRAyZ6nSJXc0pZSRt7qjTVGyKMWgpiLPgLOODcwS4l9LkkhENZbsFa2hMQ5/BaOHnyGzFAcK9\nmad8sKU/fKoNSkvh/vd+gGWikQ4IG+M4K9Ms/r5ESkkc3dyy1BHE8GbJQEFLwrwQ7ivVgsofTS4h\nuYDUB27q5NNtKo9drEgxMnpPuRlR69A33uS6XVAJHHvharclS4aU6dbXZAz3ux7t9uhsxpAUyRkn\nDochpxEJmYVfIWJZYrmHYtpTbFujOfB9nSYajG8p291kwy3KUK94UnkWxwvSGKmMMlvBWKDfC3Or\nnFUTFXB3PV3++8e3NFaw3vLkyeagO3vh+vRzcpxcOY1rKYupwAm7kdIPOH9K6u+wtJR5wvkFJtQM\n3YCOI5X3hNWKEiJpf0Pu7xj7OwwBcFidoRIRtVT3X6P+xrcpfUcKNxjTkoZrlEK1eJ3t7Z5+9z71\nsqK3cxq1yM0/Jj25wtQNZm6x8xViHa45QXNADWgesNURYgzHJ8fs9oJv7k9hvGmPloT1y6k76j7s\n8vg0LyrHLdavEBFKCIyP99zu38Iul4gx2MW3AIg7eBb70AX4SGfY4nnjdCq4wyGHzWPQBAtvWBx/\neP+th/Pl82UhZqy9hzUfHmu8cX/OR/FL33kdmAreUhRrhFyUvg/88btrum7k9YVlfnuFMQJfIKT5\n0/DSNFaXl5dvAf/hxcXF/wb8j8A/d5jR+7cuLy//z5e131f4041SnuvO+/HLdUJe4fMj5g/fMPNn\nKKxifN7ZSlnx7nMWVi90rF7Zrb/Cl8SLk7/p8vJy92Pe/lMnhh+J9dvX9CEiKAmPFUPtDQ+tMFZK\nHQxDAnWF5fpmGoRUnkGEyhjuhQ0hB8xrJ6SrwLH23K8DpgVIqEuM987Jx69Noq/DgMRhGK4eYrd3\nPHJTR4QCravoxYETTM60Dx/SZEFKITthLIkomb084q6KWC1gLWoMxTreyQlZ/3ASLhmo+h4RuDWG\nMGv5oPpdUEVNxf1Uc2/c8cidMEqeJmfWj/FaAZnRJ8YcWZQZFmVv32Jfj2gBPdwKjDOs7BkOT+kG\njFic8zyRNf31FW7eUvqAKQU5u8+smnNlN7ztMtytsVgm40E5xL0WikxaEr865ri9h1rHdr9nuEqs\ncoXbGEQdecwYDCINyQsdGxgjQUcGSQy37yO3k7tiPnQha6mwoeBFOIqJZCqW7z+ky5HbSngjZ869\nY+5nZBKzesbbwyPm9Zxd5XjdHHHqliyd4U4mZ8ZkoF9WyLpDqJ4ZdbQo7dPsH4EHJ2ekuzvE+2cT\nU08HfqauMW2LNA1uuUK8Y3zvPUxVM/7wHSiZhFBSolkuKCFickJiYLGYY3/1L5DGEYdyNg4oiq3n\nnNQN4ztvoyE818haR+da8qBsUyIVKB52xsN2x6y/A7dDzu9hx4E+K8e/cJ8b47hbR+gt/sljrAip\nbqhLZoYiBKwRmus9/VjIdcMWha7DAGstPA4D2RvSkHFSiLlAHlEzURbTYkFuV1T37vEgJuqyZ1hv\nCNst7uwMFitmGol/9D3GvueIwpzCiGGL4IBBDFFhBBLCuDpibGe4ClZhj0mCG4BhR//mKcktGceA\neW/D6dU/wDBpvbKMzLFsEYy+j0kdDAXbTYTPF0MIFtzhrhRb7SgxImKQpoZSqO7dgxnk3Y71uz+k\n7wNuuSLdbUhNwxP/AO1GhEh70tJLA8Oe1hTOzxawD1SnbxC2T9BtT95uUVWUjOrkWGnUo3bEHZ/B\naIiPHuPPzsHbKdft8RW76yfcNgs665DbG04az+yNr6HOUZWMtjN2TUu371jWHtvO8TfX6NCDsey6\nnrt9h8xaRCz65Ir8Z75D9c2fIwHeCF9fNJQyTdrOncUZIV1dMW7veHS7RXLitNvyTUA1UB4OpD4y\nagJ+ZDLGF8LL0ljVwF8C/k2mMvY/Av428E8C/wPwzZex31f4048XaWXD+ErC95NG+EhYXy75QMP5\nEeu80LEaY8a7H12IfRQf6lilV5/5K3x+XFxcPG3CdB+3/PLy8sdSsV9eXv5fwD/zaa/zeY/J4zQY\nNpZYhH1fAT0Wh/GWWoTcKWk2ZzE3xD4zbypMlakcjKbjtl8T6sy6MhgMVVXBENGk2Pf39B8kvFVe\nLyucCqG2kBPGN3xt3ZEfPQZnKW1FUzu6BtLtDdk51hXsXQAKKjpl1mhhoYoXYUekKZkBwWdD1UPQ\nKSuoyhEh4UvGdhuSgdJ6Ut0ypMzb84ZUTQNFt96iIgRVihhsEWZVRfQdQ86AsNx2GC0ksUQ/Q4dI\nsLckNczjQB8DIXScdYE6gbmF21bJlWfsHkIHSQ05QxkjomXSqK1mBGsRVUpTA0LevMdjQFTpXUud\nA2sKcTGfXNhWitHC0u4Yy4APh9RVK9TOcDSMlG2P5IJaIU5uFVMR2o/cGIPrAvsDhcz28IGx/HEz\nJ2tFalra8RYJCTvcYWLku/MF4jyzO8u4aJBxoDJg2wfYWeH+fE7lG7x4fF2zqo/wY2KxGVHnEHtM\nfOstxFrEV/T9wM1mM3UrciIcn2B8RYmRarOmSx+ZtLQWs+0mWlf4IxSomjnOOkop7F0hl4ivWua+\nxR1+E2prWHpLYy2kPJlu7HuG2xtYVYxDh7EOfGRoEikIsrumZEGLMvzBu2iBWVLEW7KZ6IV1bHBS\ncxs66rhn3ggheXbbjGsSRSBHT2NHxC6xyRAHxahiTKBWsHUCLcSxorpbw51hfOdtnvhESpYcp1Bi\ns96QDwohg6AYbjE86wWbTFVFinEQC9YlWp9ofTepOINO17m1Uzd0JczC92BQyjBMOrFDiPBohCKT\np6Y9aCAFyDK54iS1JDenMSPDUFgXg6/S5KwnLVYSbh/JKpgffkBWg5WCs0LImf7qMaKTBlLlXWYI\nFYbuEYwHI5A9cPPHSrEGn787fXeZSIfWOmJOOGsxOTOj0GOwj36Ap+AA++73icAGQ0SQBgp3SAZW\ncAs8ebyejC+Abj8Zss7mHdvksCZDkSmDS8CaghFFeiUhaCvwwW8zfvDbAIRs+CNbSMlRipCowDts\nGvA2UIrFucQNE8W2sgZ7CBS3nyQS/ZJ4WR2rHwC/Cfx7l5eXv/XC8r9/cXHxdz5t5c8TtPgKP1sY\nQnrh8auO1U8aMX+4sFE+XWcVU/nYx58ZLxRT+qpj9QpfDHd8cidJgS9lt/55kX7udSRH5rawv9ux\nLZa273HasZ4rjJlFsWyOWnLTcE2iFFiHW1QdqMMMEaMDag2hmqHWYPMeXwV8TNAP+JjICGv9AC2O\nznpMgYLBUPBzyAi1KE7BhoRfFKSuaOYNtanZmppKLPfXdzRVxcwvadTQ3dxBGMAYjEI5P0eth6GD\n7KEk7E0PSdGi9CkRFkvWdovJBmROUMNYLabwTh1ppKWpKlIsHM/uM6Yebq9YpWNO0pzmte8w/vAP\nuG470rhnsAWMwfsGjBDnLVGEWFk6M6BFCCLYmDBpKvoaETjoNtx64OuDn/wTDt2lKIXOF1Tgrr5F\nakc6PwUdcN4gImhK+DSwGiNuiNjjY3YmcW4X3JOar6WJKnmzueWRMxhv6YcBdY7t2fHUPej2ky6l\nCJZCU0Zsn4i77hDfC22e8o807sii7A1wPT0XFNyjxxCEXdWS7TQKzzodnykFK8oSQ1cCKU/24l6E\nYoRKhJPiJ23e7jGDj4yp0BpPrDyaAmqnLpi2C/LyCC2BnCKzLpH0jqMtVFkRgboqxGC4zhVqKsJy\nxfZ4ASI4NSQynpHVaotvR9AOkzIlJ8a2pep6aDzFOkyIU7cx9/gSSSKoOPCGZDwjI9HV0EBPxZpD\njlktyEHjVY0jvTUYs8dXQtJMi32mqxk5BEo3AW/OqXdrKr1jMIa8bMmzGS71mGFE9okwX1C8sl7c\nw/uaSib3y0YMagVrhKKB7u6GanuLyEBsa9aa8AHedDPK8ZJqs6Go4pyDRUtnwcWEKqSSsAa6MKcH\nCha7nN63PPgOtEtqW3GbB5QGVcvd738X5xQTRspsDr5GNmvy0LGpLRnwRcgxEOdzioOjuGEmPdr1\nbBJUM0hDwXiDyzNyVZHHhNVI1SimqjAiJAGoCUAploGJbppMhQkdyTpMTtPnWnnibEFxHr+YU2lB\nd1tyjPhxwDtHLoW5H8nGEaslvtsDQrFTx8ujuHC4xotSKPT6lAZbSEBlyzQKcdP1WxEnIm8jJGso\nJTCKgabFNHOC9SBTXp24r5Z5xT9xeXn5wcc9cXl5+a9/hvU/c9DiK/xs4a2H22ePXyyyXuEng1D+\nJBXwU9d5oZgKH50J/QzQFzVar+zWX+EL4PLysvn/+xhexLXcEaSjRAftNKjXdtJAraRH5qAkahMo\nORBMBWLQ+qkxQKZpW07sA7RkOkYKyszPMcXAQtFT2JeBmArNek+yBj+O9N4RZw1SV5zqSI2gWhCE\ncZh0JTI/Qv0xZ/VrfNOfIxphpYhOGqkBkNM3UD1D7WqarT/oJ31liYdJr6dXvsZAub2m7/c4yTwY\n+slBWhNWd4Ah0mARGvGEkNFbQdSCPUPdwSV/9wh/fM7XGKDORB2xMkNe+zaPdcet7aFeoRopmvl2\n/S3mYiHCOmyQsKYF7jdz+t/9XRTH2S99g7q2dDExxkxzewOieO9xiyWmbenywJgGSgbVwt245aQ5\nojn2NHYGh3OYdlt0ZomiXHU73OnrvCYeYyOqfnIdZETmEebP3eo0F0rf4dOIQdiHBtMIpmqpxh1d\n3hMtRFOooyEUhy1KMpCqgJpEcJYcRiKGjU0UnxCBXVNjsmCtQ6uKoAZDZgQeWoGUUDHYyYieQSOm\n9mAa5ODkJjpihrfBOowVciPUubA71sk+IRecGookEgOVq1m4SJ2v6UXJavDWYy2YkrCSeKfscBhm\nxkPYs64jKZVp4C2WKgtUnqFJlFxYHZzeXIk4oMoT9bLBILMlbd3yOBhu4hZMg5aReSy0NGTtCd7h\n6pYohV4tB3UXGY8zt9gjQ44Nc1PTi9LKSCgwzi16akjaT50beY+clF6f+twplfHsdUbWgBgoRwsK\nL3RDKngIMOygthy7I7QogURf+okGKEvEepys8HYgqiUuF7SLGucdS5/QdEtFmaz4FRZO0V85neiM\nCrkIRaHPMxZeacukNTs/bthtByInHFU1jcDbd1cEM/XdtmUqVpa+kJls4UtRnBWuoxCy4I2hlZG7\nXFGZghHhLlniobAGDlb+E5zA3BXenEU0bWiaM8z5nI4a1YK6mjebOT6PIJZhvGE+e5MQdlwnpZbM\nevcOO/FEc86D5QOcmfGryyWVtZR+x67b8u7190n9B9ize9M1GBMNU34axk4BxGKJsqArZmIHZEER\nFu6rFRD8Vy4uLv6TQ8I9FxcX94DfuLy8/A8+bcXPG7T4Cj9b+C/+l3/07HH3SmP1E0f8CBXwszgD\nvqixCvHz38hepAKWV+YVr/CnAKuTObEzpHqFKUI1ZmR3A8UjyzeYu5qZCJHMqZ20BctZTZSIGTbM\nZw7XzFAtGNuids7VqPQJ7h7fIk2FeM9pO0M1U74+UnJBmGZ/+7BlnzoslsasMKVwUnpSiSztDOQ1\nhAHFksuWx6UmSc2J+TOMqgyqjAeeUuUsb96fY51h5iy325HXVg0fPNkh6RGEG9bjBo4r7LHHArfa\nYLTHdQFjhNV8zlGA+mxGpYHudoupBkq1IrcLbr/3AWW7R2ct7nhBHCB6j39wAtaQc+LENJwd7On3\n5T5jn9hHy1YNqwczTuoTno4ANwDf/gVQ5VHeYfIW0Uhxx+zSiIpDbm7xt5foWKHqqUzGc4tqYOYL\nY14z5mlbWh9NE0DVNJjTkxX1vQYTtxRV8lDQODzLM2ql0L5xj3a+wLgFJQ+TycHuDtqKk6p6weRn\nxdlBujdZ0Wc0l2kwvdsRNwEzP5sG1rs95IA1hm1JvF07xHoWbsHRbI6NgbmvGDRzE7Zsc49nwW26\n5kgcay04RmZ+TqCw0JZYMq2p8K2joHix9GXkLveIhZKVul2gpWfsA8QA1pMMuBho++1UzBgIDvrq\nGOF1vDgaWz37TGo+3jfvqT2BAotVgzFCO5smGOap4L1FgdWqJT+647XKYoxMJg354F6Isu/7ySpe\nEysrRBmpbc2QBuJhwtCIYG3La9UcKxarGSk91s2pbENWYTvekMIdIQmj8Wz2O0ztsSkTenDiePPk\nHiZ6kiZGHemGAYOwKztqaQglUlD63E+FmZsTSqSPd9R2x2q+YAwjdRw47e+x292w1sjr1esolrt0\nA0AyNWMZee34HLEBTRFrYZYnKt2fu/8dTptj7t1bcn29Y+gjVe0wRrg4PcMaS9bCVXfFD7fvs6qX\nrPc7xqi0rWFRNxzHieqqqmSUedrQpZ7tuMUlOKkXBO3ZjCPWLLFSaOxkkmIx/HB3+P0e1n/is/3H\ngBH7PBNz8/BjvgEB2HM9vk3jWn64qahtTdFC1sxyteCuvs+xX2DEoF5550kmlsyD0xrnBMk1K98y\ntwN97Dn50bfnL42XVVj9s5eXl7/x9J/Ly8uri4uLfx741MKKzxm0+Ao/O1D9MJPnVcfqJ4+Yv0Bh\nlZ9fyl+sY/UCFXD88XasYiqfW/P1Cl9dXFxc/HngvwJ+lefjOL28vPyJJo2/+eY3eLLesPBzjJhp\nQKBvPBtML6oF27DjvFpStODTCZmG43lFKcr1XcfQR779ximb/cC+bHhrc4OvI+7egjEq3zg/oyLS\nrd/nql9StcKxVVrb8M5OeetJg4ihsR5VeI85RRWjgbrecnrckGNkP2Zi7jmdKx0Dqj0LMnXYYW2F\n9B0334ckDalYDImNBEQO92sFK1Pm1VOn6rqaMpw49BFHI3SLe2iJVFIoM0NG8WaPCT3+GxVRThgT\n3PTK6O8xpBF/k2jdIbkUQDNtfogRxWvhiMnfr3wgDEwUSGsNs6YhFUMIYTJ8qKfBuXMVpQSCCll7\ntos86YPI7LICLaotIgalkEpCjGJtweIZY6TxhpA2NMlTtCAG6oUFmTGRpy0bWjZ7ixvAuw5vDfth\nRWYBXUG6hKEHaVgtlnjvaNpj5qtMMVOYdC4FOwd7ryAlU0th158RUsLXhqUKb2w6nqazHrc1i9MF\nD5/sCBFm5oivn19wdnKCGMHZihD3iD/iarimtjXdcIPFEEtkkyMGwZOR2HFihGW1ZNGeUTA4U/GP\nPvi/uekG9juH0y3ZJGZHS47FcFWEKitjqkE3uMZwf/UtHA7rBMGSCDhn8bbia7PXOF+dohS62LGN\ne0IOeFPxzt0HzKuarvQ8vi5sxi3tTY8Olto6KmYMpeOD4X2OmgUlWSqZsx33CBWtnRN1RNycynhm\nYplVM7q8xRlPv+8QNRQyv/zmd3jz+B4xZypnKVroYs8P7t4h5Mgv31+hBaIGFtWMkCPbMDFrDJ6u\nL9zqyN0uUXOENFvWdwmsUsspg3aoOJbNESUOjHnkahhJBcLY8c7NW7jK4rSwrrfMq5askw7pnruH\nLy3DE6U2xyy8Q9Wx60c2YcvvvP8uG/1dfKOklNjsI/6QjRY1M5ZMQfDe0o8JVaGSiqU7xdnE49st\n0WxJmkl2N5m2MJ2XlDOWGutuqCphHJXFfMs4KjEpBot1maaBbmc4mrdU3jCEhMaGjT7EhAWV8aRY\nEYJiSmZResyixs4942DIo2MeBmbdE8bxEbN5YZ0gNA1qLdti0PmKYf199rVjFQqlaTG+ZvPdLcPR\nMX7ouX4hhL2eWaIxJN/Cr/z47+8vq7D6uB+pT93XFwlavHfv48PfflrxVTte+Ok55u4Fe3UjkxHC\nxx3bT8vxfhRjylz3ga8tP2wt+tN6vB+Hd9OHL+OTkxnn8085/hcsUueL5nO/382jmh8eHltNX+h8\nfdw6f/jWDb/xN/4e/85f+gv8+l/8xufe5svEV+k78RXD3wT+CpM9+r8I/GXg/Mtu9OLi4uvA3wIu\nmIzB/rPLy8v/8pNe/966YqZHNK7CGcM+7BGxrINhFw3sB1QtZbhjv44UvaV1gpSRUAzGOIwWfu/h\nWwjlIKSfhqZOAo7ID27eRcjMZMs+zdmvhU1R0lhItaGJwpgsddUDGWeUykYQsFHgicWostAyzQ6P\n0B321ImAgpenS6AQURQjAl4w1mGNYtWy62qGmDGiGBeovZssro3nTg37UtP4DlOg9YYQlyQcMSsz\nNwWDVrql0USlhYo1Nrtp/8FiDeQcqM1A7ZR8mMCxxuGNBYSihVgSJRW6cfOMxqXAenCH8sOgpsJI\nAQQjiSFtKRg6ZqTiyaVGsex0idXEqX1CwR2oX0KXIkk9TiIvDnuMJBrXMHMtsUScbdE0EtMUYZFK\nptdjNtkhIqQ8YKSiDNDHHriiaT0aDX0cMKLUEvEMzLxQ8kTj9MaxqlfPjBYAQs68e3OLIKSSKFoY\nc+Bxdw3vTsenB3vqyglZnzu3eg/zmYFJ+sc6FFKCysOuvsbZHyATo5BxVziywv1FAebs9zOceDKR\nX5wveHh7R4iQizI3QnjymCAZa4VSQFUwRlGFJ/p9MIKTwjYt6HX+7P1MeDrhVoAWNZ5hjAw6wCGE\ndsE5+eAtMpKpZKrkU0kIli4+f+3NoaNijWXmW3ahQ7XwW5dvA2//iKv/evojUPntVCBYmFzsn08E\nGmTa/9hw6nWiqWlhmc4IpRDHBY0oVgtZFckB6zLBDIzmhhHLJigShiknYiz8XnwHGyJNmZw622GH\nCAymAgWXI5aCiCEYg8mZoqBiKNbQ1wt8TszDnmwcxTr2VcO2usaOgWA9RpVUJvMXteA04xB8SpjG\noWII28Q8Rfw24MOAFYt3Fi1KUahV4QaKmEnjp8JrUhDpyVVNqWdUZTr/NZ6xu4VumncxyTBLDU2p\nGFVJezudy1HJJdORyXe3k3X6Hh4loeQBdJjiIx4/wXDIVENxIodoZqj9y5EWvKzC6ncuLi7+OvCf\nMpma/Abw/3yG9T530OLV1faTnvqpw717y6/U8cJP1zGvd9OMw1/8pfs8uu354Mn+TxzbT9PxfhT/\n7R++yw+2Pf/+r3yL02aiMvw0H+/H4erm7sP/P7lDO/8Jr55wt30+U3R1veNq9VmDEifsr5/vc9x1\nn/t8fdI5/s3/dyrX/vO//Tv8+Z972eSAz46v2ncCvlKFYHt5eflbFxcX7vLy8g74by4uLv7Wj2G7\nCvzHl5eXf/9Aff+HFxcXf/fy8vIPPu7F5Q+/z64b6HJCTGHRbRhHGJ2nDiMqK6wV3DJzzg60ULcF\nk6fujMhTPYM8i6AoBdRVk4MbIDlRUiaXzJxrjH22EqrKmSpqBNSTM8TFjJIVN0aqMUCOZElYDOWp\ni7wWyuyILjhMXrPPK7bH9zmte8Q4EhWVV57kI+y2JzceYzL7aOm6QhcqUgCJBUrBemEVb8EFtsZg\n759Sz1ue7AOtmUToWwrHbk9T7clmGujXjWNWRm53gWQ7bAW1MSysx2Lp2l9AXc2+T7Rxhy+B9PCW\n0nfsRmFfVQzz+7jccdpM2h6TAmUorGfHBDunjCNyc0f6+j2qWUUvS/Y7pa0CEPnmyZ4wwvefnPHg\nGMLoCKHn3grECJVxaL1gtZhRrGMYIptk2XvHUVXY9EqMLcNQ6PtCKYqvApJ60qM1w2xJs0pc3RZS\nUmKEtnnuhmsEnLM09RIRWM6XlAIiwgcRjpbKzEd85UENT95ZU/aQXc3xaU3/ODC7en/SuRlIeZoR\nT8CLgRhZDB88OCc1K1prOVk1XPWeoVuz63vuYsuiFqqyw8aIn8/Zi8MaQam4jvexkrndFLyZMbO7\nZzuSfsAkRUrGpkTKgTFHWgdp2x8CsQtHGBalMC6W6FZJrkZcJpua/uyc5XnN62/MyOkQxaaFcHdH\n5SFdD8z7PSff+g5xsUJlhhHohh2PRsOqqai4Y8g91gl3W6VpBpogvP+wkBOMsZCCJRchxDjRO/Ok\nQ0ohoyK0rsL1WzpTcTqsWYUdbeVo64qiQjurGEohjXucKpVVmM3RUadO6uwOnwOjbTApYJ1hb1tu\n/DH20Y6I0PZbQiz0jPTtSD7o6JSpgznqgVmZA8aAihCLoelrVoMn+oQJ07DfIYf8LkdbnYIoxWbW\nsy1u7RibyEIMxgqrMEcS+ASxDnQ5czLOqYxhCJm2cuRsQWuitgyuUFdCZRse+zV9Cof7VkGEw8RB\nxDmHD4U67hhzIeXMgKJFgIIYgxjHzo7kymHqkSAeUZ3en2vJVsiuxpaE15aTm4Gbo2NyHDjabenr\nhiokbpcPSHZG0z+i6BpKYZk/NRnjC+FlFVb/LvA3gN8//P+/8xlCGL9I0OIrfDWgqvydd36TXz77\nRd5YvPaFtvHUBKFyllntCLGQcsH9CMvMUiLD5o9oj34B+RRb8JeNH2ynqbP3uuFZYfVVw0c1TnHs\n1wAAIABJREFUVsPv/h4Pf+97PPhX/7VPdNgZ4wtUwC+isfoQFXD43Ot/El5O5vor/JTj6Zdpf3Fx\n8eeA7/HhbKsvhMvLy3c5zP0fqO+XwOvAxxZWXxu+TwGKmWzMtS3ULQiT/bIx10+nWCkyNX0lv2Br\nqE+/v9MAo1BwRiiM/x97bxarW5qfd/3eca31DXs6u86p6uq2XW7bW2A7jkmQwASRWHESwGEKcAFC\nwAVXDHdwgZC4IRK5ARJFSpQIYlmEiBAUW4kgCGgFpBhZkaWkhWzvpgd3dddwpj18wxre4f/nYn2n\nzqnqU11z3J0+f2mfvffRGr5v7fW9633e5/k/D1oLKQlpsiDzZ7LUjuAKzufZyTM4XEiHPoiMD8B+\nSwY2A7SS2ONRlrMBhfVYLBjHdDuHy9q6wAXBX79Nsp7BGcK+st324D01QFGDo+L7kca52UktFRRw\nxmAOfSjWzP6i+qCybyPTyYJcwR93nG03DNvEo6aDpWc57HEWfOvQdSRVoVwlmlQBB8bStH+fYpSi\n5oAl50DiJ9JlWzK+fx0h8CAlrBVACDEQpzdxOrOAxhvC/T2KskQ5fSZMN70ZscbxqhbK40wn8/75\nG7fYlLntOuqiY6uK7AdEKsVbTHBs1OC1I6sDcRTd4dXiTSAhoD2La8vy/jEv28wkhkftKTftXUKE\nE9fSJqW0Sx7yiNatENMQ05brumXnFLOZuL4SmjyycsLaBUAZ6kP0uuMIz8bdwXuHtxVVhxYYSmGS\nkVZa9mmP2InyOw/wsmWQBTdGWHVXeFs5Es8i6ywhPdiRB/+IKobJRowU1kffJGmcs9ocmNzTuVOM\n66hZQWG1iIh6YIELBtQydRmpBWcyaKX1mTFXtFOCS3hj8GZEbr+F3ij+7QWlH6m14EMk5kJRIejs\nk/Lgwd9FTEDE4p3SBOVUB8Q4pmrRPIPIpgg7t2CrEY+lA05KQp2nGosfe6oETJ5wVmZXPG0Bg2cG\nEGCowQCFPCWcKQy3ijYBl2ZmNxULaWTQPdUmYr/AYwnWobRkGwn0vMQDDBVnAqUJ+PWeYRoRVU5t\ni40ec7YmuZbrbma87iTFq6KPtyAj8SjSLxv8tEJcS44tfrth5wLarTCmsil7zm5GvqCKWxRSiSR7\nAEwBlm3G6ry4U5uKWd2QS2VZAg6DLDvGxZrkG0zbsTOeKo4uvEKDmYHQjADntg5VQp5oNlua3Q5F\neOMLKyY7Ec3y8LcaifYYYzJGE5kRz9Nx0CgYASfgcOSSuDq2FFPAtFxLi/MOG+FIC2O+JcYlUlv2\nQ2Jyn40C/DOZaR5MK/7NT3iYDxW0+KK+P+qrN1/nV772v/CrX/tf+bM///E8SdJhgh6CZdHMt24/\nFY4W8X33uX3zS2wf/jqnX/jnWJ///o913k+jxmf6jPYfo8/ou9Wbf+7PEl66y0v/6r/+qR73eZUO\nAcGNa5jqRP8XfwlEWP3M72X1s//Yd2z/eLjia288bVot9ZMBKxk+PWC17V84DP4A1v9wcXFxB/gv\ngf+b+Rn4n3+aJ7i4uPgJ4CeAX3+/bfZ2mC2XgbJYwmg4zQlxI+m0Ibk1bdpTquc2CX5quTUNpdth\nGyUFS+dO+FYyJLnFZOF8t8d2jskGTnY9eWHZdpamLyzYcnWnoSbFGkcRw+mVILXntEb00AguteBc\nxC7WmPWaru85imfcGqFc3xCGgaP9QHLCft1gthMhC72tWAwJxavBFEMzWKwY8A5TKi4DzqDOz5lO\nAoOHZevQlChiKFZZ5EJ8eIXair/yqFiqgTDdUneFUS1WLTiPvHmLwWEI7F1BQsSI8NhEQj9hVXCl\nMDqHV8XnzLNLKmMTaKfZhl2MzP08i0BbhLYIzmSKBQ3zBMwLuKrsq2Frldp6TIEjgYqAeoY6gzQZ\n93Ddz8yNmeWMzha8OgSLYYsLs/VzC9iawVlcE1E/uywOfs8gAlZoxh0XV69jdWYtpSTULjjViBpL\nLYJI4rwmXtJCMbBwDdYcMrymOhtUV2G77JhWLeuHW259Q/3CMS5P4A3mMCtMactqO2EmoeknRG6p\nMr9yQTHe4jEze/CuVaoZYDVY5iu6IRxYlVyV4ISe+1Bn2d3+KNIPiQoYEbJ6vIs0ufLmvRXt7UhQ\nQUTQaFnlROoi2jaUXlhtt7RWcTdCJaCquGJRyswsqcFEjwyFKkJtHZrB9wdZnDcEDzrJOyxwmSIL\nk7AGBENRRxAoOLwHsZHSGNQZVBVre6w5yBglEEzDdrmkHi3ogsHWTPSJTMG5BhD2paeoY+vukapF\nVem04kvBDgVXJpwU2v2Iazzj3SNgZuT88hzferbGkY3lLAjnocOlhEWxNlNUsa8dI3KMW0bCmGdk\nowOiIw+SojIi7DmKsMZxmwybupqzr2ykJdH6jpbCPm8xOss0hUDBUgkYKtVGQriHEvE1YUhMaUdK\nA8t4TJIdIoA1WOM57VoGGRkKTHcM0R0zSotVz1ITy65FsmCMBx0wLhDsgjE7UpkIWjk3EVOEYxcZ\nKdzUK94uV4gWVs5TqJw1K+41x3g896cRawtOKtEFfvzuiq595ROP98+rz2wJ/+Li4g8CP3o4h2Fu\nEP4LH3b/Dxu0+KK+P2qbZ/23fgKs/ITtaLxj0c637jB+d2A1bL4KwLj5+u8qsLp9xmij/zhZTu9T\nMk3sfmMOylv9zM/SvvbaZ5bNAJBlfh9FPTDN+iNA3idf6j/9G79MLr/n6f4f470/6wpYhx492Dp/\n0toOLxwGf9Dq8vLyvzn8+LcPkr14eXk5fFrHv7i4OAH+R+Dfu7y83L/fdg+ssCkCo2LGPaYU/l6b\nWQZP7aHaHcYajFOKF5quJ7gRsQ2dMUid2HHFmTOoEwggbWTKhVJHrs8jjfOce0+/CkxYTtSymxK5\n7IkVjHHcCccU7xHjMWVPa5VUM7dlpLudUJPh8TXBCKihD4KcmIM0MCONJXml7YVHK4uoYbNuUGex\nKqha7u0g2cD+5JyYHYtpz/XJKaHuELlhMIWqHssMwO7d32KN0GQlSYut8ObpEcVazmqmGuHebmBn\nLRu3YlkmbKmkRYNtHaN6VJXbVYv1ILaSZHY0C3nFslaCBxYNQQ17A6Fz7HeCHgjNBLzRKKV6jF2T\n/P6dZ1eoLW2Coc1UTTjx2BBpdM2ivyXsbzFJyNZiasFaaG3DNmSSS1gf8WHujVrZgmrgkc04Y1nR\nYnEMrkKaaCmoqUyaOL+u5KklOegZQRVrR2KteDVkI3R4ihomp9icyXmHWtieNgzrQFDHK3RzyK4d\nmV51NKbAbrbRZwJnLdZC8A03yyV2ucC81DJpYacDCNimYVEbJqME66hm7hFLEsklEV3laBJKL2xj\nRGRHLPOiWN82CIYhGbI6jDPYY/BGwULKhloVOkdnK+G8pSYQreRkoLOos6hYmmVFtOH0esfYNhwx\nUVcNu9WCIVtEZ7MSZ5XWzFlRra3kajDO0JjKUj2FDFZxBkI/YovQLRaEPmEr1HWLaTzGGux2YnG+\noHiDpoGxZtpuQbAziJ3/UVrpMXbEGI9zAWMDpXq8s6RSWdgGY+fQaucgmgUVpYkN290DvJmt/bOs\n5g5K50Eq2XWcNidsJTOWgq17Hk4Tj4ZHNAjWODDzpLvkEUXY9h4HTHX+G1hjQS0NSusC4xSpdaDT\nmU0zxuMJFCqudiQXWEahL4WpZlQN67Cmaka14o1g5BtkhfNgWHlHboTraY/hPovQ4o1lXxOTwsI3\nSJ046jpKnQ009mV28hM1UGbQrTJiVFm6hqlmbIwQBGGWEufWMKigNXPUWI5okOoO1JgFJmp+iGA4\nszMr7uzc4/dm2nJk3neI/kT1mczALi4u/ltmUPWbPI2yeFE/wDWUTz53yQemJ3jL8iCl+/LXHvML\nZx+c7WnM767z2/5ZOdzHYG3er+r2af/Rt/7Un+TsF/845//Sn/jUjv/eesJYKe+WMkrfP3d7ub3z\nrt8/FmOVn3F/rBWdRkzbvf8OH7KelShWEZz93b1HXtRnXxcXF18C/jvgfz4Aqk8TVLXArwB/+vLy\n8n/7btt+Nd0jponl7hFiRyYvpGSoY8Kr0k6V7GFsA2ghi1CdIzIwFkvvJlqZJ17dZHjlUaCtEYcl\nek900K4dWjM1Z0QNQ7cmbZVpcYft+V3EQc49BWXvHNKesZeM8e+RipwpYiwqytQtKU2LWkeuMxM2\n6RKsQdKKiR3OFFYCJSvVCG+cK5KVZAO2UWT5MjUE3HiCsZ8n5IQtA+QBExreePXHsDUjxhDGLT71\nBANRhMl5mhS4CS1GEgvb02WHr5bVo8S2g0UMWLeAriWZiBNYW0MNEV0GQnRYM6+3o4p3FvUBay1Z\nCqUKagxeoUGQ4mmHJWKFEoXsAoMX7JCJ6inBkwpkVXbxDBtOcAh23FONw6rgZUK0m7O+ihKqkPvI\nDoNzZnblC4ZJFM2ZWVjX0iuoBqrteN17Gqsc2wloMEbAWQZrEGPxU2LbtaxyoHhH9ZmojrEmNDac\nTRUBHglMLpJCRGUGYK7xYB3tZHHtAusqIQWo4E3LrdnhYovWyFgqsVhuDaSi2BK4nkbECMjAQhL7\nWumHLU0OTCFj1OCTJ9mKuD2mGI6MwRWHMy3tWMm2YoxSrSKhYWombteVosqqrzgpRD3Gmwjek5yi\ndUEyp+QIAbhWDzvB9UqLodoRNXC2uIM1ShpGbsMRJ6Hj83nC37zOo96zXhbabqL6GeCPsqJK4b6H\nV09bPhc8Jhewe3bnSs17ahYU5RQLw47MhgqMCOI4WOI79kWxRGgagguUnKiq3FkuOXKRR32idQVx\nW5wVymhwCmOFxnmWNIxlotSEioLeshm3cHC9zBiyJrJkCkIwgWgbvHXg5vw37y2lCNHOc6XWKkXn\nrKmqsLIGH1YzC2ItCc8oCWMs2zJ/T2bJom1YGOAwnzLG4CQzpS1ZIWihnxL7UYk+Es08JtUiTKXO\nhFlRJuaFhJt+7r9+kggW393dB4d5xpQVcEzMLp5VhaQFi2GyQiBgCHi/IqrHxSNyuc9QtygOQ0Q0\noQaqFoooXVWunlm0/TTrs1ra/uHLy8s/9Bkd+0V9H9ZQPrmE650eq/B0AvxX/s//j1/4x7/wXfb6\n3uikeVb+l+U7wUVJN2zu/xonn/t5rPvwWabyjIUowO3/9bc/U2D1hLEy7wVW43fOT0UFrfN2//LP\nv8Jf/9Jbn4yxOnTs1/0e+ykAq5Se/k2mJCzaF8DqB6D+K+DfBf7ri4uLXwH+0uXl5a990oNeXFw4\n4K8Cf+vy8vKXPmj7xnWExYq8PqHzllKUkEea1NLWlnbYkB4XTtRQtUUAbzPFCGBZVGhdwrtIcYEH\npwtS2xBTYmpbFJ0XCiSjZhZvRV/hCKw1pNgx+hbWAa0wljl+qB7kTs5Z8JXJXc0yLGuxcsxxaGaP\n+jzQGUvhhwhqWXhP7ISSTg9ZTRlRi9Yym2YYS9aJcrMn3XbQdBivuABto9Aq4gPeBtZpQ95kWhKl\nvYePGdJIFjguI51smcSRX75Lf3bK/eLoJz30DggOIaaROlWoICjZKUqLTZZhN2JoaaM5SNhmBtzr\n7KlQK9SDOYEzylnt0Wg4HnqaofJWH2hMpeksD/cCJBqr+GDol0sygaQOMQuMy3jnYLHEVkvZJya1\nmGGkHhUYM1PrMerZThvc4NFq8MFhqHSqOBSTDXpUSSFzf19ZSUOsR5x0yiaBobJ0PSvvSKkQk2XM\nQp/hpMn0vTI2A9kmen+XbCp+nxjF4bOhHROpglgI4x4pFSlCdDOTlAu0TYvH4nOlSMWUgsNQY8up\nViQXaikISqOKRTE24dQzuIa6diQxtFYQYzFaKdYwFKUcKVnsbHlvoahQ1LDaW3KqjDi89Uwc3N7S\nLJbwzqImkIIFH5F+h7OBVBZYJ1iZkOoYdxNbm+Z7Lt2nr8pv29kwxLSwkI60L2TN8yICPWUzP6ve\nfDTPXVo7v6e517BFjGEUyypOdEFQ60jimO8ig7MG69wsxayVxhasmdhOSqqGN02PYUSoGOZGysYU\nVIUklnLoqfRGOWqExlWiVZYenKsIQiqWI7VEf05xZ7jFAqhsByFJpNvfosctcR3x9vPcFktmz/U+\nMu0TLg7Y9palXeAay8NNxzg6XJNJeSJ2lbNuyVQyXesZ8ZQirMOal49PeLi/Yq8j1RuUQj9a1keW\n6C23+8RuY8HuWLtjHk/XnDcdq3hKlsibuy1Tneh8Q9sJzo4EczwLiveZzXaLU8gMeCk0Dk7iS7R3\nTsjqcTZgrMcaj2rC6IjYJWpaUCGGwjIITgdyfcy+3rB0a9S0bMpjigx08n3UYwW89Rkd90V9n9an\nAqwOUsDgHW38sLfu90ab3vAMoEjyna/p8Tf/BtPuGxjjOf38H/nQx5Xx3df12X6kz6LeMa8w777+\nMnwnsBrLBCUAwhMclD9Bj5U7Pqbe3FB3O8Kdj+eQrSo8+sZfpVm9xpSfAqkxlXfkpS/qH966vLz8\nm8DfPPRZ/RvAn7m4uFhfXl5efMJD/zPALwI/e3Fx8e8f/u8/uLy8/NXnbXwqv4ddAINhqrMN8Hrp\n0AVkUfLJbCxdLRhVcMomKeM0oeqx3mKYx8JSFSuFUmHyltYbdvuJKuCbMAOpPlO9I3hLTILbVcpY\n0UMncwCit1RVbK3EoIhAbM9pmoikinqD6WcAExZH3KCsF4FGYSmWzrUsjtYMqfL2ZsAB1lkWkzKM\nBe8XXI8LUq1oD03w2MlQo2WIlnGXMZIxcU1sDVqF2swTH7c0GAwPRZ46IjqLJqgGmhaiS6Qp4Ywj\nNp5mLVgRrINhgqYkpjSwjQtULDc1IGKwYui6QC09TYjcPTIshus5f+vqBidbhniGtsfkoXAvZvKi\nxdXMj59bWkk4Fcw0YcY9+fSMm5dfZWMDGEsrmWwsk8BuIaydIdjZwroqaFWGBJ3cg6KzxufQixK8\nxZg5ABkFlybKynEdLRihzxOESh0qm36J9oo4QdXgpx2CcDM+kcof2AuURQwYs+DUzuYnuc4W3Mns\n2NfKy7trSmtppi3juuVxXHI2eQKOsjsCNVQj6HogJFiYFSYKthOWLNDQzRJVl9CjDu8DxhhGmfDV\n0tgF1rRcuRtwnkCgmEIjkbZGJunZXL/B0q05aV4iTVt2uoGS2NcdRI+kPPu7mFkJ0caMxICgpLxH\nmecMziZyGGhRbAWnSqkgxdIdLenaSKnCwnQoUIrQnBxj1PLw4Q0mQ3WFoQiuJNRa2mmJ5S7rWjBS\nGOUdEgdTC1Uhx4IVYWpbxFRKqFiNGBOxNWFLjy8NIVsCEwtjqWqYUqW1lmqF7K7ITWGfHDJ1jLnj\n1trDfTWwlokdiuOWvRkRbhFVjkmsKFSUxyZSraPqmweKas49MyGQmxY1MJp+Nv3E0EhlTuCqUIWN\ndXgc+/3E1K4p7ZJXzRs4uUZTwp0u8X3B3/aExQk6DvRNyyLtODN7du05RRvOo8ctYTQb2uMTfjxP\n6O1jjHG45RL/8A1MGsAIruwherSApaLWzLEO8lXszQaNEdZLQi0Eb/FdxDjH6CP7IVG++COM1oH3\nnB61WCms7o+8+e1H8yLR7S3rqSe7AH/sE478z6nPaiaxvbi4+GvA32I2ZIG5x+qXP6Pzvajv8Zrq\nU2bl4/bIPDGvaILl537qFf7y//4V4MPJuPRDBNl+ljU8G5L7PMZqmpPUa3m+pO79St/T2yQpfaTr\n+/e++ogxFf6Jf/TDOTU+ZazePXTU5wCrJAmtHlxBD7kR5eMwVnkeQvzRDKyeB+I+bKX+TYbbrzDc\nfoUpPwWwz8oCX9QPRD1JlTV8CrT25eXll4APTXkWHWg3lmrNIWNGmHaKdQ7xFuctEhzeWYoIY5lT\nkkJoaaPnaBHYjwVrzZwbRYOidBVGCicmMqVElT1GQKIwzS7h7IeKMjsJCrMEzViDb+ZztNFx0nmm\nfrZ197ayalezM+EhzBhVzgx4LJg5D6ruErvDpXzJPTM+eIirGSAt20BoHe0igug7Cy3DZiI5z81m\nIuJI4yEjp6+z/Akw0bKNhhj8O2YJw1RYjYJRpTrLKjesu4j3hmlInPqEu3oLl0eMC6Sp0qwyNxqw\n+x0qgp0tChEFKYo7fwk9WrH2hvbH7mBCYA2kMZP6EXf1kJVanA/Uqmz6OWD1zvEdHjzaEx4rd6f7\nnEyVPBb0YHu9248su4hxFt9vMP4QUlqV/dEZ9c45J+cRVWXKc0aPaGU/zo6PWhXXWBam4vZblrsb\n+vUJu26JbZR6asgF3JA5y7esc09uO3yZDTuMCmHTszCFUA3iA4M61NnZUl8AHLaJcLwCVZbHHucs\nr4wJd7JA0kh77LBHa3yewB7jbm4wJc+LbVnBjKhTxEXsUDG3V8QvvMyrn1+j5pghCYPM/VO2jyzP\nVjRtABew3lPHgUE89keOiNGSi+Jdy83+jG+8PSE187k7DTHAPsP11X3eGh7xah/Qt16nSGU6/wLa\ny2w6EpR2yjzQjjVCNTB6oY6KbMFvIUhPb2d7udeGxJ3NBuMnqnX4CK+PK1oLNliUgF0K12nH42JI\ntXInGs5bZZwqt6liDbhiqQL9rtBXQwROm56zxUOMWgyZYi3EjFdhERzElrFYgg+zdC8c8ZYsSXnA\n2EqzbmCxINt5wcRSuepnp7x6e0t0GRs8I5aJeYALojg9WMb3GeMc1UVkLMT+mpGAd4YTM2Gt5Voi\nZ8zmOjYndhoxZX5PYbhGjOMmeK5wnE09zVuPaZxSasVsrmnK+HRANXAUdrPjxuFDa2uFEBA7Lxqo\nyPxF5sm0RY1BsEiIaM5IkTkaoh5ovGmC3cRwMBvBzAs+xXhG26Gv/xbVepwR7msmlh4jyqlxqPPY\nOvfbxfjh1UEfpT4rYLUAdsA/9Z7/fwGsfkBrKk+BVZZMdO9vOPH+x5gnvzHMK68/88U7/P2vPSYX\nwcX3m9M8yW35bJmcD6rxGaamPoex+rjMmuT3GDDUSt1s8MfHH7ivqvJn/tqXAfh9P/ESwX8wLV4O\njJUzjmevqAzfCQhTTVA9xhfEzFt/EsaqXF0dzvXxgVWZnjoUTrlgo+Xkp+7wtc3AK3eWH/u4L+r7\noy4uLv4F4N8G/mngV4H/6PLy8u/8g34df+CPrLi96TEom13m7QdzSCoUYjQ4E0EEUWUoI0sguoC3\nniFvEFW6CF1Z8Gi7RVtD11m6M8t4LVxlIVmlKng/+7QdnzuCN5x80Is7LPzEhUGrQcbKRm9wSzsz\nBBa0AkUwjQUDWqDcCojilhaq4c4rjvO7jjQo6caTdSJ5WN/xxOiJNjCWkTvdGVHv8K3rx/z+41f5\nR37k83z97TcYysAbm0dc3Q9s9juOGsNPNeecrY9IbmS8qThvKTnj33oD3d3gnSVqYBTHWK6Yhow6\nwUjBG8fJ2RHRGF7KA6PumaZMObxfdQENAd09hr3B7reUcugpDQ12dcTi4AInqczjnzF0xs15TWVJ\nEwqo0G/n/YxlHtpFWbezuYEUpfp5rPF5nhAuHm+Rtx4RKYizrNsZ9lpr2Ny5N7MoY2VtChShipBx\nxMcPWdYHWAtN9O8YT1gP7nTNMGU0GFQrqsrilQXBB7x3iEwcidJUxYnQhicgvQKVuljMgLVk1nWi\nbmcW9Cg4dNOT09y9ogrNwiHOUuigjhgc24c3NIslbXtEvX/F229cMU2VRVvpFhYX5mfezeuVIVes\n7FETMJoxh/V48RHTBoYxcPVwol8fMx3dYdyMpN3I4vox6iJrdSQrFPc5cGBvASxeFBksRQPn7OmC\nMmXLWqFUJcjE+apgayUlePzQY8bEVSM0NeNCJVXh3Ax0Z5YQQO8dQ9dwl1uYMhSBeyfg3aypBdR1\nWGuRqx3SwPgwY1NBmpa2zHlYpcbZSCEZshrMZoO/2cyT8hBxVRnxrLoRYwTpZjMGt3kIpXBrl+wO\n8tVgYepaTGxIFfw44rRSfaQzmVVnOSpC1B2uCsV0eDNQmg5bNhAdxXlCGTmtWzjYo5tGONOMhJkV\n96o8Ts3BqdNgXUBPjxilQJl7+aY0od6jZnaMfPIdEbQoLtrZCl4FyYI2DbbxDEkQ62axpbVY7yli\n8ceRKBkdB/LyGDPuqECyHSXPoHUyEV8LViqrvCVIxlZFK6htwLTUEBHrWJvEsFhRfSR2n02ryGdl\nt/7vfBbHfVHfvzXV9K6fPw6wGg7BiN3Bat37Q6p8EdoPOJzKx3OAm8bC4wc7PvdDHzgd+a71rGFF\n0fcHViofzQL8edK//OD+hwJWT64nwPV24u7pB5uAPGGsonm3pPF5YCfVjFaPiQP6BFh9HMbq8B7r\nbg7NfV4/14etWnbv/DylSnt3QTxt+T8e3/AHXvt48sIX9X1V/yHwS8C/dXl5+dHo4U+xPn/8Cnl4\nkymPnLqJkx+Os6bpyXPeK9tdYrwZuXcC27e2eCnofmI4vkcz9pSspPyIo5ThYG6Vm4ZF9Kz2IxXB\nG0cogRgawn7Bvc7wuVdOePzGW3xjU9k3luO8ITjPy4vAlx+MvBwsLx0dUabEavuAKe94aCN8fQsG\nilSqGDovjNVSrCP86Cs0P/0q7Ef8NGBUMftMTfdoFpFmIZhtglLR0iBWGcmYfuTmN7+G3e3pUuZK\nlN9oA+nRDdpE1v3Iu6KnrZ3fqgjm9BgdJ/yU0MP4Ws1TN5Lm8KUKeX2EHi+YZGKbE9d7h8QFizML\nU8Y7ZTVe45znRgrTVDEmExaWxeqE1rcUtUz9SKrK+u48VgxTpQ2OVCq2ZFy7xHtDzok83VIVpniH\nhRnRUtiPsxEADhaLjoWDdHVFTHvsAcRRwKQZwHXRc7R/newjvV/g1ksm7bE6sg4Ga1rW4x5wuGGY\nM4IEqvf0TYsDpG3xm5G+W9BPI706XFWqaUg+YoJlcg2NTNQM/eoYjMVXwaAsgpAQGi+IVFZXDygC\nVoTqA65kuIXp6IhwssTUDmsVd6djMg7Zj7Qj6FRp64BezZ6SZtlR0oiqwVbB0uEtDDau5xMrAAAg\nAElEQVRSnUWNRdGZmXEg1sE+E8f7lINz3GBbpCrORq7XZ+Ra8XkiDCPJB5pxoG0sHYLUSBpA2g5E\n8TKiIrx16zC14n3ELgsc1tfG2GJdi9QJUyubkqm5oq+befGhzJI9a2Hx+BbTBo7Ol2y/fh81kG1A\np4zZT5SuQ6rF5htEE8ktUDsDeSkGXwt5DGg1cwh3cRTvqdHhSsaSaDdbMAYXHQ2Z1XRL8pESW8Q4\njhiwmRlcLSOIx3mZJcHB4KNHu3Pa1uCsYuqC/WTYTwsWZWRhhHp8QlUgz4xx0zrcqoMY6TPkXFle\n3dJRWXQduRreYM3dz99jun9DQTHtgnDvZdxuiz68z9hnbu++BhjEe2ytyO4akydsGrF5YHP+Iwyu\nQdSSq5JLJdpKYE8T5utQqiJV0JSQ/eFT7j1+TETvSUWJVJRjok9MQyWPdb4+uaDGEJrAI537TEup\nmPb7iLG6uLg4Bf4L4JXLy8t/5eLi4qeBn7m8vPzvP4vzvajv/XpWCjjV9O6H5Yesb92fJ8WrbjZE\nCAdg9d3kZXoAAqrPl3p97c1bgrP80L3nv6Jf+9JX+e0vv80f+xM/xWs//vEn3s+CkPI8xko/JrB6\nL2MFTN/+Nt2P/8QH7nuze3quTZ+5e/rB5yuH67k0mfGZ1PLnuQJOTxgrVxFzkAJ+HMbqvXLH9xh2\nfJSS8tReNRWhPRihpOeC3Rf1D1tdXl7+wu/2awB468//dXRMRCAET9lsUOewUvGmYGtiUTPeehob\nUAsiwjAVzsv/S3AOf77EDSO1ZEx3yjRk5KXPkQVoWvzxMT9yFtHdDpUeYyfSt99m+rZhbQw/rRW2\nQlXPtk8sXjrlp25usNbQbh8RvCXlSmcjP4qFk3mxRg8eXu/6+WoPv/YVFJ1zfYxFreHqN79B1cpq\ncczCzDK3qsI+93S+oUiZHc/k6SKPnZq5D6Sf+0eNsVgsqRSsCqKCNRZ7fUutMPSz2QFAWS6ZFite\naiyjWI7XJwTj2e725G2lSKHIgJyuKc2ah8cn2HKYdPXnHF8/AC2UxjPEl5EihO3A8dEDcspo9GA8\noVhsaOnCPHRHm7FGKHlLTTOL4OIMQpdmYtlGigSOutkKWlQQ9mTZk7uEdtD6Y+6uAsvWEU2lpIJO\nCQWGLEzsiSshpcITBH7XTizuttSqTGkxy0aTMmS408g8/5eB45c9m1Ghidz2CTBMAbJfUDTgq1KJ\n2KAsxn7ONauGFI/YogSd2EtDrbA7/yJGmSWEY48akKSgAjcGZM7mco2lWoserTEnzNel1Jm9sHOw\nlfFzb5cNAW8rxjbMnT4VbKAZBnwaEGNZPn6TaObPhN65O8sPK4zHZ0zLFWenp+z6hEcpKVHGikw9\n5uSYEgObPkFR2sYTnWFZ4PE+MTYGtQY5PJfvvnzEsvEMfeYmFdKYcd/8HRbX96l+QYkN7fYGMOwJ\nSKrcTooo8MYIHB8CvSuVhpgidhCqs8QcGXmyClwxVKyFPraU9ghvweTE1Jwwh2uBGIN6pSwOUjoD\n28PjKnohMhBroTGZTZ2lbos2ctxUgiu8ZZaYRUupUK2yt0IwUKoj3ky86h8TwhEbe0xrEmERsMuW\nPZWH2rImsx8yLk/EpLh2yQ7H3kOshXVNXH/7bYxCco6y29BtrufgcxGsVY5uvs5urFS1+GgwQdkW\nQxcq1Sph/01MVY58pVTLnSZRi2FIAdX5GV0Vlo2fVYWtQ0TnXKojIbodBotzARcWjLlBjud93GqF\nmUbGoTD4OYB7Ch51jsX4/eUK+BeAvwP83sPvXwP+CvACWP2A1rOMVaofDTw8qdcfzMDqh+7OTbjB\nzR+478aCPJEAqnznB0hV+ZO//BsA/MX/5A8+t0/rt7/8NgBXD/efCFhNH8BYPQF+8pEZq+8EVuX6\n6kPtux+f7rt/TqZTlcqf+/Jf4oePvsAf/9E/CjxlrI5M4vYZrFr335kHsZ8mwBx6rObjfxxgVd8D\n2j4RsDrce3KQgpjwfAnpVBPRhk8lL+tFvaj3Vu372exgmqgq72r0ejpSBRKQKOA91QQ0lUO+iyE9\nTkxugYmBiINocY/eonFQneD7luu3Mm6cKKKkLJhxJLmIlop6j7Qd5ewOtWu57ifMosNYsL6BXNCj\nM4zz1K7D3VxRPvcajIXjO2vqoyvM5pr+8TXH2mOteYcF19BgagGZV4SHLPhFZUiVMRWcDYxSOF5G\nnIkMWpDYQi1UgWlxQv3iT6JTj3nwO9RuhS5XmJwxIvjra+r6GNvvqD/5Gm51jrEBRyWiJCxad2xu\nryjBoS+dzqYbgJFMzgOtgVMPicw2j2iT6V9ek6USrMPKwaHtnuMh60O4qoK13FJQ2aHZYnyF4sE5\nZFriN5XWD9w937EuI8YY6qrBuNlGW1cRGxwoxCws1eFWRxgTSdYx6cHhUAWPEoqhuS4c74VFF9mP\nhWojkyoL39G4MIfvtpE+ZE5c4OxzP4odJ/b3HzI64Wx1l14MVQz7XrjNgWnKLN9+hOREmyea1kP0\neKlQlSEa3qppHiN9w/JmjxchpLlB8WzdYFpLVmUwyq6CjokUHGNwmDRha2KTPEsnTC6gfs5t8gaU\nSs6OGByNJmy1eAStBmPgNCReDcJOPNka4r0vYFQZk5K3kEpg2RnO+4nxZmJ9u+FlW3mcDR3CdbGU\n1lG312x6pQqsOkMsUG1g33a0a0NTMiFaqo6MNzvs/YeY5TGdKgwTpij1zhI9/WHCbmThHdvzO4yj\nMhTIUlldP6Bah8aGtt/gqRAjwXvq2jA2HbI6YkgJdQErQjCV3LRkAsGD85Z4fj5/BvY9tR+YUqXW\nCshs8rBa40WpBsowonXC2FNMiEiaDu6CDqRijUNkNn0JoyPn5zx7PfjTub+6VmWx9FipyAgiyljg\noUS8A+cNsQWM0hdlktk5NE15lp9aBQNeEzujgBKd4F3FudmEZ7ayAqNCayyNZIpp6KTQ1ERTK1Zn\nU51WK110KAExEXBUY6jGcrU6IpaCN/BQE5hjFtVQju9Qd7fsjtc0R6ckFLEG7y37PqFUvHWIzWzH\nLXc+ubnwc+uzAlZfvLy8/NcuLi7+RYDLy8v+4uLiA2coh21+HXiJ+TnzP11eXv7Hn9FrfFH/AOvd\njNXHmxjv+sTLZwtimHuB/AFYfbfJ+juA6jmM1aZ/Cia2feZk1bzvccZNT7m9fV+J3RvfvOarv/2Q\nn/v5LxLCd/YqPWux/jzGSuSQ51A/mmRRn7FxX/+TP8f2//m1dyRzH1T74ekU7llZ4JN6MDzit66+\nwm9dfeUdYPVkZfllc8tbzzBWzztnPx36DFyhviMF/OjM0Hulf+9lsD7SsQ73XpH53rEHYPXs4PSt\n7Zv8qb/7p/lnX/vD/POvfU8QHC/q+6AuLi7+EPDngQj85cvLy//s/bbd5wwhkpsFU4bF4zeR2DCZ\njlAnqgvUEHn8Y78P2gYXPakI2WbWUohvfA0xAV8KIpUUW5r+llgTo+sgK6EfUOtQ02EOTmAlHjF1\nK9T5uXkc8NsKZaLtdyTfob6hBEeKHX4zUZ2Smgb0CPnGBjDw5o7F7hHVW7RdY8MdumnC1w37V38S\n5wKLkxUr6TGb+/SSeFsK3f6K6iPlzj20W/FYC1Nf2d6Yg9Ofzv0XUomPH2K8Mrhz/AR5LCyPoVlY\nzHLOx5P1CdFec+quuOnBKWxGw0vHym4PO2nxmlnbDS8fK8HCwWAP50BlAgMhACYwZQg+4AwYE7jd\nBe4/gJNj5fhIud72vHmdkGyoyWNDne3krZDE41qDPV4T7TklGL41DLTHlaaZMKK0dsB5ARvxfs0Y\nM43r2N/ckN/egVbMwz0+zIYcObQkiaTTY3yjLC30AuGbb1LbFvuFlqkvOFVEWrDd/Hq+8i2MgZoP\n4+3mwbvuP2NmOZu+JPhFmO+x+4ashX65xLzxDcy4597RPc66c2K9ZXu3RXYjmIrFMJQ9srCUCM4r\nZ/0Os6roD98lBU+4HchvJ+7mCRGotcdJZnXWAIb9lZB9ixkmXBJqdcw01sxmVeB1wFqLM47eKCu3\nwDih85YVdt5UlC54gjPs+oIvEyPCMrawmxCEEzwg+L1jn/dsfCA3hkDB97OTXwByiOy30NeHOKlE\nY5Ci872pBWylV8EsG7oivLp+hebuCf7uCmtHaokk/0Ns88RJe0oT1kxqSKUwyQR4oosEG6i5Mg6z\ns6FzhjRVcq6IOE6Ol5ycLd5Z2KtlZmqdt0xDYb9LNK1nv52fZ0/YNmNgaS0lV26mQhoLIToW0WF2\nCTdWnAg5Bq49dM4iRUjOEEVJgD4zfekUrMJkmVlKQIOlC5bOzHJV7x2ttwQ1TCrcToUgijVggjkY\n5VgMBQWWZKiFxekpTRexjWEzXXOd9mzyjlVcc96eU3Wkz3tUDbla3to+YCwyM4ihx7n5viuS2eeB\n4B3Ozj1tqteQf4fgPI3p0KyzC2LtcSYjAhJhbz56S8qHqc8KWJVngdTB2vYDZ1SXl5d6cXHxi5eX\nlw8uLi4a4EsXFxd/9IPCFl/U936N75ECfqxj5MrZ0f/P3pvF6pbm512//zustb5p733mGrp6sK3e\nCW5CHGQbGxLiEHFBHMUgIYQCF1yAUC4MVkAQcgMXDBFSZIYkkgkKkGArKAy2ZIy7O44Td2Kn8US3\n7fburq6uqlNVZ9hnT9+wpnf4c/F+++x9hnKfU9XVccf1l7a0v/2t6Vt7rW+9z/s8/+e50MSWZu93\nM4Modd5b9TTG6mx9cUzLzfg7Aqujz/8yX/upX+A7/tu/jLgnb5uf/5kDlqc9L768wyc/9aTD3rkU\ncGLNE4yVaioyCkD1OYHVNuPphX/n32X6yX1Wv/gPnrBgf7e6DKaeBqxW40U/0l/7zR/nX/joH3kI\nrLyAi5eBVXHYkkus3/qcBbORrBEw74mxesJS/inyx2ctzWVbMZ0Dq/IUucxb/fZxkTT931/7zIfA\n6sN6pto+7/4H4IeALwF/f39//6cPDg5+8WnLmys9WjUYFBsrhhdeQLDEztOPDkTRbGjuvYqTcs/U\nQNUkYjTgLC4PhRkKhjoG0nSPzeIGpmvRtiOIxY0FOAz1nK6e0c2usTOcUpEYsNSmAAzchFw1hTEQ\npckdVWwhR0iKCWVgmrAMY6KyinGQeqFfQVXMAWkDXHnj10n1BHvsGWImZmidJbgJJ+EaEg3V19Zo\nOkNCpBnWXK88tqqQaoJOasIwgE7IzlFTgIC4Gukd9AX0pLiCHBmBO/cV1fI8EGDVKjEaJpUg95Zs\nMtz9yAvkkyW6WlGlHs1KLw3EEbMzIweYxAGkxn3yn8Co0sfEdHiH5RcDXR5JUdnDoSjZN6T5FUxe\nUskxLvUMbkpqI2k0aA4sdl5EegumKuyXtTTasdfdZRgS1+qGcdhgk0Pz1s3V7aIKfRzRmNHc47sO\nEMQJ1Vah4foevvI1phRJJtjiKpkTsakQUVw7os6V/q8JmNogY8b4CmMdthL0bAAT0AQuzqgHT64g\nC5j1Xc7O3kazYbx5E73asOvWMER0ukuYLhjW2+fAbulDrrIhtzDqDNnzuDhw9cEhzgqnVaZpT3Am\n8srHbyFuRTpZ0Q6JdtkRYukJyimjYul398gCo69I1jGywoVITQ9nA5X2aAJrldxZhsqBGrTNjKcG\nd6tGKkNO4NYbzFXLPGVsW7MeCgtpRQkYEEutPX2waFMziitgqlHIjqgGKxE7CfRjpGkMw5XbxPwm\n3Cu9bKEz4C22EVbpDicxMIwOGy0pJIxVlhtD3CiTFyyLa9fQpKiO1E1k3kTmxtP4KUNIODfD2Iab\nezcQGpZdJC2Ee95QZWFntmDQzMvzCXFYcXv1OlfrXVbxDB8GoCKEzN7ulKRC4ypOu5aZG3jRlAkY\nNUpIgbuHx3zMfwLEstEzbsyvElthtqjow0DbDtSmLgxszqgkxhxoGsfebA4IQx8Y+gKgNmMkUdQ6\nArSx5MaNGW5UDfeW93nt6IhTTUU6a4WgcJQ2fDW9SUIRzNZQpVxjaTtOSuOIIdMjWBUWqojEEh8s\nglFwRnFpwGqHzZAKqU9jPWkTMNEgu99awOonKTN3V/f39/8t4IeBv/YsKx4cHJxPrVjKeOfD5od/\nDGqIl80rno+xiqslaMmkqC6xQReM1bY/KSVe/Ut/BfOJT7L47u/ZyuvOXQGfZKzWl+Rvq6dI4fQS\nABrH0jQZHhxSvfDiE8suT8uA/cH9NU/rbgo540TwRp4AgpdZqqcBwN+xtsYOxldIXUDnMwOr8WJf\n7VOA1cHbhw9//+V7v85xf4pqsWS2IrhLjBU587//zBcY/JQ//S+WM7Dpt4yVC0QJQP3eeqwek/7l\n98VYlXVjNriZxzXlerqMddv43s0xLtd7jRX4sD642t/fr4B/D3jl4ODgh/f39z9JCbT/zPvc9B8E\nTg4ODn5ju5+/AfwrwFOB1Z0XPonEhNWIQ3F9T0bI12egSu0zEkfyUPpIjBGsKd9hjUBSwZlM1g5n\nMsZkvHSsTxoGY5jsVCyuZlztiLEwKs71aLzDtDZ0IzxYwkSE6dSxGZRJpWzurzGa8YwYV67djCWN\nHTmDbwzG6fYYYeOv0AwD1dkZsrfHtdMjJFrSciSaijBbUHcduzEU0wY/IzkH9YxMLkqCbQO5Dj1h\n6Am6A32PyzAde/wwMObAiKHfu47rW2I9ZfnSd2DJTGKkko7r+g7u7BCMQXvBaAdDyefBWHjttwvq\nyjW6swBjqXJfBmJuJMsAdQkz1nc+h0oBs6DMZud20YJ1FhHB2g4xl2XXwkIGsnawlRjFcERSQVNi\nyHHr7y+comQPQyoypYQj0SAzB1rTvFizsJ5+43Dd2/jUo1XNxGQ6NdAucd5gPISQmUwtaRyJISEC\nVTWSM4yzIoeXbciSJgNTRXNEZCR1EdMHcopEgeA3VKYpgc4mYm2AyoM1NO0RnEZEBY0NjX3ADgOW\nhK1n5L4j+gmmXWJDIGIYEaIIo3OMCpUx9K70qa2XR6XVSsGgJOoy4hPIYrEmMe+6wpJoy5gTRoSQ\nlaSOMXnO4px8DqhNIpQQMBrjCCYTDhO9iXRVx3RosF1hxarsmKR0To4hOeFdeTbNvGA1oOuBTgKh\nCpzaUAxSxCAroPacKdw5M/RRqZ1HOcNkBxkisdj3Y7CcP/MU0URGuBEXdG8kXn/rjRIC7DPz3BBG\ni4oySiQgZCmpEEnMQ4c9W2/BRTZIUnJ2pafNBxTBOsWmRMSRJgskZ/y9ii5HklgQwRnFGCVmwRkh\nmxKh8Gp3hqhF1ZBXtxEjzAZHCf7KZE1kLN4Ymmn5f23aSFgDqny0eZm2NRzle9hUUdspy/CA5AND\n6iiBX8CqZPcB1A4kLSBPiHKyjXOIEMGoITJQ5T0mucaoLQ6BYjACO9bSh0htMntTwftTxmiZ6nX0\nwR3M6hh0IJqEM4agPUYsM6noFPT+MydkPFd9UMDqv6BY2t4A/iTw3zxLGv157e/v/ybwCeCvHxwc\nfPoDOcIP65tal1mqPj47sFJVXvuRHybVE3jlX6VyFzeC3eYinA/WN1/8Avc+/VngswVYXQIpT7Nb\nvwys+qEMWlJOvHb2Bh/b+QiSLkBcNGVmI56cPAGsLgOwB0ctf/fOMf/crSsPjw+K/M8bwYqQHmOs\nLvdVPa97oW7zscQ5TF2GAc/ag3SZperHJ4Hn5w/egUuGFvfbQ67UuziRkqnzmKzvl3/5Ve7XV/nB\n7/8Yu/OaVbvdvhuJOgL1e7Jbf/zzaHjvwErzyDt6gze4yfV/5oJZzELJ7RBhE57sF3ve+vtv/0N+\n8qs/w5/9p/8Mt2Y33/f2nqVUlX5MD10zP6yn1n9P8dD73u3rQ+BvAt/1Prf7MvDWpde3ge9/t4X7\n2bcjKJ4HRPFMTEubBCcjlWR6TWQqHJlZvYNEJZ8dk0JiaiN+MgXN+Nqj3mCsRXNmciti6MjR0FaO\n3BUnQVFDdODqBE0k5cALVywz0yDG0cSWbCbEq44+jWSpmLkpSg25xkmkMqkw0ttMGqXkqkxpQHcp\nQ9QFuVc4E3Aef3yfEAy4GXXjiEaIKaGcUS9CkU3bhIigxjCIwfjTbYzEihQtuNI3VSE08R4yBdIh\n14/eINeuuMblYgjRN5aacpw2WKydYr0hpFxYr+3597bHNtPC0lhFqopWApqLLHJMmSxmOwiFPgX8\nbIZrGs7GnlkcMQrT4BBjqF98CddcIW1GxpM3OZ07Qorcl6EMSGPGOEMMmaEdICYSBmYzUjXjplS8\neDwgixraFXq7TGo9EgDRdVA57DggboJuIrmpMf3AsAHVijHHEsA89Ig1GFU8lo2N9B52Yg3GAJkA\nGCwqBlyDotQZpAU1ELMHPFNN1F0PAmd9MQqJbsD3LUaU5AzEVckb22xww0CkSPRwhiorSS3jbBdV\nx2ozRftESg5JmTDfIX38Y9AHkslUsykyKnq2pGkstSiEwBgixhXjqmQ9IWZ6bznxJwQzYJ1DxZBF\nka7D9i1Zi/GJkQmbiSP6KQJUqgymIxZ4X8xWdCsJFzCSkZ10MfjHoNYSUkWV6tLjZQMqmUljSLGE\ndtP34CyVN2SVEsDtmgt2IIORxJHtMdahocKFiCTDWpRQGWK2VH1mssyMYkmaEDNQ5ZZhMSXFqkhV\n1aDRkSaRSjNpEFSEaXeVUQZyavFtZqJTnDimmrFnp4wmINaTY09aLEiS8GcPcGmkGrY6WRFWO1Oq\nYcSPmSAZEDazBkHpZxPSoiYhSFCQkWg9r/MGeSguj3YYSUa5tVpDLZzdXICTso5A00ZuHCcmrVK7\nETAk64hUkCA1M8J0QugtcILYiDcwbxQlIqMg6w5HIkSDrzI5AoMQ9C2aWcY0xXJdkkCGWd0gCLmu\nmHMx4fCNrg/Kbl0plrb/03tc/zv39/d3gf9jf3//ew8ODv7huy1748Z78Zf7R1ffascL7/+YVXWr\nLy7lJs++zeHBEQAhbN3optXDdXcXZaZzvmi4cWPBsLqYPbx+bUYMl0c6+Yl92lePHv5eNZ4bNxZ8\n+tW/x1/9tZ/gT+7/cX7oE3/i4fvRlC/0KeGJ7YyXAMrtB2t+6a0jXr425/tevvbw70mE2lkqZ+jj\no8dyZa/infMXGp/rfPd1AX97V+fs3drlVeewmp5pG+ZSbpWKPLGOcY+CIDFCNhmHMNDg47K8URkY\nM//GW/8PP/pt/xojZVvnp0X8gKvLo8UY89zX0+uPsXi1ff5r8nz5eweJn0p//KnffLtXZzTOkr58\nsb/Fnqfxz2/J+plf+jtsYstvrH6DT338Tz33+u/lnvuJTx/wv332y/yl//AHeOnG/LnX/z1S331w\ncPBd+/v7fwfg4ODgZMtivd96XFnxO4bCufRVtFJmRpms+yLP2rlC7yYsb11lKh0TBgxKHjq6Tlj7\nK2hSfOWIdyNeBvCO9eEpY15zK6xoWsN4xRfHtsEw9AnfbmhmnjCbsZlPOFaLMxVZQWJGfWHLjIKr\nZozR43Jm2UciBmY1ST1kAxmqTUvVlJn/yUQI3Yg7WmGcxWuPSQGjmTTdpcpr5OUFZCGEDpl5pm1H\nMA2paYjO4c2ArAe02s62dxvs9aZIwcTgqobq3iEmJnIlmBAwKHGAdJrRQWDLWozBs9m5StX3nO5e\nZfn7P0V75Qo2j4ibMNWBqylhT8+Y5sRmeUxMiZDgqFpQx44wrZjpkm5wJHUY49DGYkLAhkTUGXdR\nBhnoZCDGnvq3fgsrhpgem8BTJVuLcQ6XM7K9SkRKf5u3FquRzmdev2aI3Zt4yXQywmKXmc4YXWCI\nhpfdTWo8MhNS33IskdGPHJG5lhYkUVpTnrPJTLG29No0jRJjxuYNy0q3IVcNV8wu63GJDYlrg+ct\nOQEMxivGWxKORjpWmhlHzxgN1U5CyIw09GMm9YKmIjOkFVbeUckuaToh2kyVR+rakdykgOW+R6oB\n2YP54Ki1ZioRd+9rJBIb31PJHhuTSFcjI4Ym1wzXHV1VIwZqmRA1kEhYD02YcXVxldmiJqqyWg5c\nqees+4irGrqzDZvNKaTMi7VhcbQki2MzmWNeuUZ2lrbtMe1AjCPTqqGpHbYfUYURpWHBNO9iROHw\nHnFmcGGkk0CfErtVAznR+p5panhlsUO2hlU/4nVEbM1RP9LlxIYB4yvsmNlsBL9SmgfvkO2AcX0x\nsogeUYO3isUStSGrZ3yQMSjOOkZT4+MGJWNqoc+g0RA5haZismkZTSalNfW4fmhf72wxgNFoMHZZ\nHAxzQo0QQgUU6d61w0jGYTQhuYTwOtlgiKBLBCGoI6vBmsxYB4YqErFI8phgcCaBGuo6c+OdDY06\nJlUmZiVFU75SMigOJ4ojY+KIGCGdLGk4o64y1lkQxWgskQ9x2xtthDFnJBmid5isSAAwRDsl2Qbd\nnQIGGQaG6RS59QJqSrabeQ/P9mepD8pu/a885c96cHDwZ551GwcHB2f7+/s/C/wgxdDiqXV4+GyN\n+r8b6saNxe/K433Qj+VGekoY1DfimIc0PrTgzZq5f3L6zNvsv1agUZIyTkkpP1y337raHR9vODxs\nOH3zITzh3ut30eqChdEUn9jn/QcXPUSHR2sOD1d88e0vA/Dzr/0S31tf5FunLbA6eec+PLad9fJC\nepe3zNeX7pzxHdXF+RxCxG1ne0NKD4/lxo0FRw8uQmtzDtx55xT3FAOMp9V6WdiVs00gHK5Kg2bX\nP9P5PTm7kLwdn3ZPrBMeY8+GONLLiBUlY6m2jdHmVk2+3VFp5CPdIa+9ecKNecWDo+IKKHXHst0g\n7ND14bmup3fagdtBuMmFwUS3ap9rG+fXsKpyNL67NO/O/SVz7zjdXGz7a3fucn1y7V3Xebc6bAvI\nb9vn+7yXj/d568d/9rcB+NyvvcUPfNfLz73++6lvoQmjRy7q/f39KY96l7zXehv4yKXXH+FRBuuR\nWm5+m7RSlhQp1Oy4w90vDl7t64bWWTorYAWbBdWICwoqVEOk2YwPBUZThQlKD6Urn2cAACAASURB\nVGyMRU4BDCKKkUTEsBks+WiDZsXGEkiaTMIbxRpl3IImUIwoxsPZpGbSjmgqVtKrpilslQj1GGmC\n4bCp8GpZtJlQN8xyT+UzMRrkzinJZtQcgzHYHBCTUckIS4wqyTTlu1XB2+LCV5mAvLNCTc2MDHlE\nfQ31FBMiwXt0OgGTUHqyhdNrFXle4XOFoLTaMHBGOv57LI48Yxlt0YvwphGI4TwHGavCvcFzpQ6E\nunz+U4BpcTKzNKiBUQNGweSRWpXKWiZse50WSlCDGGHdgV1bqiSc1SPXV5ZaJtgYt720inFKNA45\nXqN1YrnX03hQVzF6j6s9mIHeJkQzlTM8SF/BSFF/t97gJhEbI828ZuVG3DgwNlM8UqR4TU0WR+h7\n2sozn10hjCOb2DBJmbN8H2t7eoXbBiyGmEtnS4oBJdCeeykahUoIxmEo1uTTyiE7BpM9SoYdWGjp\n67JDh04abBdIVskVaGOo2hUJQZNFZgOu36BjJI0JlxI3KiFjmSKkNhFNRTSO5lBQ70vgsgh+Psep\nYr3HIExOb7GgR2PmFckY6WAYkM0aNQZJCXP7DbSqkHEg7Vwhupr05UPGcBEhV1VFhhiiUNuELObk\n3/8puH4dHUba+0vClY+SfU32UBORLuN2KtL9BzTLFZoTt3/jLXI9JfsS9G0l4pZHzGJgGlOxih9H\n9rwnVzW5MqgKDoOJkKsakyJaVeS+Q3Z2cc7h1itYr5Aw4GgxW1m8DkKlij2XnvfgDJCKo65rHDFG\nQBHTlP9XtZ0NUopJynQHmxUbWmwcSOKoYocBzHRKp46IRYeBnDKVSZhscMZgrUFGpR4SqOJNxhqI\nboYdN+TBl/stK13nEDJJwU9qhtlNUs4QB0QjVJDqKY3L1O0d1DWosYypwoVUekaDEqo56mu8VUYz\nZTL1sDlD+wC+ZkQY+4z0ipDLdXwakLu3i1mxJqoK+BPn4oVvXH1QmpFf4WIGrwb+JeDB11tpf3//\nBjA9ODh4Y39/fw/4UxTpxof1AdWYMn/xi28wc5Y//13f9oHs41z6d625wmF3xCY+u9QqrgorErfA\nytuLMdC5ecW5y148PXlkPXP1Atioxid6XtqnSOHSthdLRBgvyePOGaun5jVdykIwW0vT0/FRUBKy\nMnFbKeBjari+e3Sbn/+FV/n+P7b/xH6eVueugGLL+RHvyeOzyQnHcPH5Nk/JcwiPzb6OaWQ049Zf\n6RKw+rYZ+XYBaYu4eSix3HQZsEg1EHTEuec3rzg43VCnSHIOt+0ny+/RvOLv3jnh0/0PvOv759fR\n5R6r1bh5T8DqvN5rtMD7qb/+swe8fH3GJ195f6HW/5jW5/b39/88MN3f3/+jwJ+j9AS/3/oCpaf4\nD1DMK/408CPvtvBLb/ecTm1hWqQ4VmnO2PXApLXASJNhdBU2p2K/nXVry54JWECwpjT7G4WFZtqd\nmtiPmJgxCtku0BRQbzGSqYaI+nL/GhWslL6RyipqI5BRNYQM1aYHU3oiVC2LoUUkklUYxbAxFSa0\nRBVOLAy2515T45KlsQafHPVqgxqlRkAqshiqKpe2J8mkbICEcZlVBFyFE4O6EWUgZUufHKYvIbFu\nOiMbWPWBRpRKenwecPeVcZix2psyNpbJaUu97Ji0A4ZEmZe2RGTbxnPhBioi3JCtK2Flydfm5InH\nGKHPkZAKc9g8VA3Zh4ObmXqq6ZwudWjtGRYLrtQ7XKksXZ5ydbmEsWOYVOj6lG42I1YVLtc03RrT\n9TBG9oBBAqKGcbLLdLOkCPaUCCTJRBtBhCxajj4q2RjqkMlxwOeK+UmRmmuqsHq+Bc8egpwkwDLX\nQDCBYEd6s722gCDKXtgDzbS+JY8TcvJUlXKmC8z1hkl1k2azhGoK0lNVPc47XLuBB4doe0rjprip\no8Lg5o6Zt/Qpk6Iy7L3AeliBSYg68mQPMxNiHkhhhJgxAtWQi4wvCiaO+JCIomRRbDZYTtFo6VtH\nLxUz7mK8QyrPsO0dzmMgqRDdBEmBlC2mzQQm9NExC6fl+t+GgfTqMERG37B1OIe7Lebgsxe53VKM\nm1KGaA0ZQ4yRjRi8E+q8IWShEkUzGKuoWIiBMSu5chjVbW6WkFFMDhhnCfMFcTJn7+ou16cW17cE\nEdbVTdZZaYzhyss7OIX7d9/hwbCE2uPHzByLWba0i6tI2ip81h260zDdm9KZHdLdO+QY0cqhZgbe\nslq8gNNEDNC7Kaggk4oXZiM7jcLYE2dzNpPrLI86+iGhMeO9Y7qoESNgDDkm7NAxPFhij+7TDQPq\nKuorU3q7IIcR067JrsJ1K7L12MqXCReB+Z4v7HhWxj4xcxlbCWGcYMaRdjTkrGSraFVjc8JZJeRi\nDJZWx6w3BuuEYDy7eU1tLCIJfI1JguSErTNGEkKPcQlbvbth2fupD0oK+Fcvv94yWD/+DKvuAX9r\n6yIYgb9xcHDwEx/AIX5Y2zrcGgxsYqJPicY+G1PyPNWnwuhca65y2B2xHp8dWKVVYZXyVgtr7eUe\nq/L7udVoXq+Rq57qB1+gO/kK073HbSRK6/B5Xe4xGjYdOQRe+ewXeePlQP+CPiLxS6bcKmlzwXKd\n1+XlJJXG7rPxUVAStfRYCU/2WH36//oC3/OHLl7/5q/efnZgdd5jZcvxSVU9cw/SeCnXYv0U847w\nFOv3Pg1cFSHjmAxlfVk4jv/o93D15z/PJA8PM7GGfgus3EgfB5yVh0Yjz1qH/cjHYiA6j42xDAKe\nAVhpToh59Fr+9NtHT112PB2o9mrC9jrqLgGrNj4JpJ+n+vhsRiLvt/Sxa+ov/K+/yv/4H/+xb8q+\nv8Xqz21/PPAXgZ8C/vP3u9GDg4O8v7//bwN/C2goz65/8G7LJ38TP4wYjYQMiYhHWO9eIdcNN4ea\npo0FbNWO5BxpOiN5D/0KM4ykWy8yvf5RrFiyZnR5yo717DQ7UE8Q7zhdHrJeH2LzgKow1hM641mJ\nYRYGpmdHyGSBvHiVNETi7TvgEs3iJmk1sIeHekLKid5FVtyFMLDblX6mfHqPIY1YY2nnnuAN/bRm\n5vfockce53z09jGnKfHOjWvE0ZINSKXU3pHHTEoZKsGgaMy45RobKtTAetFgastk6Jm2a5oHhQke\nakeegM4sfvTUNmLaDaxHXKpZW+izgvPMwgJiz0QFo56IZ3ATrhpL7TJGIphMEkXUwxEMaUo0oA7s\nd+wgE09ImTshcsPtkv0c46d0IoTjACEysz3Xb7+OvhwIR2ts05EWE5BdXAK1NXVU6lZJQyBJQ2pm\nnOYCrLvKYJhR5xm9H6ke3MOv1wTriVIRtMbYTNWfkSc1G9tQrRLzs2OY76J7C0aTmIR7mEZIPqKj\nErqGbrA0NlJVI6PzmEmFpOuctdfAQd0MDH5GXynG1+AEFzJDhLaEapF6oRtGNtow7zsmrODeigTE\nDEZnTGZXixnIzZcZk2HzxjvcS3MwlmQNwcEwd4yrE3aqCXUlzKXjXj9lqBvaEIjDKeKFnTTSxp5F\ne0YeOtosxBCRGCFETGVIXjA5cho9SScMnSExKTbgXgkxkzHFwdE67i1ewmyZQ683sTmQrdkCVosP\nERN6qC0+dFR9R5OHElhMyRgbzscRKQO5uCdqJoxSjEWATXFJAS1AeKKZKI6BmtV0l2gccxnpQgFe\nFsWuM3G94muHK5wmAhVTifR4nGSyCo4B09S4bsPKTHAOlmYK1oDN0JmtGUcmzm5CFuREsTah/jrp\nkvyfAByfPXxp5AxrLfXGcnbit6HbBuGMzDGCoXGelEssOHfLM2fuYMcLo28KQHzhRSY7U3Ae7Tuq\ncUR6oJmTVRlnC0wK6OYUkw3JWu5uKmLumLVLTBeJOWNSJHtfHC6xKBlJmXrocbs17fw60+Uxtmtx\nu4CvGFyDc0J3Y4Fat/UVBOM8KZfJKSNAawnRYGffQlLAx2tro/5101UPDg6+AvxT34RD+rC2dTxc\nCokNHwywGraM1c3pDQ5OXuVkOP06a1zUeYZR2s4wukeA1aN262m1wn33FWTh2Qy/TpM/8ci2NEfE\nXrBY3XDB2Nz/23+bpbvLR794h3/9i/Bj/+b8UWAlJYQxb54caI+XtiMUcLW5lC+lqoSsOClWoEn1\nIXvWd2H7pX1R2/7cZ6stqyTbL0zj/CNhvf2bb3D6mU9z7Yf+Zfy1R2/BYctY1d6y3DwJxs7DgLWb\n8+0vXOe1s9cJOeCdQbFM+i2wmljCFos0aWTTF3awEGcKJjGkAWefn7E67gPfvgVWUmXqcfi6wGrY\nvMW9r/zPLG58D1de/p3t0v9AsPzicizASs+B1QUY2oT3B6y6bxKwunwtw4dWqu9WBwcHA/Cfbn++\n0dv+OXiqKegTJVdeYhIsJk5Z1JG8vY93skViQ9PYYjYRRyod0ckMjCsmere+jfWDU6aDcCUk1n7O\n9Rfn8NI1YrZY65lUEW87PvGJW3Rrw/K0pd0ExlEJfWTohdAlcn2dTYhM32lpzII4+xjtuObsfs/c\nBI6cIY6JPAyctYkxv4DPiZ06o2OHq3dpByWgLHJkM3ZIHkl1onEVMia+ujsjhJo6KJqFrquphkgf\nHcZkxmBQ0W1nhwEWWFfYLFnB3sbwoPeIQvJ9YZZGQx0bjClN65bArfGU+WaNeo8fDSo7SEr0N17B\nbISsPZozbVORouc0FNZeTIVKQnKi3qxY9GfEPCAu0dDg7qyZTWu8rbmlBmRN352gOYOBIeYy0Gws\nnZtSnViGWNFtBkwesZVDIkRjcXFAGQkElJKPNDGOnDNeStqPc644teVMTpEmKhZBRJi6ihQVc9YV\n/RoUeVx7gu1O8K6YbYgVNETMdE6+cou868hxJMaenXaJDobVvCblB8RgmEZL1kA2Ay5E4hDxmw1T\nDFYTMUSq2pGjKQAYSiSAS7iqJhvFOUcrFWezawx3O6Ja1qEiDyuyxsIeAM5YDIY3TwojKUnALNF8\nimDwxhElotlhminGzoqTIZCGwJX2lEkTmS8Sag3VusX1AzpTPIF6zGRjCHUFzZRsDVpbrEu8pIcY\nKeeyDxOOjy2DqRCgWY+Mg7Iz81ydGFJ9jaM+s2kq1qc9FSNxNiMaIfWR7BzJWeqhZ7ZjGGxF6mAU\nx6KeoCHRdEuiq5C9isaMuNMTNDjIhqUmaid0eULuA1kjU1quXO3BGGLMtG3F0DnMIjFvAkiJ2NU8\nYS6AOKY6oGJ4cLZDyq6YMNkCINYxM3WR2udCt5Gpmp7KJioiUQ1DMKw2xUZ94TrWsfTTZaUYfxiD\nQRBj6McONVC7GnQkJcNqhHUENy6xGab0rM56NimTiJCFSaVc3W1JOHKyGDcQKiEEQ8oeUUWspd/J\n+B0limFhBG9HPGHLDFoq1xG1RsxIHd5GFpHpbpkAuLPx+DwwpimbewEzBbUONy3Sw0mlmKrGEnnA\nLTatZV5/MK69H1SP1X996aUA3wnc+SD29WG9v1peYlbWIXHtAwDw54zVzE+52uxxd3P/ma2oc7cF\nVlvGyl1y2nsIrLaD9bRZY3Lxuc06Pumw95jl+mXGKmTh9Oc+C5QLtk8Dw2UL8u2MVmqfZNvGx9gp\nScompIef8Zyh8qY8kpTSqmAFunbE2scc+XIijAlffX2Qe8FYnUsBHRovPvfRT/6fbP6/XyecHPOR\nH/kPHi4HELZ5KDf2Gu4etw9d8aCAwZgjDhhe+yf5Q5+6xWtnrwNQbxmr+bAdvjeGaLbuSTnwm/df\n5S/8vz9NCL8PbMQaQxf79wSsTseAC4GxmZCNpQ7j1wVW7elvgSZW93/xIbBq46Pn2GgqM5TePPRa\njzmjqo+AoedhnGKOxJzw5uJrdcjfHClg27/3bK/fC7W/v/9fPuXP5xS2Hhwc/CffzOO5dvMjxL7H\nT2vcNhcvp0RsW3JSfG04ajM5VKRe2akjOa5BYHO85DRCu4ro/SN0HPECxjs6tcURr7JsI13O584v\nHPEEwkPkXQJKVwT62Jd9O5g2mQfBomNANSACzoGjfNd1wDB4ZIQhlO/moTUIuwwaEKPkbBFKL4DP\nGSsJOxFsTOSNx1Mssqtc4g/C1oVVBCqEhTO00dHnjDcZJxaJO4xETN5KgxSClGDSV3WCVdDBoCLb\nfECQN8sMu+gMS2ZmEsbkLTgQLCUTp3yuGafNokgVY+RKe4RLA0frrggAxZDFUFdQuQajSlTFiCWO\nFl2v2JgpxJGsBRjRUYCHKH2hE9AIaorJeMgdooJTwyAJZcA68D4z7k5I2TBLa6RWNmS0zXgPoh6X\nAeOYzHfZEFFx6DIg7cCYhNwf0S3vEMlULmCtR+qMGyr86pBpFEKEPkDe2vknDEmVQcvzNmomARoV\nz4BkQ5KG3lccyy20V0IuFt55BSEdFuNBFHVFkipWMLGk56gNxbnPghpFbcIEj00WVaE3bZEKhorc\nF8koQpEGOmXpdziqV2Q/UDWKXcBUGqbXLNp1VEgJpB2E636X1vQs24Qhcm2yg60im2HAuiWzj0Cj\nNZkKaxITJlhbkU2DZ2QRMmJaxpcMMTlStsQ0YXdWctOuVIa9ZoaxCTgjxIZ2yOzsWqxxqHuZnHqs\ng2Xfk0yDNR6yp6kbluOK1Vng9h3H1WnDQE0KFfOZZzMEqpgwMeO90qNoMjQ09DGX+5VISpbaNMxv\nSQHZBuaVZzUGXjQWl6GZNayHQMiZl6eGa3NL48DNA+0wMJOMdj2BxHJzQq4cKbV0eKJ6PBGNI1hh\nGSqONsKkjuzUStyAyYlaA01MBDHsSbFTXzGhjY4shjUNZ2NNFsHampzclkFz2KxIP7BkglqLWs+d\nrPiUSDFTu3Jtmm5ripUTZMECg6twJuNSILaZ1WgYoiCU/zlbOW25htYglsyKbA3GVcW3/BtcHxRj\n9TYXD60AfAb40Db9d2GdXgIF/Xuwwn6WOu+xalzNR3de4dfuf4Gj/oTrk6tfd90ngNW7MFaqStps\nMOcBIlnRx/pbHs+yugysorGMbz/aa77pzgfVmbsI7zQ3mD+lx+qc2RJn0JiZKGxUGVImv/pl5OOl\nd80Z4TzCKmmZhey7gLXlvOcsGKMYk2k3I7vV5Ouen/MeK86lgM6j8eJzjXfvls/621/i7f/uR/nI\nv/9nL97bMla3rk5563DzSEjy5sExv2/zVV7FQjZUMn243lQEFUczbhmrxrLN28Vr4O7qhHr9DmP4\nJBi4Uu/RxR5rnk8KGLOyCgkXAxu3U2yB12dft8cqdPcuzs82UPBXHiwfWeYcWBlrHjb8xqyEHB72\n2cGzRQP81tEBP3f7F9iElrfXd/jPvu8/evjeN6vHqtv2A84nnnUXHokl+LAAOOOCyHt8RuebTvC9\n/npA2g5Dx2gtKZSJltM+EWc1porkfsBYg6SICTNMtnSrjpyEOg+IGJJYvHpGlHG0hSCW9FAa2mPA\nVWhV4yrBOsGh9G1mjCVCyjtAMuIg+yI5CsnhVKhdpo2KsZGrM4NrKt45zYQszJqMnzV4MmMGT+bk\nTHFSY2wiDgnbdVhrMFZIatFesMkxM0rMgDpmTssgbIiIZgY/QVMmEdixHYnMmA0BwzWfKHM4Qlbh\nDEfImYjB6bZPCkX0QvadgUiZxU8qnJ1PzilYBesjFsFpkZdXNhKT0BtHti+gKqhkVIuUW7RYN1ep\np59mkhrYNvJnd4OxMYiWCRsTR+qxJ1hIlccHJSiMNlMzg+xYpsRee0wWYeX3UJvIRtDscGMmJ4Oq\nQ8dM0mJVTQSRjKXkGbkQ0SwkMgGDk54XwxFNVCo1iGSCaZj4iG8zkUwyGfEZ52PpV04WdRaIeFVC\ncqyZclo19HZBtNvPmAv4dZLRHPCxwqElswLwIkgUko1oEJJAlR2igmSDy2WZTgfmTcAmR90IYWwx\nWIIreUxqekzy5GQwE0vlEt4L0zwhaMWmnRHa0ndoRGhPIpp3WSWhwhJJHEO5wFWggZMHI64ZmDcj\nM1+ek2+deYYQSp6UXZOS0BiLnThijmCFxiSsJnxe4h20yxGnhvvZcs8UAwfFILICFe4fHT6cONby\nznZgr1gr5AQpexSlDxMWkkhtxElhiI+WU1QnWLvBychyCLTRY5wDErMmUXvDtFJqllizRFVL/pYK\nIsp8UiZDhhFMdDRhYKKwXEeOTiZ4W0wojE1Ya0sLgXVMbMTlDUkNfVIq1xKTIURD5XtcynzUjTDC\naj1jXnVMKmEdLUfaEJPd6ossWUvuW+PK/TapEsYIUS3iHZUv58dJw9G6outL20efGtogpCyIg5nv\nSblGHISqozKOEOZgeioz0KknJQsTwfQD86Fj6gNhLAHl82YEB14ybecwJlFPEofLb60eqx/9ILb7\nYX3j67LJwgcGrLaBwI2t+djiI/za/S/w1urtZwNW51LArXmFfYp5RcqKDj3kfMHIaH4kHwp+Z2AV\n5LFbQZW2LccdTOJ2tvz0ze/j2zeff+IYz6WA0lh0nbnuPRsyZ7/6K5z92F9m8s/+YfjUH8GZC+OK\ncxZrGCLWlD+G4KjrgDGZvguoKre/dsx3ftdLGPP0gbI+JgUU59AYHw6s4skxZjrFXblK+xtfZLx3\nl+pWyW8aY3Gbur5baMqjs/4hsDr73OeoGYEJksGmCypzYYS4Na9QAC+kLTiscoS07UdLgtjIbr3D\n68s3WVh5xDDjafXql+5zfLjhu//wx1mG8jl8DERfEV1pdv16jFXoL3xycmyBXb54XFz2vlO+DPVN\nvrwpoFWseeiLHbI+NK64Uu9xMpzSbdnW8/P5NJb1x774vzzioPja2RsPf/9mAat+O0Hyz//Bl3jt\nnSVfeuOEmPIjExG/l+vg4OC/+kd9DJfr3nokZs/EQj+cX19SrLy6AK1CykxMYsxC2LQ4UyTJUZXE\nlD1n2J1aDtuEuooXJg7jLHbsyElxVi9cv7qOPFrwU9Q4mh1LXVlc36N1Q+774kBmDNkanEZMU9En\nwW1ng05zhuOOypacHsKInmyYToAUURWuizAGiG0JE8UUG2VNsjUUlDL1lQVbC+IycSgGADtVJCFM\naUlZsWKZOYv1jsYrkDGu9MwMo8UCV1XJKgiKVhWjsSxbmLtE7Qzs1IwoOWbGpESTeGH2AO8MZIOK\nZRlmxOTBOFKCsQPZRJraslOdYWTk+MQzjJ6UlJyVCZGVqQt1t8XlGwp4dF0GSSQ1SG6IpsKGiO0z\nvTpAKKbWStCMw9K664Aw0XKubFamdc9sMuBtJiu8/WCvSA6dMGoJKa5Moq4DziQWk/4h6BHNWDMh\nJcFYRXI59wklimLJRLNd2Ajkoq7wWxCWtmzfFNiRQB9bbKMFpRo9X6VI38MZXgpoPVlN0MFijaGX\nGnKm3SSEiDWFUVEszsArSbAb6BWOsmVqPUYiM7UESmgyXpjZgX4NViLL6DlJXZlAqAzJN2gIaBfI\nfkYlIzkHNh5a9agaEItPGTETKgummrDKPYeDZ3AJYwxKRGvFTyJGlRVK3Q1MXaSRVM6jKCpF1h8V\nekk4M2KNcjx4asr+ggYsBqcGzQYriuYyCaIYomZECptSqyOZZQEMBJpKaVRw/i0wgmhmMwoLgRcX\nkYzQOFv+fyghKeoNWZWcEyYrxSQ9kgaIcUQ0I06oEozZMkZPZiSPWiZ1UwHsMTuGVLqpumEKUjCp\noSrsMMK0qai90oeKqMUQ57ibMa4MitBHj4jiHHibOWlrpj5QmUQXLN7Coo6IVebaIaNSmRIBMEuG\n+f/P3pvH2pam512/b1rDns50T92qW5O7urpPd8fdNm7HwQYbJcSAMQoIEEmIAgLLIET+i4SQZbBB\nYcgfBAJiSAAlUZAiEkwcohAbG4Lj2LjbPcR0u7uPq9197607nnFPa/wm/vjW2eeculW3ytW+Ipbr\nla7uOWfvtdfaa/i+73nf532eApRSKBGxIWDKkvFI00dD23ZIJZKFQUz3vfOJTqtUIhIbadBSM5vs\nUGSaytZoE5AiKV4657Cdw9UVXW95efxsakvPigr433NdKeDaz4eHh//Gs9jvB/Fbj6PminHvMwJW\n3RVgNc2SLPNx8/ZCAm+N0KZtw7CgVdeogGnR6H3AD5UkVSYzvhgDYdivUAXRt08Aq7pzZAp6/ySw\nymykjencOJFEGOZmil88SQW8oAzGXMHasqMkdwjUX38DgOaXfhG+/QcwQlzYrWyAle39hgpo3XVg\n9Zlf+Ab378wxRvGxT73wxH6HLz98xwtgZRK1zfsEsPqe8qMfY/yJ38PxX/0rtHdub4CV9QGj5QZM\nzddX7oXf+Bp+aMma2JboLxu/JlJyhiGzEWsUpRBEM1ABoyUOwAqvUJllasaEGJCSp1asmrrn5/7G\nVwB4rrrNoze+jP7uJMBgjcGZfBCveGewEnyPt5dS5ennFzjvHLuZ5PvD55lsfzeH1avpDZJNxcqG\nuOmp2i0SsOp8TwiBv/YXPs/u/pgf/EOfeGKfb5Wlf7C+ZD13VwRAvKuRqnxPFNjfalz0WBWZohgo\npG3vmZQfAKurcXBwMAH+PeAPkualnwP+1OHh4ft2hT44OPhPgT8y/Po54F8/PDxcPmUTVstF4v8X\nhqgU68Yl8BECU+GZCoHIDEZ4xqHHCcAHnJDYfIyPgloqWg/CSMBxYiPCeSRpwSN6RwgwauuUzcUT\nVx1oSZGZ1IivoAvJk8bIJKPtiJtuJ5dUtokIlArkhUIgWNmGrodMCuaVH1rEI0iBUoLMJJpOFJG4\nswWksTtG2JlEWNT0SiPHGapp0D6ifURohXKBVXshy+bRWWR+4wWk1GADcd2j1jXRdsTgUNEidl/k\n5vM3OXcnTEJgJFuwDQpFUZaMS4dvllRVhx6PyGWBtQHnPFsy0PQ1lXNIKYgjcCOPD4E4WGTt7XdA\nj79YyfjA0dmUwjjWTUauOrZNx2I9wvsknW248AIUFKUgM5FRsWJdTVIFwBtmACry6u4pWiQqtpSD\nLsIgTS9FJEbHh7fWBCTN0P+CYKhSpWvV+wRiMxmxCHyU+JhkryEgZDr0wY3bZwAAIABJREFUqs1B\nWXIhWFUF3gmKUY93mlVvyGVgPK5xiCS9HiNC9+AGc1cJiCS73weJKQwdIKJnqhqkTH6Fo7CmbhWt\nLECRDHNDEhZaBFhEibigTStPFyWIDEQy7AXQ0rAICTjIaAgiEHWqBsYAxjXYABSKwjQYA0YqSm0J\nUTDLkzIfsKGGBqAPEh89WoCWgR0jsREaJ6ijIw+WzEW8NSghEQgeVjneS5yXCBQeT09PJ1uECshc\nI1WJdz2qkwPeFps5OhAIISQaahYpdcPWyGIIWCtwQdC2MMqS8iYh6VeaAcG6GgqvCN7jpUb6gGs1\nSkbqTuN8hrWKGEHrgPaBJipU7lPi1XpEEelLAdWE6AR6bDB1A9rgqganNE4mRcxGelZa0EiNIyf2\nPTNTgDUIJbAthLYndw3jHc3YBJ4fG8Znc3wfsKOe50YKETNWnSJHIgKEFiAy90np0xHJdE9hHLm2\neBsIRHph8SuPXSWqbyRig0TLZOo8F4rgBSKDOM4xMRJkSNYNLqCUxHqBjIHzPmesHCrAwhsKLZia\nnJLfQQbBJEW/7yIpAQrgXwY+C/zqM9rfB/E+Yt5Zjq/0ZvTPDFilhXCuc3aLHQBO2/OnbbKJ0KWK\nQbgoLr8NFdCFuBGVkKMMj4XM8/joi+RAVCPwLfEtRrNN55gKyykG/xYFubyPtEOvUgJkCVi09ZPU\nsAu5dZenLGo+5BDc6ooXUYxPUAEhVbsuqICT2Qx8g1KBrnXcv5NEPs5O3llA4VJufaACGj383W5E\nLNRkjHn+JgD2+HizrXUJWM3GSdBjWXXDoUb8m3fwz6XPmvUNvr8cKnIBAY1xATv0h5hBE6SIDkIa\n3AkSrQVbeVpYISMuvPM9dvcblwbP/U/9JeYf/gSmT8fkTI4tRyAE8Sly8q47u/a7d6l3rHaevTJ5\n9QhpEq0QiDItKD3pmlwAq51iGxap4nT0cMXZccXZccX3/+BHKMqnq4vcuwKsLipW1fmvc3r7p9i+\n9QeZ3fy+p27/fuKiEpgZRZGla9L2jsm7HOvvwvgfga8BPwJkwI8CfwH4l76Fz/wM8B8cHh42BwcH\nfw74MeDffdoGejRDD3INowDjXA8S5Aow6YEaT+iBxq3BeVRXYYTFs4IuGYFLHDidFotCQg55bLFC\no2NkxIjWaPIcSpUSLi60iLYmG8YiEQI2SoxUxGRBixGCnVJCV6NjJADnTmHEmqgMY1Mysg6pIRca\n5yBkEt/D+IZA3ZjiFz2h6inPH4DIiPSIwlDZEbJMFa9cRLrgUDdfpBhtAQITj+mW38S5SG4EvoO9\n/s00qgqghC7LCFGQ5x6VC6J7wKJ7QNfAKBM4A30bsaEmVqkok/pHI6oLPF4rjIgoLYhBEaTGCEGR\n9YkaFUBrgVARGzT5yOJipO4SyMzygtd3YDoZD32jJWVZEPuK3uaMM4cWGVKPyFVDVUVQOdLMgEjw\nkem4pOs9Xd2zPX0ZJRWmhHW/Ipgx0miUKhGxw0cH9RzV1YSqRrQ9ifKYKJGtF1RBY2SdjNx9htvd\nx0qBLkcgCt583CEQNCuP1hLje8rcElqHCpa4XZKFQPCBJs5wZosgJeOpp2xP2corTs93cQNw7HwE\nGTgjY7adUYpzdEymUIUMjJxlXPbsbTWUE4WSChtgUaW+q2Kk6LyhNJE27oDyGDqMDARv6Twgeoqi\nQPgeoyJlppAu4Dz4toeLsbtqaL1GZxItI5lRqNATh0qLtZHYh6SSN92iwOK8QFiPoqcJkuDTmiLv\nSvI8Ve6UiCyXY2wnMD6SK5CZuJbgjckYABc8OElA0+uAlBqNTuwZH/BDp2P0nlIWdMGxWLnUUx0d\nWfBIYYixwKkW6SIEhZCGPCtxUnLuKozS+JCqu8GBcommKKNhVBhkphAR5HSbaa6p5yvMeEbXB6LU\naARctR0c5u5skub2GEFqxbYSSCUILqZ7TQr0MJ+MxprnZ6NUV5QKLSVVX5PrDPFtcvAuhdYL2hAR\nPtC5mmXbEvpIvW7IM2iBXgq0ClgHMykYv6QIi0D/5hlq7KmXARFSguDaEnXTDx6ID2AVUi9eHz3o\ngAgSZRUyCJwM9GSYoJFaY73hvChYjabwT773gf69xrMCVp8E/rHDw8MW4ODg4M8DP394ePgnntH+\nPoj3EW8s0yLy23cmfPl8TfeURe+3Ehd9KrnKmWVpkX3avDdgFbu0MH1b8YoLKqCP+KEXSxSGCw/Q\n3B4BsI4lE7gmXhFjpOkc2/U5FPuE8XWD06IL1EM1L1wBZHMyQtch80tubj+A0z5LHV5ZTHxqt15v\naGZ5W6PlDn7o+bkYIGzvkAMVsBhNaFePkTLSXqkkrq4Y+T5xfjZUQH3t/2jdJbAaTzA7iXbpF5eK\njBfA6mLxfeFl5c7PoK0JMl2rke3pu8vzngtBiAbjwA7VEaMDVhmy6MAP/jxIMiN5cbIPQOMrnHvn\nIef+nfkg7TH4SY2nmKE6ZU2GLQZhkv6d+55slyqhOt/DdacE39JYTwQKFcEOwGoAv1EmUZEkGRxY\n+3TOLhIAne+Yn10xUj6uuPXKpT9UiE8+M4+qyx6vfqCjro8ThXR98vlnAqwuFB4Lc71i9UE8Eebw\n8PAnrvz+2YODg69+Kx94eHj416/8+veAf+Ldtvm+T9/nfC1RRoMeIf2SnS1wIqNzU0K/RoU3afuU\nDDhrZwRV4ntBJgw3ijmoCb3YY7G2dG2kVBEpe+puG+EDXsDjkBG9Z1Z46ujZy+aslobKjNkuOnYy\nyCMIVOrlaWuawnDWjFkLzaSUlNIxbw2ZCHRhRGka9reWgMDbnPEAOrxPFJ3ee+J8jY0KCkEmIxKL\n8wq8Z8Qc3fRE1VNYSzQCzu8S1gZU6vHZ8oEulqzqCUJKkAIjPVILhGvZmVRI/CCyY7EioIhkeUCi\nUSjUSDCWgbYX9FaycjlKpqreeDxP1SgSVtNCEEWkkwHMRYeIIRMludCYfMw006hVR2lgd7TGCE2p\nF6kZPqaqUpP5VCGQ4HwDLAhCUUw1IWqEbylLh5IR51aYLKINdH1Abu1TmX3C9ADjjnByhBepEhTU\nGApPPslZLypCjGh7hooWS4GWsEMH0uD1dlKajQ7pLpJ7kd1pllbNYki2RAmrjtCDjSVGSxoM5XSC\n1KCJdF2PMBnB3yRGmLzkkUpgdOr10krQuUDlHIE0XwSbvKGUglLUmFiTS4kgVUBfJnlVDURCkDmI\nFmJMBrEiVWsiYeiZqxFCDiqMSZrCygl4ixSKPkii2hnmvpIsWLqu56vHhhAcNiiKUmKEYjvXCCFQ\nAl6YaZrOsW57KqdovCeTEhUFW96hXaIJfugjBVJJTKGYjCUuwGrtOKs6+nWLLko4qxkrS9v22K7H\njraQQVDcMMhyzM5UUuaC4ATLxxVNHSFmhCJHCovORgihUwUveITK0SZpNLh1g63OkVmOXxUJSIQu\n0TdlOi9yVJBtvUAkENSYqutRtNgguPn8LiYv6ZoOt1rD6pTzJhJlydgEpAJsRx8CM23ofKC1inw0\nTiqIaZJEKYHrPO2iI+SKx+sWIQW2aQku9VQK2RJcopgqI5nujxLQqyPa5+yPx4gxiD1BHHrj5SZZ\nPjyNNSmP/drLAIxfStW/ynqMkmwZlZSV3TnN6T26+SkiK7CuoPIeLQxbSuCiYa1S76oNgca1FFnk\n+aJk7iQ2CgrxbNprnxWw2gGurn5a4P27bH4QzyQeD4v3D01Lvny+fmYVq4usfa4yvnjaAYY31+/q\nFw1cqVhd+Fi9HRUwhEvjXvNkaXcttplw/xoVsO09IUIR+sQPN9ebGGdnrzA/71kTeRzNhsg611P8\naonIbrBqKu7Ud6nrBKzaAVjpmEr38Yrx72S9QPNiovSQHvTV0WewzXRDBZQq9TFJGahWl8Cqfhsp\n9Iu4EKq4BFaDkbFzm3MiRyPUbAaAWyaGkm8aYt9hpmPGxQWwGgDigwdpv8NnTVxH0waGTgYyBF5o\ntI80SmCDwqiANxlZsMSgIaTFfZkZvuf57+KvvfG/0fiaEKfX1Ac33yNG3rx7wm9+6hfRfQ5fvwBW\naRjpsxw3AKto7TuqSroBWGWjFxOwcs1GEbAYAKyU2YZaigCjJC3QWE8IyadsbwBWve9Zry6VAdfL\n6yqBb6caeNKmqpmRmt5bYgz0TRIR8a56z4qYv5XYSOdnHwCrd4n24OBAHx4eOoCDg4Md4PG7bPOe\n4uDgQAD/KvDn3+29sgjsaIeQPSGk5zQVYnsM683MPBmyyTd2oOtrqiZHyQzBjEzWKLnk1m5EaYkQ\nyacl+Egg0NMP2ebrcWPXoWSHDwFiIFNZWpBFi3eWkpYtt8JF6KNGGcEL0qV2HCUxUaZMurUYVeNM\nhogqHXIQaCeTWqkYFm1aEX0kuA4dUvaZgV5IFCBBIFDeIoMFIfEhoJ1l5tc4K9BSDIa5Aa0twkHv\nBA5NHgsMaVlmB6rxxID1giBgSwZWTvCc7tAIrBJk0ib16YuICXMEPyScEChpSas8CGKCZcr+NEsU\nOAp6BJUd8daIIZKFNVL0gKCy2/hYoESPizOa6iJRczHfDgDjPAJHwBFaq6GXJFAszxJdue8wZc7I\ng+871JDUMRHIcrA9vffkWYaZToje4z2IakUIEkSiWEUt8HmBDBbfpwWxziTSKMaAP9K44LHeIqVA\nlSZdWynIBpNqBLhigjeG7HyOGZfEnT362uFsqs0EYBFH9IzZETUxGnJ5jgV6VZDlGoTEVhYVGlRo\nEC7DO+hR5FogoqNvwWQSpEZMJtSdwxQZLojUh+Ucsq2Jo11ifUbfSSxjtunRokcYQa7WEAWdLSAY\nesCpJZNuzjQ5HeHLPcLWLro/JeokcACenpyYb9PhWbYQ9BSR9xS5otgdI0ND2C+JYkJhGwpniVag\nu2MILXEpaStPZyRRGYS0FMYTVUnMC2IATJYSJ22kWToKtyTPAkZKRAhkBgwCMU6WVc5FzlaSzgci\nASoJ6xOyrKW3iUKoSGImwgxeXhH2Zh2UJXsXOqFREUKBEJ4YFFFA1nniqkB1Z4xikfp0g6FbeRqZ\nJ2XeeoKsI1RLNJ6wewsh18QsJ05GSTUjCmSAURDcmORkqiQGjwuB3ntU7JChRWdjIooQAvWqYWtv\nD9cHQqgZjz3r+QnLZWQnBykF3SpieyhHIJhQbE8YTyRGQXW6IliPKXPGeyOmOzmT6YT12nN+tAKl\n0EowXdeEtmW0964uUO8rnhWw+iXgpw4ODv4iadT414D/+xnt64N4n3EhtX6zTLP3s6pYXfRY5Srj\na4sKKSdU9qktCJsIXYcsik3F6hoV8Ip4Rahr5EsFTqWFsX3s+dL+J/l6eJVP6wQUrgKreqjOFL7D\nZBr7lsxFsXp18/OZuARdp9kWbrHg819e8cXP3OHwU3+HT83/cfJCEwYltjdO3iDbuol68+5mu1G1\n4leOF3xie5yOuT/j/P7PIgGlUs+T1Ak4SBmo15d5iXr97sCKTY/VFSrgRd/ZaIQaT9L5rCrcfM7t\nf//H+Bd9xs9/+o8yKvS1c3KhJFibDHCMbEfVOJRUuOCS83zMUT7ilMRGRaY8NivI6ypVrAZgNckL\nMpWxX+5xd6gkeh+R+jqwWC1ajv0RbbGGYs1yJKlHE0w/VKyyHJ8VafUTI9E5hHmS5mbbBKzy8UvU\n5/8vwdc0A7DKxKC+iIQLKiCQa8kK+M3z++yVA7AahFU631PXl+d/vbpeLXuaT9Vescuj+oiufrSR\n/o+hJ/gGpZ9ckH0rcWH2nOlLYNV9AKzeLibAFw4ODn6GRIL554C/e3Bw8BOk/t//8O02Ojg4+Gne\nPjn4E4N/FcCfAh4cHh7+1Xc7iOPq44zEGR4ojKDQa6QQRLmNio4oDFrURDJkbPBobmxrpuWSgMT2\nFb0L6KxAkFQg8yxnXGiEjPiBOhM9LGpPDI5Awc4kUI5vsqpb5osTIpIYLX0IiKiRsSDEgAoeA8yM\nwvmIEMWmFzFGidKS3kkqSgIKSWBkpmidM809RqV+yq1JhogW6wW2W7JanROJ+GBo3QhtZmgzZRzO\nUVVOVi/wvaRzK8TIgW8JCJoomLeR4HJG0nBzN6dUWwQRafqICIZxFjh93CC395hsjYinRzjfUpRj\njJF0QdBZy9wFtpRgPCoQJH9B6xxa6esiQTH1Ec3nDbayxIXHycCir3nY9dhesffaDZzrWBxHlCqh\nWbEzzilkjty5Rd8Fbr28z9ILVFuxsope7yMmOZPMYBvH7u4Ie/suYv4NxHaSqI9dQ2w1BI3IhzHG\nG6J10HtMLBBS4Lwl2hxqAzrDCA9txLsFIIjtlBguFo9xINQL1FDIkiEgYqSVM+Q8mcVqIVhfMY+f\nGIGR6jKpGQEZMEEiRAS2YA7cX5KnF/FSsVY5pu9wbTtASEs78M5UEppPYD1CJMNLiVSeYDO0iKmf\nDY3k0ukxUqFLiyoaNNCHDKUS6M+6DhsiIyTIFR6B7hxVEGgZcFKiZKKGKyE4OYcYZ8QILgikaFGL\nhwgtCLYnKIkNkW1TIcOa4FKlrRyqIF5qhNDU1rKlPCvLJgEQASMFSpRIAQpJ3wcWPRAVhfEgHL5a\no6VDK08IGkj3ZpofBUE4lA5JYKZL/lY+N4TxFlvPeegdsQUhekRcwwWDIgpsAD3YoAgl4WJ9pyKx\nKMGkCrEUASMkNgZkjKimZfxCh61avAsYIloFbowSABUiYFTql5TPKQgZnTthFWFr3BOBVWOoKrOh\n6zVZwVJqegeZljRdwJiC1kkIac6O3iNNxvkqMY0yBfMzxXhcMpmJ4c4FFTvKXBFQzHY0ShpC7ABB\nuZ/uLyEVnfe4s8j8bD2cgwtRLZDlCFmO8OrdVX/fTzwrYPUngH+LxGMH+Hngv3u3jQ4ODl4m8d0P\nSBWv//zw8PC/fkbH+Ls+1tYhgJ08LVD7Idu36C23Vy2/Z2f827Kfiwb+TGX0vkOKCS6cU9uakXn6\nAjN2HXI0IgziCVdVAS9ogd5HnK0wP/z85rXFz5zz2T+WvKabMPS8hMuF5kV1pgg9mU4NqVejbCSt\n4YnWxgfFDdz5GV/8lRoQlNU23Tow2c6Iw7E9Xj7k1bM5wl9SCEfVGus8Z4PQhe8uqZBKXlSsEoCT\nMmyqYABtc7037Nr58R6U2lRANj1W9krFqhwhtEbkBX69Zv2FzxHqmhvU7DenlG+pcNijBKw6rRHB\nUnpL3dnUFwFkQuBD8lBxSnAaZszUiiovGK/OIEjC4EmzVabrO82mhMEDxw2iGVfj6OGKbgA1AKfb\nmmY0IR9UIa3J8Hm+UeeLXZcmhreE605BKLJRuheCb2kHYKV9AvOLs68C/2h6nUA2gPUvHn2ND28n\nquQsm6KHilN75Vq8FeReKF7+wIvfx+99/jv5zz7/32xe2ym2eVQfUa8HlUAhE9/eVs8AWF2YPctN\nj9VV1csPYhNfGP5FUjniL/LOMuxX44+/w+s1wMHBwb8NfDfww+/lIE78LoJdbsxK1oQk+iBEWoBe\n2UvqCopkLMn7hkKWSCHY2t6nFDnOvJjAusy53Xiq1btc83X6VxaaitcIIZLnGnvFdiOTDaVoyaiY\nljlSTejlHsQOowtefmGHGzslJ/OGe+cVr96Y8Mr+dSp18Ja+PSd4i1QZwfcoXZKPBkqyD2B7qtt3\naB4/JsgxekfATgIBIe7ghWL2iY+jo+fR0ZL5179BXuRUQeLWK5yQbI8kwXloV7Riwny2y3OlJPoO\nN5tx3kxobCQOj/Asz6l9wAtBZwHbI33H9muvcdJ61k6CkoSjx7SdJXYd/WLxxGncIgMF3DnHAOmo\nh0pUZTkHWKXxd/X4PgBGxiSPHgVKRNZAFwSVgFxGiuf2WZ8HVJ6lsSInVR/jC8itbfanGTc/cguk\npHawN6i5LtY9hRaMNQTbs7zziHXV0bvAozePORcaUxaIPMfIQHW2xiGRWQbjLT7yyg4ff3HG46M1\nXePorMMdzdGjgr3piFJ4VJ6hpGC2M2L+xm1iXUGRM5Y9brnieGk5axzrxYpiXDCeaF6eekxVY3NJ\nvrNNcA7vA0frwN1zh4swadKYbGZTZvWarWmB/ui34duaVcjJ90pOnaQ9OoJVSxyVrI6XjNuS6Sgn\nB2QfQUaCLinlKcFoOhJIDqXEMCOYCX61QuiIwlL7NTbm9L4AV1OGOTLTLOyIfiXpnUKISIiSR1Eg\nRSBEidYKISCPNVYaeqs2ip7KKIJPYLyY5phmRRQ141mG0jnYBmdyJuWYpl9T6BqjFU1VU/cGlEa4\nluAVxnuEEBTTCXluIFO00oGWBJGzWmrWboIqNVv5fSbFCGO2CGJEFBmLtues6bHOYauakfL03rKj\nl+yWimnesq4Drq3xMaMOYHsLCIQqqOMWY7kAIQjeg03Jllwbau/RRjMR6Xp2QrGfKVzukSKncRKV\nezLZEHzAeghhCQ7y4MEltcnQSkZRYK1CSQgi0K8MWnu8V6y7JKF+LiNSxEE4RCGVguC4oSTE1Lfu\n8hJVFuQ3byJHY+q1JysNwfXkuWF3WuI89MGxsz9ivq5ShTS8b82ip8azklvvgT97cHDw5y76rN5j\nROAnDw8P/97BwcE+KbP4fx0eHn5LHPgP4u2j9oFSS4phYdkPGY2/fvuI31jU/NDLN/indjL+9K/+\nl3xk5zX++df/mad+3ue+dsT//it3+JEf/jgv7k82f7/oM8lUxqJ3SLkF/k0e1yd8aOuVp35m6FrU\neEK0Q6brChXwQkrahYBvl4jdy8V6dqUPp/Wkqne8CqyGilXoMUbRD8o9d57PePmxpVfp+LMrx5JL\neFDsDxWdRK0bL3fBC+7Je0T1MQBkiGyfX1c9vHXvG3zPL/8cn/ujPwqTPbyrNqDtQrzil49bvp0E\nrFZn94AEbPvODWpCT9Ico3ObKhWwqeJEZwnNJRUQUuUqNA3t7dub9+/UpxzN04KgGRZX/VESuOiV\nQgUofcd9+4g+T9fRCAg+nZmgBX9L/CA/rH4OXySp2jxYokuvb5dpwTU2IxAX/WVP0pPOjiv6/JI6\nuZwo6vGUndPE0uqznGByLsx8Q99v+tc25yJGbHuKyXeRaujH8t2GJqddAk11c0lDjQSyARCLqPnG\nMoGgWTYllxld6GmuAKurP8MVYRaVkavLymahCorh965K/mijrY9Rz7+Cd2sM+0+cg28luouqnFGU\n+QCs+g+A1Vvj8PDwJ9/ndqt3eu3g4OCPAP8K8AcuKIbvFts7JeNSY7TCLlqsDXRPoWL3cswyjBBs\nI4jcqS6e+YuFwVARJRK7HpnnxKbBVeuNifjVuMoXkARKKfAhUJL6NoRU9M7zmJqEHY8273/0RTA7\nO8jJhNj3PPqVEz5DYKzAzXbYvrHNR16/iWgDS6e5c/+Ul6eSo6MHdO1XOT9Ne7+gFhMjoU3LBFkU\nlIXeqFzyxmeuHXdL6pc0CAQBdRZoETRsQQc1kZO6o7xiTSa1IQxCREMrLq2UST4egIw3v3Ldw3AT\nKoPd68/q9qwg393l0Rt32CtFSux1HXuzglhXzMd7LE6WuNXlWZZZhldJsdW/jRdiA3DnMXp7G2FD\nUnG7YGmMRuA9Dx+dUTlPa9K8ENo2jfNVlajf7fWllhqNYDxBVxWxTf9snjN+9UVkdpmUOqpbjt64\n3DZ0PcLXdA+PeDwvEVmOW8zRW9uErzQgxbCvi3tPABmUGcZkOOdYOslXTiOhNciiQBwH3KpCFgUy\nyyl3BvuOkASJnBCcTafJd+rhBZC1sLhMtmFysIHp9gQ9mdCpgS7Z9xA8u6++SmU/fPn+3hL6nriY\nU5iGGA1YkMUWnEdkluF6S2dzYvEKzmb4IAiFwDQtzjpC8GQh4vMRnXd0XUoINFKnc3p5hYnlmExL\nvOvpWkeeaTzbnDwCokfEgugdxh4xnWQIkRN8ZOm2IERGyiNEgctL2saDkMgHPWarwJsxUaoLR6zE\n2uhX0DU89h4yB5ykRIxUMNzvuDQ/9UrhvWeF5u594MLvk3dOnp+R6PD5uMQKndhDCmLvyGXNYyRF\n1mGd4nEUNDYfaqIRRECg0EriXEv0jkL2dBG2ZSD2nknWsQ4aoSU3RUerNGIsyIPHtpJx7rgbMsg0\nTS+I2cU8HYkip/MdlSqQRLbcnGwVWFf3WcmCaWhpTbJnWeYFxxg6NAWRk2+URGvxrkUrAf/wO56C\n9x3PSm79UyRFwAJ4/eDg4HuAP3x4ePgnn7bd4eHhPeDe8PPxwcHBIfAC8LseWC37FX/rmz/H7735\nD/H69od+Wz6zdZ5CKYSPjB5UdGVGiJHfWKSB//aq4bP3/z53V/e4u7rHP/vaD6HkW5ezl/E3fumb\n3D+u+JnP3uVHfvhSlvqix0phqJxHyfTAPlg/fA/AqkPv3SCItFDXV8DFNfEKLitAJ1/wjPtuQ+Xo\nggD1FmDVpIGn9B2Z0VSd5+u//2P88uiIP/TgFmGVHg095IwB9krDgzBicfdrQPp+41ViBzXTwWMB\nED4yXV4X53j59htIIp/42/8L+vVPEm++tnkty9KxnFgFCqSMWHs9Od61jnKU8daIzl16d3HZYxXt\ndSoggCwL3GJB//jR5v1LG/lP/qcvpO8wVDjsyRGdLvAqediUvuNYHV4erxDYAThZmVR5TuQNynH6\nHhNf8/LsU/x9YDQs8sdmhBBpVePeZgG5nDfY7HJyX4wVzWTGuB6onSYnmGxDZ4jdk/ma4Cpi6ND5\n3qZfLfh2QwXUQ3aqvzLsBSJ935JyaHpzr450OVRYe7rWolRaQDX19YrVJc013wApgJEpN0DLNY8Q\nMiOfvJKAlf3WsmTLecPhlx7x7Z9+cXNPXFABjZYbamfTfgCs3hoHBwcF8IeB17mc/+Lh4eGPfQsf\n+6dJN9DXDg4OAP7u4eHhH3vaBt+rTjg6s5RKsHfzFqsHR+TRsx3XnD9X8IrfxixWCCGIQiCcwwJV\nXvJIGGQObrEEmSg+ybNW8tHYokxERdLsW4rNCHaGZBkEN4UnFwysdl34AAAgAElEQVRiE4OUuoDG\nSVZ9ZNFFctHzsj/Ge08VJKJtEUT67RvcqwTN2Smht+w8v0cfFaHtWHiPf/MhS+DuL1x+V5llnJgM\nISHYpIIWeovQGuc8PcBojCpz3PmcuVZYoYl9RyhHyLpKHltKI7e3EcagnSNMpqnyxYBBspwMQRwZ\nKtKzkEvJsu7pbOCl/TEf3h3zm/cvK1CGQKxrdrZHPHx4znOi5dZMEZqW/KMfw8ym9L2jKJ80Ev3E\np1574m9vjRgCQkqcDxufQOsDbedoe89IerAW/803CBFuLwKvziSZAhvABbCh5eGioVQQzhzN+iEj\nLejepn8OUpuxDVwDcJmEj+4mYZC8u0+9jtxbBUxuWJLh6woh9QaAagn7peC4aaBpMBLUekH7VrsM\n73HLRVLatx3b2jMxAm8K5kFDu6Z2lt2beyzihHxU4NqOgGD3hRtMdqY0UYHSLNcdse/wVUXoug1Q\nLJTAhkQNHOmkRhirNW89lPLoTW5Eh0laC5d9rLPhWgw0cmLF3J8hsm22thR+XeFO726EoN4uXA0x\nL+mrmnWf7F/KmUH2DnzE9gGFYFqme9oLyXqejK1LHLUwNEPSs8pzXAjogUEzHTwod23DRAa8WzMv\nc5ZW0RKpzxcYFpSlIR9lZEZQW2j6gFCCLJco0REi7EtPYzRb1rIwhqmLtFJxQ0VWa8tpDTE3rBC0\nLvBcBqWR7GeR/Rx8pjmqLFudZTrNkFpS01OFjkUQOBc49QLJmKzvCX1BcJHeKLQIeBnppcF3giBT\nj+h0WsL2jdSuIBRonQRpIMmdREeDSoq/wDImAatWSLa9I3Yt222FDYKucwhpsTnMZgW7WHQm6ZqA\nbFbkWMYx4K0k+IgLgtN16stUoiXLAk4tkRp2fc2IJ5NOvx3xrKiA/xWJOvFnht8/B/xl4KnA6moc\nHBx8FPgoScr2d3UsuhX/xRf/W47qE3710Rf4j/+RH6fQxbtv+C7R+MC+0fzaZ+6y99U5duVYfuTW\n5vWjpufB6rKv+6Q55eb4uXf8vJN5GggfvEUevPM9ApEqR4CUSVXtfnXE0yKGQOyH7GsYKlbXqIBD\nxcoH7CQJBpyUP8TZg/+DCalq1ecFYahtXAVW64EKmAkLMmCd52/fmnOjfB6zeh6G/HQc9OMiUGoF\nWB7dP93IlRZN+sEVYIZjkx7K+nqCWw7gbHp2wqc/+3fwf+DmpuJyAaz6QdJda4d3A5Vut2Rx1tA2\n7wSs7LVeo03Fyl6pWJUlZ8uWpVcUTUN/cpy4zzFyJ15SeNre88WjL/ELH2n5zuUYpUEHKGOPvzKL\nmZjISQBOdizXf4nbxWu8upVUobZsxVTeBDpyM/Ra6RGIBCicextgtWhxs0uwtJzkOKU3k47PMpy5\n/P6/eOcx91aRP/6RWxshjAtFQFNcAqvoW5oL0OGrJMd6pQ7p8RyuvsJ097thECkpdYmSilxlrG1F\n3zrKcUbfuadUrAylLjd/H+mSXGfJy6efk49fQuoh0+zfWT7/vcQv/5+/yTffOGG96vj9/3Sqkl5S\nARXjAVitmqcbKf8ujf+VVN75DDDUsnn7Fep7jMPDw1ff/V3XQ4eK8+4eR33L/vpNemPpGYadR/Al\n7rEWW+QiQ0fJaN1RjzNau2IiPdlqzLaIFEpTCMUoXvkKQ1VfaI0aj0FKZJZzs+/YOz9H7+7izs5Q\nSpC/+CLt3Tv45YLZZEpZn3FrawtvHV6UaK3Z8Q72ZogQaVdLXis0IlSMpxm4U0LTcOYUay+xuWHV\nDXRdnYQFXN+T+Y55lBRFxvN7JUXUeJMhr1TbGxuJ4zHTscF1FnGhXndNG3pFCIn6pbol1gX0a6/T\nTmfcGOcsek8mBdZ7ODtDnJ2wpzXhhVsgAg/qivGNnNd3Z2gpOO8cp13P2kdeu7XHadvz5mDk7kOE\n+fCs1u/c56ql4NsmJWPzZNLxYgGpleTmbkpw5agnbRBeSGTCm1f+FL2HGGnv3Gb3JFXZZ7Oc5TKN\nZ2o8Rm9vE/oevbWN0AohVWJ5TKbE4BM4iRFfVUhj8E2LPT5iZMQAtALQwlgBEZGNCG2DryqKV17l\nw0oRuo7mNw4pXvswfrlIYF4bRIyAhltvvyZ4CbjWlriT9rHhgYQ5nM4338U3aX4wLz+H2XsFNZsR\n+/7a/BaBWFX4NlVBYtcjRyX26IixdCzOWqJ1dI8eIbIMVZaErsOv16jZFtJoQtMwlgqTgV+vwbvL\n3qQhVFlulIaz55+nKMp0HpcLnrv1ItF7hFJkL7xAUmgJtN/85mYkMfv7hLbFr1apuuRdUjX0gWA7\nKEZUlSOfjhnf2MIeHyPkFu70FJFlvHh+Dggi7sLpJZkYLcEjUIN+rigKROPStTMGUZSsFo7xWGGK\nCdnNm0TbM9aR5fmQpFGpjy/ESB8CSggq55n3DtqOUgt6rTkNAc5XMD9loS3B9bhxATsFYbaN0zky\nKvpMMJ0+x7qbMzUjGlsTvSCuKkbs4BjReEffnDCbn/Kq2SIKQ14qGlOy99qL5NMJZ1XH8rxBx0hf\nd0QlOJOKrdGUfDxjHSNZDGz1FoyhcoEju8Z1a7yPZHKPKBQ+ZphmQbaV41ZL4p7Cq0AWGupMUYvU\nbXgUdwgh4/vf9u791uJZAavx4eHhF4fsHYeHh+Hg4OA9p08PDg62gf8Z+NF3M27cfwu3+x/0eD/H\n+9Of+5sc1Wlg7XzPLx7/Ej/w6u/jpa13MI19D+FDchCflobz40RZiI9rbHF5S8x7x6PVpe9RnzXv\nePx1azeUq9Nle+19QThynWGmF6p36bWlXz31fLg6DWzFdIwIOUTY2R5ttukuBrFME0tLWFiWO7fo\n87SfrG/Z29vGV2lym04Mexf7kxeSuh3H3WOsm6FC4Htf+S7Ug1SFuE/k9EIuSojNoHlW+etzPeCz\n1NANIL1mVK95WugrNJE86/Eo3PA4qjwMhp7w3PMzFmcNozJ723N1J3hkfvlatz3hDJiNDd1AA9h/\n5SY//le+ynesPK+FQFguKT70IdpvfIPVFWGOznr+hy//ZXg5Y/amwRjQraCMPfvFggspjs+Z7994\ndXkpAMft7i7PTVNP25ZbI0QGdDx3Y8L+/pSbZ7sgE0ifbY/Yv0IVBegai9vvmOUTVu2a9TR9n61B\nWEWUJZ1JDc4qBH798SmP1ISVkby+kz7rpBs8qG7c4sbNbe5JgxSWahD4yGI9+FxcTtR1aPAqDTEi\nahAwydM9Ni5KTrtz+t6zvTPCGIXt/LXrUFTpOu1tz3j5hUuFoe3RlJ3plB2ZqBHTnVvs7O1xehuK\n3L/rOPC0189O0vHe++Y5N25MEEJsFnAvPD9je6g8/vKXH/Fv/gvf8UwMiX8Hx4cPDw8P/v8+iF86\nv0vfWkLTcOJWaMCXJbFpEONx8rHq7tENi+t5UcAqEPqeylpEXnBPgFQahuRDUmsTZMWYmzcP8Lmi\nO34DmpptMSJD8byY0Zwe0wfPr9kHFLfvMqVkMinAeurxmFN3jhWONgvceuXTFNMbYHvEyTFisp0U\n9KZT1keP8ATOtwuMKSinz5Erw3i2lfofTYaYnyMW58Tzc3asp656FuUuZ6MJwjuks9itPZCSLNO8\ntjvi46/v8/DOCQ8+92XiaoGf7bCu1uS2ZzLZSoocQ9LIAHzpa2RAzyXBSQHuwiswRtztR7RXFs+f\nB7RRFKVBfug1wmTG44FufdFrHGKkqTpW581mvninWO10ZLm+Jq4EScBgajRKCrYzTS4ljfdIkSqJ\nmRT4GIhRIKUgOIeqK/qHD8lfehmUpPjQa5Qffh1I40J8vEimwEIgxWDgC5sEk5pOk/IooEZjVtax\n1AWr+RwpNM23fZTtTLObafqqRj24R1wt0Ps3CfNzhFTo6Qx3fsm6yF64RWgaxEVyazi3Ms8JXYea\nTNLxxojIDO70DF9X6O0dhNHYk5PN552FikwkUYqRyGij5eHyDos48DQfvgkPIUdzQ06QCHbEmFVs\n8ES2xegJVVkAZkWao0Mgf+mlDXvjrSFvFYSmTedoqlEI9M4exYdew+zvU7mkGHzc9qytZxQ8k64i\n37tBphWlVleEXJLCa4iRyY3nNsflg3+C3dO6jspWbOdbSCGZxoiREusDq5c/RO0ca7vmzeVtjNxj\nlhdkQvLJGwc0X/kq3Zt36UcjhDYUWjOPLWex5lFsiFHx0AemsUSNFYFAQY44WqY++gw6K8hjoAwt\njzmno0fnY5wk2Tsg8SKgB/NjhcSPI3GsSdydEZkUmBiZNqlZU0rBrAbmx5RA5z3RB+xA9+9I61Y9\n/LNj+DprPALrJS4WxK9+DRkjvdLs+zE7qkRKwcMWemmphaKlwQZP6DOMdDjpUKqj7sALiG+5HzQa\nv/AEIiJocBHheqLLkFmOVRKEYSt7NvjhWQGr/uDgYEPePDg4+A4uCblPjYGq8dPAnz08PPzZd3v/\n8fE7Ut//gYv9/en7Ot7Do28C8OO/70/yH33mz/DTX/1Z/ubXfp6f/N5/Z+O381uNC3qU9JGTowEE\n2MA3Hgw+RyFSPKo4kpeD628+usfL5u2Ts/ePL4HEsup58/75pom+7lqMNNwbvns29L/8+tHX+dWv\nv8G3bT3/5AcCbp6OxQmFEwYirJf15hxe+Dut1y1MA1SelTJJPQ7IupaXy4zzAVgtlxXBpG0fn6Tj\n1aLHxSEbGSUzsU1l03d+cIGkhoe2HxasC/MkLzkYtRGvkF5TNFdu952M0+CZTxUfvjdwnk/PKYZk\nnjGeLma4CxPk3OND+rkcpcnh0cMF+ejJx9W1PXI82pyTukuLh/PjBfVZOn/zFg7vnvPxjX9JxE+2\nWamStbysfK4ru+mbXxU5QgZUFIxvBHZGS+4Op2keCsxAmxjwHy561qN0XSeuZj000fvepWPr9abH\n6uh4RXalSBBjZLlssabhZnYLX3c0o2nylxnoINFknJcTvvLJ7+GTv/Yr6MHf6kv3ztgaKDHzk9Qk\n3vTpfEhV0LcV9UU1R6RtuisVq0XXwEYZKP09ExnHxytU0Fhn6VqH1AKDYjFvODpabsDK6TwB5K4O\nnJ5cXvOcgtAJdoZ7woUpq+ERWS0XTx0HnjZOeB9YDj1x61XHG197zM6NMctBRXK9bDDDQvt81fHz\n/89tvvMjz0ZS9q3H/DskvnJwcPDC4eHhw3d/6//H3pvHWJae532/bznrXWvrru6ejbOVSJrURKIt\nyZHC2JagxUsEKwmcAHECI9FfAvJPEMcIEgQJkAQQEsQIEAcOEsiGjdiGBCiRpSgWJYoWLVoUSZFD\ncYY17Jnet9ruftZvyR/fqVtV3T0kRc4IkagXmOmaO7fPPfXdc77zPu/7vM/z/oUQgstqg/jKy7jl\nHC0jYgsi6bqvWFZJhYsqnAx+PsvWYKJo3WKTOkY7s56NPY2mWnHn1hcuvHYcCHe8ycXZz9JYJrT4\nqIJhH6IIzwi0QiUpd/0RLLqZxJ5g5Su8sZhqsaZYKZmH7k57iDQCd3CfodomV0Oct0xY0Y49z6gR\nlhrrlzi/pBfn9HSfg/YdsEFu/vUVXD+KKcqGeCsmv3QleN3sZBzaJXOZEIkIyQbzZkK7PCFaLGmF\nZcv2GLiUCBXk2wWYXk7WGETbMkTivWflPYV3COOo5hXp619FwJoUpAizvBGCnvcM8XgPRdajaJfI\n1tB/4RVWccK0mWPaKUeTJV4oopNDJIJR/gLZbMZhPKegZiPaxZmCuZ+HrkuSIUyD1hLynNhUIBXC\nGrbEgLGOiY/uk6K51yxpMGgkG898AL90tG1BW8ypfc2SiowEF8eUzYy2+01UR62SPjh7xWh6pGTE\nHGOZEhLwTkwdf+8+Do/iVDE17KtR1sO1Dfl4TDM5odm9zIlckfW2WPgWGDCpDuHwDZQM5rWDSHF5\n62pQ6RMx+e4zvBHXlGYFPgMh2EojekpiCwOMEAd1oE4mKU1ZYkRL7abgPXc4YdIYUiWJpcR6R9Yb\n4lYljYW5q+g1KTSeSAqGNuXy7qscL2ra2SEnY80ik0RaYX3Ntcsv0riaVbvAOoPAU8zfRszfIVIJ\nw2SDQTSiNCvm3jJrJ/iHj2hdsxZQOo1cq85yJKa1JfhAzVVCMIhHnFST4OHlzmw2hAAlwrob92TP\nobKw6CjjNxafo4wsq+dO91hHKCNIgsjpWZFyYgy4FqREywrTFQkemQpTFfg4huEIxE64xoUgUpJE\n7JDHmrFtgy9WFp7lqUooywVCSkbRgI1WwbKkins8qCrMckKDQ4qUlStQkaRRBVJIBJKZq3HWoyI6\nc3KPT/q0EVDXCGPASroWGg/FkoduGX7Fx9MdBS4tqGjQUoGI6UeSvkqofIVKs2DEXNcY67FO4m2g\nFTpBKFYBo2KF9p6l1vT77w9d/v0CVv8d8OvAlb29vb8H/CXg63LOAfb29hTwT4Bf3d/f/7n36dz+\nyMVJNeFSvs2V3mW2sk2OymOst9yY3fqWgdXpoHQsBNNOQloAx5OQtF07qpFvTrmRH3PKWZvWT6oj\nncbsMa+lyaLmypbuPqshUQmrNlzEV/Oc43lEY5f87Of/R/6L6cfY+bG/iMovAhZXnZr+pvgighpE\ne/Y5uusQedeEPcbAynlkHLowPzRMkL2U46PwvhuzJZNmwg/tjll2lC4tmsDdA3CKzXTMA7/iaeyg\n047c3eHLpznFOnx0Jrce1wJtLeQKCoscaX7+e4ZUqeTf/mcnXDkysFheYEkYFNaHhZaRw/twrGE3\n5Fu/y7yMN+2FypyIz81YLRYIrSm649byHKWi1+cguXjtVK1dV3znWYQXJRpFckVznlT2Tt3jedvN\nS51SM4WkycO6D0zBccfqG3T0xUHUh07S3j5Gjm9qS0OFE46NdEzdHDLtDbjGCaNnJ7jXJTZOQAiW\ng0AjPTUOvr08ow+aJgBJnQTlMalSbLtg2Yk4pJ21XsVZl66yBmRH5xtcpl4F4QmAVKdIG67hONH4\nOHgEtY0NHixAfU6Y5Xz04z6ZThl3le5WjNi/WbPjwZl3N3z+RlGuGs4/1x/em7Ox3aM5J16hleSH\nv/cZPvH5u1y/N/tDAVZ/hOI/Bz6zt7f3Wc68Fv3+/v5f/8M8if/gr/6Ha/DsfWAPHJQNAyx5UyOk\nRGYZZjYj2t5edySfFkVbMKsXyMoSPTympuaN4oj5bM6m3mYxSKjEHJFlqCSldY5IaSKZoAVImSFs\nybRdgfMkiABmCgPWsmwtNZ6BkIwQyK4SX3tP6z21E/RETkoVZhYFJG6C8xO8D6aWXigaWZGmmkES\n+t06UrRmRa8OQ/xpppmcnNFkDS1NssK0jsEoYSBiouhUfNuydS6p9ICvKgqlQEqiKMF2CWtVtkxO\nCgbDFKUlsYrZihPKwtLcOSE+XiLyAaooaDAsZMWxWq2BBUDei1F6HjpNUrCqv0w9N4iiJQISJcJM\nhwzAbVJd5+DclrBoH56zPgdRhz3AWQv1jPPk4JU44bb3SNXNx+kIV4d95t71Cda69R4ghEBpwdQV\nuOXTGa3We3wkSZOYY7fC4HBuXS/EeI9WimTnEiLPaRAY51ECEhXU8ZRIsa7ApArTHuCcR9sSrSRC\nnnVvjG0RQrBoLYvpnaeejwcaa7kx7yjwzpPqAcPd7yPXCaW1NLagsQWtq2jMWcEqi0bUZok7pfUn\nvfWqxrGm6ZRt+5Fi3x4gcmjSCC1AEWaEGue4Pn2LWMoww+g9xgdvSeM8ibZYV7GoHzJvDa0F4x1x\ndw/Wzq2BkhSCwlhq67F+eYFXLIXgoDxYd28493qiwnVsXKDjpUpypdfHuRbjHbu9q9xeNhyV9y8A\nOYHgtClaVwJNH2EVl8Y502LOtbHmUi/hpF5gnCePJBJBrQSzZb0WjnKErtql/CpaxBgjkV5TKcO0\nnSCWnmvjLbJEMbOSk7pkLiXL/BJzfUymBiQbl2maMceL2+BaVDzAeUuqN6htxSjepAfMOor+RrpD\nP8qJVA8tJeM4wnlHJB3WeT738MscdeD5pdElPJK6XbKTj6nNhNvzu5TOIkgZJ302003wEo8JrA0C\nmK1sHQzCpUTZoJTpvEWsKorZcSeaI0j9Cmvfn8bMew6sOpPELxNUkn6se/m/3d/f33/3v7WOjxNA\n2L/SydcC/Mz+/v7/9V6f5x+VsM6ybFdc6QX29b/5yl/mf3395wA4Kk++5eOeelZF1gXOehezeQUK\nenNDCZQUpCqhsvXXBVaLDqj0s4hl2TJdNlzZCkCptg39uMeyS/6e66f8vojwnQbunU/9Kso6dv6t\nv3bhmGdKURk+igOwOqf2F62BVfeak5StQ3cS3x9K4G6k8AZQ8PsnU77sj/hTG31mXYVfyQrRGcfi\nJCOpOMpmuMe5fsAsnUAxZhmNLwArL1xwj5cCqwz9uqtKjTS+svjCIrLgHn7nUhyA1eqi+IJBEXUA\nSUWOl1+6RV1HpNkHAWjeDVi1LfIcB/0UVPqmxsxnqOGQk3lnsnsOWLm0x3EUfotndnrcPbzYUC4T\nhcOihUJ/ZMj3xYI3GxOYFjh823lSnT5UEbTd3EBuK8oyXFOjXges4v56nR8XryiLZi1cMU5GLCvH\ndNTjJ9Q/J75SY14b0XbVptM/TztWb81WFMaSa4WpJwihUTokW1KltNXhGtAnXdW+9Ofoj9Yh1OkA\nvARiMh3+f6oTVAeskkSvZbCrsl0Dq6azEoi6tb2Ub3NQHLGRjMh1xrBbn7//G0u+fPMRf+lDu/zg\n6FsHVqdm0bvPjHh4d8bRo9AGq1uLkmKtmvnj3/88n/j8XR5Nvr15rj+G8b8D/xT4LGcOrd/WjNW3\nEpPjFfduTYhixXzZcHuyYjOJ6D87Ro7Ga0pZfOnJ+RXvPdZ7auuRAmoX0U+2cLHnIBpRGMc2e5zC\n6b7zVNbS0+oCLbQqGxbzGmsckDN4ik1XJCFLwHmH9S1CSNI4ZbyZhWLPquVDV0a0gIklrW340uHb\nxDph0Uy7lQ3mtJGKmbuWEsUw3sAJye4IDss54/QaWiYkvYqtYcT9g+ts9vqkKmcQZ9S2weEQSJbt\nklWzItEJSiiKtiBRMc25seNTUCWlIs3gyrXR+RVkRQU56L0BRbfXO9/DGUMURVzu6N+nq+U6ZUW3\nWtIcHjKWOTpTHKWBQnVFjrjU28GVJfPdEQ+qA8rpCd5BPtxAJEO0jOj3U3bTLZaTExY3H+LUGJH3\niWzNgWqopMEiODETSu9xnQ5chKc3maBtTZ1lqCQj032ydIyrS5a+xUpFKVo21SViGXGzeUBD2Fcj\nkVB5i8UgO+ra6Z8QxneqFuS8wXlPlkdYD5PaYCtL6x29DlhIwHgYtxkrt6RFEqsddlWfhTtiaVu8\niFjaOU0HgHY38yAgku3S2j6rWDACjODCNWk9pEojRZ9UX6SLnw/nHc41geqFQHFClkXcPD6iFw1Q\nwjIvSnwTUy9bpNTkfc/l8Sbzeob1hpV1xLEi1glX0it4L3m4us3ipMHljiSRaC/BwlBusDrRWFEj\n5BJXJ7SiIfJjZvIBXgQFQS01zgs25AuoyHC4PEHlBtlkXOldZnc7p2gMx8sTslyS9yLyqIf1ll50\nlnM0rWWkpmTZFkszZ14s2dbbDBPFrJqTiyHoiNpVDOMhcZNwOepjVi03pg8p7CrYTguwzpGkmvmq\nIFUpUihiFWbMbj24yeJd/A5vHz3e1J8g5b0L+WJPK7SEjV5Ks6qDyFNbgLEcTO6zu5WzE2la46hX\nh4hYoZSgbixHSjLIYrIoYxD1eGVwheTkEO8Nwi0pq5ZU5dw/OkBHnthusZnq9Xxi1IlLlY3DGI9W\nAq0kiexRVo5atpRNQ13boDIqND69RKIVwhjkcsHs5N1z2m8n3q+O1d/Z39//ceCtP8hf6owWvz6Z\n+Tsslu2KuMrpFaG78JHtD/Gf/en/mP/+d/828+ZbR9unPHJ1agTYlVqWiwrGEao0OOFwynCt/yzv\nzG4yqafverxFN9z77KU+b96arIGL957GnXaswg38XeMev7o2AIQik9T3n2TmnJfg9R14EM0ZIIlO\nSzcdQBNoSmPpdcDKLpf0taZ3q4BXIa5biOH39w+4ceMEiUNou+5YeadwD3+DZ567x52jD8Hh5oXz\naTtgEAR/zz0MlEF0ibWJasZd5dAPIlgYfGHZlJJ71jEdKjxgVjXpuduvRTOMU2gg1obnX+68pPxf\nAOCtgxt80O2uedtmOmH2Lz4dVAGTM6Ag4gA8bFVhplPSFz7A4SysWSPPqeGlOdNuI3/xcj8AK3EG\neMo4mAFfijNELrkEXFGS+9bhvQFzkQoIChvFGKXo25JVGY516rUyTAbr4z8OrKqyXQOrjWTEZNUi\nRY9epyIon82odSeW0V0HUdvw/PyIW8NtfuMf/QI/+hN/AdNMUfF4/aA+lVyfF0sEnpgWITSV6IU5\nka7iHouz0rKU+VoYJtMZsvNP07Eg6gbtq7JlOA7Hbs/JrQP8+x/6a/zard/k+698jDuLewylxDrB\nl28G4Hr9aJM/a77+Zr4smjV3//E49dHqbWZwd8btB3MenRTUjSWJzhLnUT9GK8nx7A/idvEdEeP9\n/f2feT8O3BUD/2fg5f39/Xe+3ns/9cW71FXL+WL2UdVy9LUw05qooH52OYuJpcSNYqpYYltLvWrD\nQLzzVMuaYtkwvjYk7cdIKWgai3OeF3f6GOM5di25lDjnOwlpz3JerxX1TkNriTEOSdjdIinJtzIu\nZwmTDljY1lKclCwfrUh6MSKP+Nxbh2y/uIFwwdT0uXGYB9rl2fWxVTcL9HiUDvrJFsYHQ+FYJaBS\nBr1XaYHWwqIESBhEisZ5Gj8gigIqdoRxrmDICrESPN/PyPXZfItxhsPymEvZNh7Pqi3QUnNcnnBQ\nnM0QSyHWRaqtfJMXhkGxtmhLSlOxlW0ghQySWpypzAkpsc6zNBbjguJfap/hpRdSvPeUxoEIc839\nSNEgSHYHNFvXEAi0DJS9j0YKZxxCCnzjmJQNc2uplKCuDL/LMjYAACAASURBVPmziuevjrFFw51l\nhXcebxzzRU1fS/qjhLo0eA86kvwpvYV3nvmjFT0pUIlmWbVoYFOqdaJVYnlkHK57rjWupCkNxUKz\nlUfkWYT1Bi01aRYEfpwNHbW+8VjrMMZRAkpeYtyxGDaic1IcZRD2DppOhhgYCklGoF16D4V3aCF4\n5blN+r04zMM6T6rkel+bljO+On2b9vR1oBf1cL5Hb6i5Gl3m5tEJ84XENQJ8wzAfYl2LbSw3Ht1B\nkxDLHoU7IS2HSLnJI9HgvEGwTeYr3MpgKklla6Rs8XJGrUoq65AOoqQE42hZduBCo+V51sJdvIft\nQdcZ1CtK/w43Dk+vScdyAnLWUQQRODz1uW4kQF8rEi3JiSjsjKI+Xc6zovrSzk61qC6E53Q8XKKk\nXj/XHJbK2vCdqJQ47VSbpUTq8F2clA0RAiUiWt/gnCQSKYVdEhtHomIynVKbmthn+MUG0nhE6vCR\np5cL2mLF9cVxt6dIEp/TiCVeGaSQaC2JU40QE7wPbBBrHVqrkD8KgWmXFGWDdBG5G2PVgBMb1Iei\nXsRsIfFaoHQnve/pPPkUEGHRWIJ4GoAmX3eHHVvY/I8IFXB/f9/v7e1N9/b2Rvv7++8PHPwOisl8\nwSuvfxwDLD9a0R+mDOJQyVk0X18g4evFKS9fNt2fowQ3rSlXLelWQrtscCoAlkHcpx/3mNXzdz3e\nslMgu7bT481bE6ZdAtg6g/PhRlx1HatxEpEqwap7rlexpDo6fOKYrlPlCcCqe1CWZ9X+NRWwk7xG\nRJSNIesohXa5pKclet7RpIoGYrh3/QhDkFo3WqyB1VDmtEVn5rhz/Biw8sg66x7mBXde+hrX3vlu\n7ns4NpK8kkQRmKQiPg6/uxhHMG3xRzVDIbgHTPuKr+78AA8mr/D9k9fZ3AhralH04gQaGJ4zyq2b\nsA185dFbbNyDP/dsMLY9/Cf/mMVn/2VYnw5M/cNfe4vonfu8BtjpFKwl2t7hZHEKrM46VibJWHQq\ndc9vdK+rs02muRaEJraT4AYPcFUr7tuwAqKT5bVrlUZJK2KqLKNflhSlJUvOPJX6UQ/RucCbc1TA\n1rZ84sEnKXphrm2cjOjNa0bqnDfXTkJtj/Bs0EYBREZtw2v33ubWcJub+YjpJz+Be7Ekzs9ULWVn\nwjtbnhCTIQQIFVO6rjLoPA5JbM8oqEIkRETcfueETKbrjtWN1U0+shu6h9U5tb3GdeqS3dq+MHyO\n/+gjf339Ow+k4GB1Zgb8cNHD2TO5+7Aejk/+3j0++NwGJ4uKv/3zr/MT3/88P/Xxl3g8Do4DQPvE\n6/d5KYn49QczPvsPPk+sFUl8lkxKIdgcJpzM/wRYPRa/u7e398H32htxb29vF/hJvsli4rJoqJYN\nMteYyiCkQOowExBpiXOBonRnViClQM4L6rrFtGcMg7hLF1o8hzfC/ZNKwaU8wTnPySQIKuQenHUs\n5hV4aCtDQrirN7d6PPuBMQjBomgpptWpqCAAIxTtrOayliw6kD5A0kqBWRlmHc326J0JgzwikZJV\n1TJOIq4+OybK9bpT5pyjLFriWOGV5KCoOSgammWDmdckCCIpeCAWlOfusVPa1wMsrW/weBw2GCeL\nFIEgFmftqvsCkkFCNa/ZTDQbg5RYx6zGLYNhwijpPAijnOeGz6yFBgIlzPOwaDhYVBzPJshIUS9q\niklFOmwRUlBOK4SA8TNDVKyeWgABuLN88t6bdut1vnDSNJa7Dxa0rWVrM2NjnKKk7Ia9FApIUo0T\ngjuTFcWqoWlsKKYkirSfoJRACsnVjbDX9LSito7dPEFeHp9bS4+zjqaxpKmmNZ6v3ZvSm9cYY4P4\niUmpK4NuW6aTCi0EcaxRTtAUhmndkqcR1jga68iyCC8FrnbkWhIrifMeUxgub+UcPpqh8xikp60s\nq2ZJ6accUYGNyBPFC/1rKGswwvDgFpzYCb6NcFYyFycI3VLbGiEEVeuYrJpg1Jto4nSKlIIk0qxW\nge6mtWSUSCItGfUq6saxrBr6PmLY00Sq5XgegS9J0ntrqxFPWPaNPGZeNKTdlponGlkrro5zxl0B\nw1pP2Vicc7y8c5VL2RYHxQlH1RHOe1alYdWpD9etRQnBsBcsbY5mFV36QnyuldA7VxDIYo1oUlCe\nlVnx4ugaH7x6jZUpKP0C7+C4OqGpLVIK4iQilSllY5gUK8Zpj77cYHHgmIs7bG3m9POcFwbPce92\nxZ1FSYNnkGhSLDGeLZmS7fRQSnJS1kwmJbIfQO5q2VK3BmcdWklkp765aAxzBYtpjagEbuXIKk1R\npsA1UgSDPKIoDXGsSGOFKQ1NY1iuSmpajAzmv4mI6euI1liMXBLrjFQkeK2YFi1za6i8DyNYK0us\nQBmPMY4kUrStBR/2tlhLrEiIugKrcY5UKmItmS8bRuMB/imemu9FvF8dqx2Cp8c/hzVA9Pv7+3/j\nffq8P7Zx787JGm3ffueED712lV4nnrBqv3WazymwEh2wikcJ1bSmLVsGUlIXLSYNm0JCwjgZ8XB1\n8K6V9FXZzU9th3Obdx2synZeFDpdA6u+VrhzCk11LDCPnuyGXfBhSiXQ4udn75NCEGuJ7z5jPjPI\n14/wVwPwtIsFaeNwLpxv1FHCVsclBhjaCisUvgzvf0YMoKNOXOpfXFshHa4zKW7iGfXWA67c/DAP\nrAYk6oEi6Rtc3BB356P6GpcrvIMXHz7D7XjJonfA/VEQJbt77/IaWBmviPWpeMJZUnHv6E0gR5mY\nL331dbK3r3DlmTHmra+erUOaUlQtv/75uzxXrHgNOL51HwmcpBscdnNzF4BVlLLqNpxnOsaFOAes\nThtyw+hUkhd2ug7h0J3gO8l0s87CDDUxi3TE7vIeTd2yMTwDLFJIUh3RAsU5OudnHvwun5n/NmK3\nO7bOyec1A3H2tHmjNRwWv0ikX6GNXgnfZdMwXhwyvnzIwe4zLD/9OdSLoOMzyo/q7pOGiLibEjOf\nnzLftfixC9VmoUjV+RmymNv7M375rdfR37Naz1g9qB/wZ/KPAhdNgtfASj2pQDWI+yyl4K3VGaVl\nVsY09UUq4K9//i7/+DeuM+7HvHRthPfwy5+5xU/+0AdCgnUu3rkdalUt8LAOnx1ouC1XtvIL790a\nprx5a0LTWuKnSEF/h8YrBOP5L3J6s4dn05//No/7s4T5rb/3zbw528wY92M2n+IL6Lxn4R1H1iId\nmNpQTys2pEIi0VrgnUdpSZpFrLoZWaUlSkma2obkuaMPKx26VadJhI4VWksGoxSlJIcPzwo58rGt\nfTZ5Om01kgEEZfpJC4hep+R51PlFhc5wi8MiUWEuxZUctge0viWTGT3ZwwuNQWKjOWV7sWjoPayM\nxXQUtkiGTk/pfeiGCQEolsYQ2yFiKpm5I+4YzmSznuIBrFXwmJJShLkhEWF9iyJiU+1Sm5p71T2U\nyektetRyRdO2IKA+rhlFY0wjwcY06RzilkHWpxenHCyOQoKnNGkkGCQ95vUKYXskMqGxgs10hPSC\ntu0EeKYz3j7aJ2VMP8vZSlKUlbTOM2sMMhGU1YTWtYziGFGnTO2Sod6gERFlJ4gghaCwK/Y9WEyY\nfZE5xre0vgkzKCKidEtm5qz7MVBjkB4bW6KRZgfBUPVxtDSu5qQ94nJyjURKfCxofIt1DUs7xUrL\nganAQCpzWl1zMLGQQDcWh5dgE8fslH4mG6YO7s/fpmkMTWvX3wWEx5DuMqBIgPOgSdnwzxEJjSwd\nlKELI1JHUkHJAistGyPFmAGb0ZBkW5DLnDwOinPWWb42ffup1zaEmdnLvUuUpiTTGcNoSNsY+lmG\nPJ21qgxNbTCtpZ8lRLHmeZ3zXP8aQoI1nro2zCclZdEgI0FjW05qyzP9JADTSPLK1RF1GzqNk7Jh\nVTTYsqFFYeJguZtKT1UKvvLOFAGkIiUVgpyr9BAkQmCX4b0R0PdbHNwvaDc8rRb09cuwbDlYeB49\nDPeliCUaKJyjQBAJyYFpMPcbPFCe5mjTx2w7FIBDeInvwC1AuqvXM2sAgzFEiV4LcEVFS1MbZBbh\nyzCbGNHn/FNLRwohBW1tkAy7Lir08pikMVjrGIqw/43jiF6sEc6F70JL4kQxSiOyNHoiT3XOBfVA\nf8o6gp56fwhy7ymw2tvb+7v7+/s/DfwDwlTpKVft2/YK+U6No4dnCf7BgwUfeg0iqYlVzMp8G8Dq\ntGvQbXDpRkp1a46vLf3WYwCnu/kRnzBOhtxZ3KM0JXmUP3G8U1+oq91c1aKbBSlNyF0ylTJtLZEU\nxEryQ9d+gH9265MA1JFElgWuadbdFwBXhCeizHv4TAAzVp/7HdyP/iAyDaAgjhS+S25bq0kfLKEb\n1rfzGXXR4jqFPd0p2dXzGisEua3xUYLrTH53DsdwKXTONvPHqo3K4DovrSYKN2wp/VpKqjnxeN/g\nY7MGViKTVIkgBkaN45l7r/DWR447byzBye0Mt1sjtxMMGtfdjpE44zwfzm8CHyIpe0RfuMLv+Tu8\nru/xr7V+TeWQvR6P1uApHOPg9gN2gU8/KBDZ20ByQbyijVLKzsB2S7ZoFebDHo9cn208290DZXty\nF2EDzeOUCii8oUUz7424cnSPXrmkd65SCuC63+uTt3+bP733UwC8PbsJgO/mnPpWMygdg+6z7GHL\nG2lnXGy+RhMHY+aoqYkmJ1y7c52vfPcP8MXRLt/LPVR8Nv126hvVEDFgxQO3xf/z0g/RpBm2aFEa\n0IqdUcv9079ke7TLcJ7T+xWy1ylbsoI4vF6uzh407WMzVuejpzP6UvJo1dEhezHzVcPJCp73DtGB\nxzd/9y4fQHBj2fDO/bOu8E//7G/yX/+NP8O1c9L0J5MCAXzsw5f50lceXfi8UzPm09gchu93sqjX\nHjp/Evyt9/qAe3t7PwwU+/v7nz21GPlG8ef2rlCUNVIFSoxpLcWqJUk1k6MVaWMZ1Yb+IGG5qGGY\nMxxnbGzlnXiKIoqffHy3jaVtLYtZtVaPBEjSiLpqyXsxxaohjjVJptddqN4gIYpC1yaKNXjPYl6R\npBGmDWItbWPZ2e0/8bmnidRpUjWbFHzt7h1mdkbpvvE8YelKdN/TGyR4YBwniFnohDjnKYqGJNFs\ne09dW4RQCGJaSmIpiSKFjiRta4kmJc6tOjCZMFvU1M5TrhqSSJFGCiFC19w5j/OGNFa0xjFfNTgq\nIiloXcVcrwJFy3kQKwpKtJBEKbS1IdeKxs0RkYCok35voGrmVMxDwwnwNNQCalGDB0FN4YJS2cHk\nNsY5lJZESlJ7H0CiWiIqggIeHueC4rsoJdY4Ii05auhAgieJJ2gXBBgAKhsEFlrvyDuJcOMcpXFY\n41BSUFQtkZTI1rHZi4ljRWmO0YmmbS1TG7pbM3nUqQiH73fu38IJ0HmEdR7pPG1tyVNNnGlWeEpZ\nYmuHlATKat2pEKPwXaFuczBCmIR5e4Q1kigWRLEm0jqIDQhBRAomIbJDBoOYSEUsVw1xJBn0IqQ/\n80XM0giHx7XbxC48ZXMh8EuBXQkWOGZ+uTavy7iCiySmsWwkERvbPdLs9NoWLOcVYi5ZWcdhdUxr\nLFVlqGtLHCsa55gWDTEC2YG+Gs/Uu1CAluHzcx8KAJZzYGUdgi9eP+gEFbr7SEl8R9NNtULYMDaR\n9COyfsyqtUHF0nms85jGkmmJRtC24RwdnkxIVFmHWatIUbUWJ0KZ1MvgAzq+1CPONChJC1S1wbSO\nYaIZRApTmXBfCcHGRk6WR3g81gUKp3Ge7TTihUHWzXQJKmvRQuLxPOi60rVzJL2UwjimTUuaRWRK\nMYgUWnbWA0pS2eCrJbk4e5dpSWnCuuaRIleKWElO6nYtxPZusZ1GFMZSGNbfUyREMEd/n6xI3uuO\n1Y8D7O/v/9ze3t6N/f39D7zHx/9jH9ZZrk9v8MrGi0ghWU3PVPBOzsk593T+nnSs6DpWg42MKaAa\nR9Y4FoDR4bMjFzPOQpJ8tJrwhX+6z3Aj47Xve5brbxzw2vc9y6qjbpxWzWdFw0HZcG8VEsVUJywL\nu251/5UXf4x0XvN/T36bOu68HxZz5NaZgtm6Y9XrQS6BGf74iNmnP83GD/8IAHEkgyog0HbzMHS0\nEDOb0RbtumOlrEW0jrbbiHu2QqVniXiWhiTDOkE/aUmUoe46Fl620KnJtSII1LbnxgHtymHbBmJH\n0gFe0dOsIkUMJBToeogXYKKGqE1YySH15+ZkP7ZD5QWvH/4GAwwvRudMM03YoPLVmYKfNY6py9kk\nVJ5Ulq+VHdsOWEVtSGgOZMrL8j7wgQsdq4MpXI4GGNciqoIs0RRPAVanVIiZ9Wx21Z3B8QGlCmBU\nph9G+Nt4YXEo5qNAn9xs52sa4GnsbX6AL9yAG+fUoh4VFymgPSNJa0Wv69pVNxc8fOVshqzpGuBp\nVeDLgg+//lnefvWj/N5Hvp/vrn4eFZ19nzoeceTGtMQUOK43z9F0gNwWBj2QCBT63IyVMD2kLbh0\ndcBJY9dUQKsMKxmu5fKcWeipQfDjqoAAslNOPFyF8//wC5t85isPmZYJzlYonVNXLcmiIUFwH89k\nUZMlirK2eA+f+uJ9/t0feXV9zNWqoQ+8tneJ33kMWD2+3pudb9zJvPoTYNXF/v7+b34rf29vb+8X\n4SnqDvDfAP8V8JfPvfYNn9ab2z2CZlYI7z2r1vKVozns9nhmkLGVxaT6/e80ttZRd//cW5Tksea5\nYR6S79auE5/WBeqX9SFBGSXR2rfHOcfD5QE3J3eZ2IrVpqGuYdwbMc4itAqTW1KyVqS71N/icHWC\nloqNbERjDHeOD0lSzYa7xHZ8mUhpjkWJ9eCEoDQNWaQQjy3xvJjhfEua9YOHj0zZURnJOGPRFhjn\n6UeBjnRYtlSlZWfoaWkYpNto4bGuYm6mzMys84cSlKZllEbsbvQQQnD/aEltPc4OsN6ws5GRRJ7F\nssLYipNpgTZDNpKcRVswq1pE00dKyXiQIJXAiYoT8wiBo5de/H5PdzprBa1piSWhQyLPEm6ZRsT9\nlDTpY0yzfk77xiOlx5aGgdTY2pA2EiGhwUEjSaUnjcd47xj3JcbXtGmNlCMa63AuxpqW1tcIBBJJ\nZSVaRjhvKFkEgQLnobZY54hESqp7ZHYTu2wQbopHkOkBvWxMpGOiWOCbcC1JIdi61Oe7dgYgBSd4\njPCcFDXNUUlcOz5wechqWRPnEdOi4XBRoYYJ/XFKFmu285j7sxLTGASQ9OK1zKFzntJYJDCZliys\nD/RJ3127neJiTyq8dzgtOLIGeTALHlbGoYCiaDFFi7c+iH10yo/hpmkRsUL0IlxtkFriOvCotcJ3\nM2gtMAN0pEliRezDfJrWgqI02NaSJRonoDWOXqwQSqKUIO7ufet8oLFphUSE79N0ZVgpULlaq/0J\n50nzONwjSqy93AZJxKYInUwtxMVuTgWJDh1gKWPysaZtHNlWzjOjHrZs6Q8S4kRTLGuUluS9JCh0\nSvFUBlPbWpbzmmSy5NVeQlW2+NajogirVYfugAY2d3qhq91YjHdUZcvWTh8dSR7dm5Nkms1RD60V\n1jp6/YQ4Vms1Sghd/lNg983GqYDL+xHvFxXwT+JbjF965//l127/Jj/50k/wI8//65Qzi5Ut/WHK\n5Gi1puLlUcZJNfnGB3yXaDqUf7oZ9AcpTglkY4mqblC5G0VRNqLfCSS8+fZtHtyteXB3xq23j6mK\nwDtfVS1aSQZ5TBxJ5quG/+n3b4ENM0u5zlm1lt1OflsIwXM2VOLrjmRsZnOi88BqGRqeqtfHuq57\n5R3FV99YA6skUp38LrQ+HFtVHtUfYOYzTNXiOulyJRyjwq5pXz1TYORZV0XnIRG+fjxmb2fCRl7x\ncBHOUSnbfYrHekVsNM0pxVAZWqtpZxUi8iSdPKzoa1YqYQNIXIlAE1c9jC555uQujwYvsWoHZMA7\nzZz71QN+RQh+ZnxuvshpfNQg2rD+l1445s70Cp/6yF/hY5//dZ69fZ3s1VfXcven4Cnpunj3zZit\nMpx50/lYOQS3rq8YCMWz3vLZL9xkUWyhRgFY7d7RPHw2/BxhqX3EUVvxUqrIhSCZz2kGHQiLd4nN\nlDoKA6izccg9t5oZ7lyi773ntZ2X+QLv4L3EeYcUkpPy7BoWCOLSoOiRiQByy4OK4uUz0NLKQBFK\nqgJX1+RNw14540ubVzmaDLhyTllJJ1s88DsAVKQUJlnveM28IenHgEKeA1a4DG0Mz7+6xRv7Zk0F\ndMowI9BQTwUkABp3UbzifJg2ALGTVYqSgu96fsxnvvKQSZniTIHSOfcenAnQpAT97x/87mv86Mee\n4T/5X36bu+f84VpjMU0gMdw8XPJ4WeVU2v40NgbhmpmeO9/v9OjM5/8m8BphyeGbowL+ezwdMF0C\nXgY+13WrrgGf3Nvb+/P7+/vX3+1gn77ziPm8wHpDqvInEoI3z83GaSl4tpfivOewaijPDbiH7kr4\nj8tZTCQFTSfd7r1HGMdmP2HamFChtZ6eljyalshI0cvPWTB4z7w5QYuI31rUDLIeUijKukZHgsKe\ncLKYkzCkcgVFu1zLWwvkuhNxPiKRM5ZX17+fkoJEQKwUb7gKXIZxnrOJgRFpFnVzjBcLBx4fxCts\nEDlIYk3ZGHItMS7QjY2Pu2ck1GaF1wXWeZy5eG5KS1ylkS7lcLmgso5erLl29RpbyfMI13UJHqPQ\nvnTl7GfnPYvWMm1aRB46VpcHZx28kQjKdxC6NnQKeN46rtodMg+6tFzd6VNEgpOTBYmVyKD9TSwl\nWsDSdN0bKWikYFE05JXEFKHH0TqP7hJmg8e4htaF8y69g3O3fy4llwYplXGUtSHuRWEmKtcsXTB2\nTYzHlS06jzBSEOUR2kOKII013jqmd+e01tHiGW9moCWLRU1baAayR6YkHoGvPLVp8FIE3CMkDji8\nO+Pw7ruP4B/OntLpXNTM7oU99fyNJbp/7QwzjuYlXoDMIw6Oio4dwtpIObw19IdWNsirW+ueEHKR\nSiKFCPTaWJJGCh8Fv6WsF9MmQYQK5+knGiEDiHFd1eHlXoqxDisFZR3mglo8V/OEalpxSWk2t3tk\n+UXKmjUO19kv3J2uMI2jntcUjcF6T9M6EqCfxyRALiSVtWTDFDKN0IKtOOLQGLwQbCQa4zyDUcaD\noyXP91Pyjg2yWgRF0HXBvttH/CoInLT3F9y4/80JpI02AsVycvxksX+++Ppd66f9//n83GsLODx4\n8jxUJ2qiI0lVtjz34iZSSopVTV0ZZpOS/iBh61J/reL7tHg/PBjfa2Cl9/b2PkQnKtT9vI79/f03\n3uPP+2MXrx+FJfrCwev88HMfp1l4mrRgsDHiYFpQrBp6/YRMp5SmWieo3ns+9atvoZTgB3/klW+I\n3OtTP4NuaHPUT7CxRDUu+JcADDrfoUax0Q38fv7mHcbsIBBU3azJ/dtTVqUhTzW/ePOANNVMlw05\n0LiQIMQqwXhPT8lgAigladflWgwyYImdh43WtS2TX/0Vyq+G+XI56FOfhC5H1O9T3byx/j3iSCFE\nR/HrZLRVaVBbY9qjI+rK4DsAJKUnmzVrfmrfllTnhNO38pLWSm50wGqrV/Jo0cMj6EnHHELD3imi\nJqPxnQJbUnNUaOzcYrOWrF3gAzGaSoVOQdx1L+I6JxaPGJcnPBq8xMIM2aZh0glwrLy/MMeW2gij\n3KnwIWJ8h5PdD2J6EZ/6kZ/iP31hg96VXeb/IqzJT//U98D/8AtkwlGpmJqYg0U4B9NJldc6X89b\n5CLi1u1DGGytxSvieYZbSmR/RuwtpegzMStAsaUEerFAZ6fiFRotdWcI5JhvBmC82c5ZdmIK3nsO\n3/lHPOvf5rsuvcrbTrBqCyIZsTIFqcupZMFVrXBlQZ0P1p5Tp8S4kRTMnKfpzHzjpsK3LXpri8uD\nUPmfVD1UdEabi9JtlmonaAkDhQ/dque/9hU+e3/McHcDISIE53zAXMb05S/xtWiIjdp1x8opw4Qj\nYMTyXNLbdB2rp1EBbTPHeVisci5tZFzuBsunZYI1KyK2uf/gjPoXKwnWcWW7x+YwZWuYrCmeAA9P\nSjSwBH7ht27weJxS/05j1A/f93RVP/He7+D4P4DfBXaB/xL4d4B73+gv7e/vv1uGMSeAKwD29vbe\nBP7iN1IF/M0v/0u0EoyHKXVH34tVTFFXDPsZr26/xLwuWFYF9x8u+HwsqJqWUT6gbd2a/jQYJEzK\nQwbs8paULJop1htqf25uCs1IXUFIi7VBJSwiwWI4sXdobQBn1j8dgJ92mc5+npFquaYv1c4RC40U\nHu9SBuoSUsdY62hbxzHt0497TvY7UZLSBKr4Ck9ZtUgh6PVj0l5EUxuiWDHKLt5nWVfpLuYNG1vZ\nej5HPj4s9nUiY+11zNRaph2zwjhHXTdrRUMlBImUFNaSKkmqFErA1TwJhUohKI2lcY5hpMl1SL4H\nkUJ3+/nVPDwHtZTEj1f7d0aPnxoQOjDWhOT/2rUx1792yNGjp1+OSaqpK4NScg0WkjRi61LYI/Ne\n/NTcwPrQ5dFSkKozMOl8MEdW59azsY4Hg3R9DYxjHfauc+G9Z3pcUFcGJ8KowOG0pDSO3lYwCI6B\ncl7TWEdPSZQQxKnmaBlMZaWW9LdzmlVDtTjdZ8UTvlC++9eiKx7gwS5brvaSAMatJ9US4xxahlxJ\nx5pV2eKswztPnuq1eqP3nkvb4bk/GCZsD1NK69hOQ+HC+bBe0bnvz/lQzBjH+ht3mTffPZFXWnZ6\ndvDq5adfD99MXHnsv3e2B+z4i9/7uGMxbF3qX5jBdM6xXDTUZRsEb2B9X52CGWMuSrQ/PouptSLr\nRawWDaONNHjWNZYoVkSxotcPAjt1FXzPTunNEGaYvfdURRto0AShMu+5AIBPfz49l9vvPGk/tFzU\n62O8W+x8/P//wCoCPtX9LM79fBo77/Hn/bGLsjMPUJmZ9QAAIABJREFUvb96GJC8EzRJwXgr5+BG\nweSooNdPyDvFs9JU9KKcR/fnvPmlIFn+wivbPPuBzXf9DAj0DwDTday2hikuVuhZQzMLF+IiChlp\nU0uG3ezKzWLCFXbYPXeso0cLVsJDLPns4YxSgC1bMu/xPhyrdhHCOT76f/5v3Io0z//Nv0WybCGB\nW7sSK6GczegDD/7u32H1e18IBxeCya/8Mss3Khi8SPrMM7Rf/hyzT/8Wwx/4syRaojoZ79qHAnRU\nLfA/FjM5ep67X76/nrGSwvLB9Cvc3E65frTBwBTMu5xI4NnulRwXKYfLsLaX+gUnwtJ4zb/xwgG/\nc2R489Em3iniKsfgAMVrXvIJQB8WjHqHDJoJZhQqUbUI66bbBukaPnJ9QWYeMmjCOc38Bm/fiJj2\n763vxsJ7emtgFVMJt05NprnHdMmF0ZrrUc5Hqwr59ld5tpzQH38vNaCcoUrCetyf99HSkQ3DBtJ0\nohUlnkwIpO023A5YtS6lufEqlz98k1TMmJJw3Mktb8rQbdo4DtVkqzWxjLr5cMtiFCiL43aB6aq9\n5eyrVPOvIYB/9YV7vP0wZlot+HLnsbTZbvEgKRA4muohZd7n2ZPbsA2Tjib6Aa34YmOwrGiimLiu\nwXuSq9fY2tqEuWVVp2sPq3DpSEp9aQ2sFnpAtlrysfkhv2OGSGNwpFiTcYqttO2x9As+vfwtko0+\nG4dBMtoqw6PVHQb9Heazi8Aqlk8OygLYdsZJkWKt5spOyk4n0T4pUlwbVmw6OdeZ0AFYbXfv2xik\nvHN/vk4U7x0tiYCFltA9TEYE9ahHreEjL15kqp12sBbF0xPb79B4cX9//6/u7e39+P7+/i8Bv7S3\nt/cP/7BPYiPJWJUli5OGWDpiIcDU5AjMsuKN5VeAoGRVekvZ5QaHq3DdKAmpVCzLcOku3F2MCUWZ\nTCu0D7ML1nsKYzg2t9FSBHAgwjzFrGlRUhApQbhVwwYkOoqzv2Bpe5ZcRVoyzjdRcoSpFC2eZ3f6\nZKnGe8geSyy99yzasFs2rWVRW0zZooRgqx9zcFCwtZ2jMsW8DWp1trHsZskTVB0hwrNr3houZQnG\neVrnKAYp1nmUFPQjxaUsoWgtW2nEKI4orWXVGLSUpFpyc1HROMuydbTOcSUPx/LdZzxFGf6pMYgU\nsZTs5gn6mwRzyTd+y4WQUiBjRYRCKsnGVs7G1ntL7VVC0I+eTAelEE/0aWMleX6QPfHe8yGEYGO7\nd+G1V9/lvX/Q8OeKj7PGMG8NPaW4dmnI8ckSs2wAQRQr8l7oYDoXEvX5tFwn2tuD/4+9N42x7LzT\n+37ve9Z77rl73dp7ZTeLm0hRopaRxhrNWLLGlhUPbCcGkgxiwMkHZ0EWB8mHII6dGAmQGIiXDDKw\n4zHGcTy24zEcx7EHM6ORLI1EUaQoUqSavM3eu/bl7vfcs7/58J66Vd1d3U0tlKhRP4LA6qq7nvX/\nvP/n/zxGkeHGzJBCSLBsAxRUai5pmlMWkrIpkbliOAwpeTaWbZBnCiH155BCsOh9r3v2e//eAHGU\nkaUZpfuQ5O8HUoqZc42BpNHSx8IiDyd3w/5UB4pLiTTEfcn7Se9ZKu5R7rEFE8ctfj5JeF3gcKEh\nTXS0xKA3nc2OxnGK7Zg0Wh5xlNE7uDOj8zBW4r3ED5VYdTqduYc/6sFYW1v7+8AfAXY6nc4HfvBP\n9ZODLM9mFuppnvI/fOmv8RifIHamzM9Xucw+vf0Jq2cbeKa+sAXJlLLlcevqEVvfuNV/KLE6DAhO\nwxRpCOZ9h8wxEMBoZ0xuCBKrMIWYSkb94qbrTOmiWCyutq12mf29MYFQWI4+SaRtkOQxKs1nxOpL\nWwHL+wHl9ZvEwNXvvEl1PAEHYlPx4rNlfq7bo7q5weTbr2K150n2dgEYfOXL5K2fAeDb6iLR2XN8\n5O//Q1a7B1jWWawiX0r5TehDVWxhmIrFxZjffWOPxeJG7/tTVmt7XFiEb37xE1TSgD3h8HPnb9E2\nU2wzZ3voszXUxfnpxpCb6jSrSOLI5ZNn13lrt4HKDOyoxJAMMHjird/ixdXP4fRDPv3mO3pfni1y\njmRxdQgynui9xFLvVhGyKxEqY8Nbg8sQPH+0wD3IFeVDK1YkQh0VKjsFpfVvjxmf8nnx7VtUfvNv\n8fhoyAUE5fjTRJYFSUJWtL/T3KBeCrErmlhl0kSojF0hOIOY5W8Io5AM5i4qqnBm8AKi9UWizGYv\nP3IGTA3B+VvaUSkzLVzT1o5PKiO3XUZGiUYyYmQbqDylv/lFQJALl5X6CGunxasHE762rS0jfJVT\nl4L9LCeOt4lNh0pygMoc+iW9Ic5YJq/FKamcooSgPNErtvbKKq2lBRhuMg4d0oMhxuLRDX2YHK2s\nBVaZxnAH+fgz8M0pRpKQCck08TlqWlmzQOzIG886VpaZsj/tcmauzPqNHge7Y1rzPmEW4Zgn31DT\neMA7hWX/0oJJzbexTOgGJbJUn+fD0RGxOpSqSAFf/e3LDHfH5EoxmMQ0Kg63tkdYQF4Qq/NLVayt\nIdU447/88z9Ds3ZnsVMpZF7jR8TqOA43hjoWCdJ40BO+F3Q6nSffzeOWG2tsToegIE6njLJdPFnH\nMhJSM2RYxEp4osEpt0qzpdgaTGiVbYJ4QJLnlCwTKSRBGGNQwi8rTBPONVa4NekxjBWGMBjF/RPd\nXKuUZsXa440VWkYTS5pIKbRzoBRcLSQ5TceibBkkec52oFfmDSEYJumsg2AbYmaKVLdN5ks2riFJ\ni27PcZKU5jlhljNJM87MVTCENlx4zrWZa/m8tdElznKWyy5JnlO3LSypI0YUMEli5kqVEyW4J6Ei\nTSrHiMMzzcI5Ns+YpiGTZMLtkW5cznttRskYEPiWR9VuEOUZaa4LRomi4do4Uv7QCts/SMjSHCEp\nLPb1olAcZZimxDDv7GzFUTqTk8pCZnf4GqAD0Q92J6RpxtJqDWlIkjglSxUHe2PmFirYYUJt3ica\nhEy7U9JERwvYtkmW6XgCdR+mfPfnAW0AA0cz7cdNYN4tTFNSb3pEYUq95c3OPyEEjnty2Z0fOjUL\nQRylbN7qzwjAcafEkzC3UMFxTYTQHR8hNAGrVB2kIUlTbQsv5b3f9wfFYabjjxJGcSwdSvz8qnvf\nx84t3D9o+r3C+3HG6m8Bfw34uz/uD/KjxjiZoFDMlVrsTw+woyLo1g1ZXmwC19jf1QWZZxXEKg24\nPpiwuX40q7K/c/98q3Gi2+WHM1bxNKHk6SFpVQzSqiQnqVrkMikeI9jZ0bp+4UyZACkKzzFZPddg\nZ2+s/2ZJfnF1jv/vyoC9/Sl5nNP0crZinQ/U7N6afY5bb3V4KhqzksZsLNjcXrAZHHRpFfK/xi/+\nUXb/z1/XQZhpSj4Lxu2TuG22Kheof/tV7GfOYx+66PlVMktiqCNLdlWOyEN9YrmOlhNICafrQ2rX\nxjy21uXCmYPZ4693awSJxW7P4lxzwHTtGtc7FwkClwvnJ5iGIs4MFvdixLSP8ubw0xFz8QA/m2Lm\nivXqGu1nAnKlCHO91qDGKfODm4BeADTIaU7Wefkjm6T2lMw6kuGMj11ADZkSh0cXjQk6p8lfnzBt\nu8j1a2QjLSeTKOTVt5COS54k4BwRsooT45a1NEWqHDMeEDh6vkwYNstzZXaLjlVUW8boSyZjLb9M\nY8VusXI9Z0jenm9SekcXITEGnu3CFCBDSEHPrnJquoORJwx3v0EadfHbH+VglOKEr7LiZGwGKUrp\nG1ZJprQNyeUko5/3UNKCkgFhxsDX32HZlBgIMhVoE5Li8zirp3BcTWxC0+XmX/xvsJeWaX7+j1P9\n6MeZ5HfeSNzphK++pW/eVhQTA5E6tvorTT575tO8vPMa25MdjFSTk4qVsRNPWVytsn6jxz/+tVf4\npX/3eaI0xjVOJlaDYZ/fv74KImN1VUue2jWb/b5LWoR7B5Oj/R4WRelkEvPmq5sc2twPC2J1Y3NI\nBcFhAMpczWV3awQIRHrvTbdcrPwdZqk8AgCX1tbWWsBvAC+tra1twZEp5I8Ky4uVGfHVWH3oc6p3\nKVZk0UzI7tr13QR8u0KhBGWhfPJru4bkYs174AD3cy39prnKyfIMy3BYKH1vK/PWCa9vSokvJa4B\njgy1/Mp1sQ2DPB8znF7GNmxuDnIylXH7hMJ4a6zz4KQ0yHN9D2h7c0zTkPFdGY8lq8Q0eXcF8vHQ\n4GkSsBfsn/AYmySL8W2fxfI8nukxTafcHm0QZhEfmn9Whwk/BLnKGcVj3ukdWX/7RU6lFIIFb55y\n4cIbZTHN/HvvVGWFnfyh5KrfDXBLls71K34vhO7aGEZhO2/JosDPtCuka2JZBtMgJs8VrmsVBgUh\noInAZPzeSo63TpjJOpREjgYh1UrpjnmdOL7XjKk171PyLExTu0Oahaoiz9Wh94V2ohzHHOyNSeLs\nDgtxgErVnUnkDmHZxoyQgXYqPKzV7n7s94PjpOq4zPMQ95OGHpLCwf70xFkmt2RhWsYd8naApdUa\n45GWZDbb5Ts6So/wcLzviFWn0/nK2trahR/35/hx4LBb9VRzjc+c/hR/85/8EwAsX1BveRiGmJGm\nw4vta3tv8ts3vsTTm5+j3vRJ44ze/uTk109S/vqbN8kUnPZdKHSsh7ICcexGn/s2yBhySALB7d0p\nynExnYAY7aPfLFn0qhZ7j9fgch9hSp5p+nyn4bF3c0gWZcy3YGsMQthUBkfkL9/aJLMUv/RSn1/5\nM/MoAf1uj7CwMjd8fUM3m0385z+MOVqGriJtSqYlh3G6QnTzO5hPZzhWYSthOiRlcKyjAUrHS5gE\n+jVN8+hCe6o+wM+n1Jf7BLHJ7kEDIU3Wez414PXXV/jQR7Z58swWu+vLjAPdBSmZKd4k4TOXXyOS\nNr956nMAJK0a87c12diunGfZvcREKaK0jBKC/FaAkcON1lnmJ7fwMsVC5dsElaMVVzN2SO3oDmLl\nc4Ceh9dIZR0zTTGDFHc/pDrS2/SVUx/jhdsvEV27QiJ0qCTuUUHjOzFlJyYXBlYW0kPMQnww9DzP\nXppg289ifOBZmuMYbhZBtkFKInX3p20YvFQ9urkn0qRhOzAFVdh77LpNTk93sLvrjPffQBgO9aVP\n0w3fhBAW3YytWJEXxMo3U2qGweUk4+Zkm9XbMeJjFdQ4pV8xkLnAwsGXIUM1JnJsjEC7QdnLK5hF\nRzJZmUM6DvHGOnv/6DfwPvQ8gbpzRbs0nbAZWiDATmImQHScGEnJqr/Mmcopfu3Vf4SR6ufXrJzN\nTHH62Qr97jxXLu3y8svvEDbCWWD33fi971pMYhtztUMi9fG81PTYPIg56A9prOgsFImWXU2KCvnm\nul4YsIqUilEQk2Y5G1sjngCyQrIxV3e5rcVLDLrBPfKgQ/v1SfjepMv/JKLT6fx7xY+/ura29gq6\nW/XFH/Xn+Nhykz1rNJsxypUizRVhUTDZUhDlefE3LdvrRXfuR8HRQD4cSdgOs01O+S5N596C6Og9\nc/pRn+uDWyiVU7bLTOKT7x3HsVCeZ2ei1QRL/iINp4YQkjTXn28n2MO3PFqlFoNoyCAa0vsejJYq\nVb1oeDi/eBIswy7IXjojVcCJJAh4KKmqu3X6oT7v2t4cJbMEKPrRgGF0b9GaFJ9tHI+5Et+7kPnq\nzutYwiJKYxxZwrDAEAa2YdOdanVJnur9ZRZyZ6UU0TBnyoBSTV/TBuGQZKod5rJE8faWTX9/SoU6\nZ1bm6UY9tg72ITFIitB20zQwXQGhhW95mNLEs0rHJHRazm1ISZbn5GjSLIU40d30OO6XY/kgmKaB\nZUuSOL9nNudBKFccRpMAUsE0DelFA3IjRmYWcR5jSwfTkgThlGV/CaVC3KbDOB9jhA7hNAZTsbI4\nR7NaRQpJnCUnZg4en8kzDEGl5lKp3b8LcpJE7pB8KaWJWRSmdPcnlH2HLMvvCJZ/EA4NLZSCheUq\nQkC/G1BrlE6MOojClHCaaBOONL9j3umw03W/XRZOE1SgpZOHj4mzmDfeuY4ttX391sE+tmHjGA5m\nSVEpl2k0vRkpPWkb/DA7uYdSTlG4lHwv85M/LrzviNVPM8bF3IVvl2mVmjSLbofp66HB9lKFnY0h\nSZzOiNU3tl7BmfqI1GBhuUowjlm/0SOO0nucUN7sjgmK1vL+NNb5CGmOV7TfVfno8dW2h2NmRJGW\nAu5Ox9D2UNUuiIwJJgp4UcWENYF17g3cSglLPMP5ls+rQB5npLlexSqbJSrjo0F9p3dA7JqYuaA2\nyghciTkaMkmmICUq0Rehxmc/R+OznyP7u18HQq599BmEITn9lUugFMnVy5SeLcJfDZe4muO6Rytn\nNTdi49Bu3cgJpg5eKWKlOsRo29hWxuu3Frn21kXysoU8+xqPXV4jmi7xpSsOf/q5DmdObXH52lmU\ngkYporGt54ucPOZ8FKBqdSaL88xdfRGAwKnjOpKtNCedClLHwQo1jRnZCxjWJt52zLSUAkc3slq3\nzcHiOuNjWRdVdbRKpwQI26W+u80LB7/Fi/1/A6/Yph1rgWdMF/PyZSaZHsbOXGY5WzU3whNDYqOE\nnU3ZMFxSQOYJ05JD0PrncFDBsZ7W28q3kQXRlkEIPvTjjNNlA+yjG9NgK+TUeQcGIAuHjRu1FV7o\nvUVj/Q2y8yPKrQ8hDRfDWYARLJZSrqTGrGNVtVPqRRfmmgPnRl2EWyfbj+hXDMxMsp9n1KVgkIYM\nfI9yEBCZkPgODhk2MVHZ5/xf/Wts/e1fZfLatxls3CC76xLnhlNS0QAUVlLY9JtmUZEKhGmwXF6i\nWarzy/U/y++lr5OLjLrjQpDQS3t85gtPcuvGPhudMc35C3gXjvbXNA35q9/6FSpmmWvrZ/HslHzx\nBsNYrxWtzNf41jt9Ng6mXADSOMMGDN8hG+tjZGNjiM2ROnEwibm5M0JkOSBJlJ4ladXcGTnud+91\nY5JSFNbtj4jV3SjcAVeB651O570V3J+Aa92buHkVSx4FutqGuMMEwOWocKnZJqe/B0VLlMUMoj4H\nUxNDSiZJQKYydie6GyOERN2VqfNuSBUwI1Wgu0aHnaPj6Id91kcPbgRmsSJLFaYtkOZJXS2LUlZm\ntJNRccpYUku7/IqDJQxKnk1/NEG4GZkVk+QJURbTchvkKmd9vEXdqVF3apjSIMpiHMOmbJXJVU6a\nJZjYZIliMoqoizamJamUXaQUTIME36qSinw2dG8U+2cQjjjYHyGFZCoCxmqAb/l0B/p6HA6K+A2A\n+5h3HOJwXziGg2t6mNIgnyjCLCTNU5Iif9GQJqmTkoaKHj16V4+T1aN9maYZWmmcEqYnE0rTlXpe\nbXqXW6KlCZwhTbL85OuGZVgIBCXHQWUC4Wbk5ITjlMfPrdIT+xjSoO7UUChsaQIKVwhyJYmymGkc\nESYhMfd2uRzTIVM5gyyBY1GIemnq8Kpoo5cPMkrYRBxgV0vsDrsgAW/EYfLsjemIG3dtBtd0cU0X\npRRxro8ZvVBRSO+EoF2awzghwPt+OCQTQgj8qotf1R2y+6HfDcgzhWEKqvXSA8nI3MLJBgtCCNyS\nhe0ajJMJaRpxql3DkhZhFhGmEb5dZq5V5sUr36G3P0GaAtMWTIcZKgPb026HhiWQFiQTRSpyhsN8\nZml+aGzBYTlyVR+3DbdOd9rVjxMgc0mmMizDomS6mL6i5lSZq9WxbZPcTHlz/TJ5YJCKBNfTj7NM\nE3tcwXUswiC9r3QT7u3YzS9VqDU8pkFMlmlDDJTu1uW5wnEtsiyfSTArVZc4TgnGMZ7v/ES4Aj7C\nD4DDXKpD0lTJmkxRPLGs48AWV2psrw/Z2RxR9nQHZRiPaA303xvLDk7XZP1Gj95BwMJy9Y7Xvz05\navcOkwyzMK4oF7bMUc2eJaucPtfgdi9BZiYqytgJEpxaGegi3IAgqREEMTmQBd/CbG8QAf/t1/9H\n1rzngDnyKCMsAoL//FPn2PkXU3IhCP0qlVGPOLQQSuGFOdstk9JkRDqIsNtt4m1txGEv627NOCsK\njuJEX79wjmff+iqi36XiJCgFseEynVd4ztHFuuLEjNWsbqbbr6KMHguVCXJBf+/b/SomMMwVcSlg\nWNul0V3h1l4TpWCu1efS2waXtlv4dkI7OrqhVbOAYOEUwneoJyMSYVA3DpBCMEyF7vi5pRmxGltL\n5KU3OLUdkxxmTMSK2jSnvV7mYBGGEdqqCiinx+y2PRMhJM3uDg27x7wIKBcywOj8AnvxGdz1DqrI\nakrdjMJVgrqXYwQ9JnaNuWCDqLiIO+mYiVFlkzF2o4qUPnmaIU2DuaY+PoxhAD4Mk8KJzDladYwG\nOW7hNlgiIAT2L1wgv/FFynu3gTpmUCM52Mdy6kxSk5WqQOViRqyado4nBHUhuaRyPty2WAQGcU5S\nlog8ZS8NqRX7frflsrwLOy2LyUGHF/wP4hATYiMdB/fsOSavfZu9rXUwTt9xDlTjCZWWBwcT7KTw\nMjQNdOKhAEMgAgtKcPYxF/kVk8xM8S0PGLEX7PFE8yKyHcFNi9buWZQaw6f067+6+zrbkx02Q48o\nfpxnToVclWrWjT41r8/JzQPtfJSnOls+KhwUq57F3t6EFY4uzq988zYt05gNvUdZju9Z1H2Hw3rh\nYO/korjkmI+IFbC2tvb3gF/tdDpfL0jVd9Bnx8La2tp/3el0/vaP8vNsjnYZDW8ihKRi+0RZxMX6\neaIspmSWsA2LnWCPKIvYDfbvcFOQ0sAUBvPeHBW7Qsl0mSQB3bBHlMUMo+ED3lnjkFSVrBIl0wUE\nnumyPtqkZJU4UzmFb5cZxWPiQvImEPSjAa7pEGcJk2TC/vQAvdot8MwSjmFzUHRk9PENk/2MZJpj\nGRa1uoeblwjDhLLh6Jmu8E7JXDUpIY/JlmpFDX1YTB2aD9xp7WwCJiYlBuSYpkEtXUIBPRKOyE3I\nwEmJH3BO7G2/O4tpMMkBC58GuoBeOOxklCFMI3aDPVpuk7Kt52wylelukTARJhgYR0XrPTjqipR9\nh8k4YnmlTjcc0Ll1A6WgWi0Ri4iVuXla5QYHkx526jLJAlQOspQziPv3FO2WYc3Cze+Ph82v3UmK\n7JZgOy8MNjMIvs+czSi9l2z5ts84HlOxK5yurhCmESXTJc0z3u5enj3uULbX9uaIsohpGmJJi0xl\nd7xumIaz2gRg/YSO5mxhQAhsad23g+qabnH8e5RMh6pdwbOO9rcp7yyz0zwlymIqdQcp3t2cXphG\nBGmAZ3okeUKn+w5CSMqWd4/s9fYJz69EJcI0pFQ/Ior+3Mnlv1MROBVJc9GhXWqxG+zPvnuWKMJh\nTjjIUCqfdV8Pj+HDUJokS/TxFUGXMdc3715kKcYOhhGD2XF0wN2wDIuaXaVseTOSmxbxA4fY3Rpx\n6/a+lgAn49lxLYSkXWoRTWKabn12zo+OmU8Fk5jHn1g4cTv8IPiJJ1bvBdt8L/GgzysH+qBcajZp\ntytYkYuopPzZj/9RLMPiiWeWeO2l2/QPAs6eW4Q3BAvrj9PaOUsucpaeKJFsOrzxygZplN/zXntv\n38YxJE+3q7y63adczGXML1RozflMJfReaGOkOb/4wjm++jsxRmaTxHoA1Iw8UsCsRYy2c1IUKs1J\n7Zuo1OKF5ie4lb3Jm+NvYS4+ThY/yzgLMaXJU6cX2B8PmXo+SaVJffPILtoLM5S0sKI+IlL4Tz8J\nu5pYLT/3BHajQq8wIfjM7/8rXv3EH2NvcYXYsjFUylw5IJjYCM8hdjLKMmESW5TtBN+JCXWSBZDj\nn11lZzPmfGtAtqIJyMbA5zQQpDmZNWGcGDQALzOIE4OyN0UIxe9cuoDvT/hActRF8pIRl9M20pbU\nkjET0+WDwVeAZYJpMYhbLUFfk7HAqhH6HhAginDmX/rWmFaY81amb+i9g4yp61ByI0yV4CYjQqtC\n5OvTtdndRTiShfaI8rcH5EIgz7e5nj/BqfUObuHgN9y9QKmsx5/OLjV460VFYNWADebiPlvuHE42\nYaoamImN4esLzPhqn+pai3JZHx/GqNCKF1K1hn1UlCwtlqgWc1BlMSEEEmXQt3zqvQEqq7PzV/8O\nAOf/zq/zjZstTssdnDwiEREx0LRydjPFH1Jl/l9GvPIBnz8O7GTaHMQwTfZzRb0YvB0XHdbdpkk3\nWucPVz6IS0RfebTbFcTFsxwAw0kw81E2VUqmJKfSPu8UndlSfEwyoXQKj7QkUaJotyu4xi5GbhBb\nEUZSBXYYZfu02xWmp7fIby9j5CZi6M7OtRvv3ABABfrfF1bLXM0glTHtdoXnhATeYGtgU/NTyHKU\nlAyLwvnJ1Tq3L+8B2o6ZXLGzN8ZGslzYW0/ijNOLFc6uNgjRcxLd3cmJ15aKZ9Mdhj9x18n3AJ8C\nDmWA/zbwZqfT+WOF7PyfAT8QsVpbW/uvgP+k+Of/0el0/vK7eZ5S+YwIvbn/1rt6rzzPiMke2hG6\nG6uVFaIsompXqDu1Ewu6xfJRkaGUomyWMRKbcTdm2AtJ04xBkTm1tNrmVHuFNNHuXNNpQnd7Qq2Y\nAz1E0+FY8q3+j+3cX2Z1HJWai2kaxHGKlGK2Wp0m+R1B3XfjQZKz+5Eq2zZRKEzTmL22aWn3t0Nj\ngQfBNA1d1C9WkIag5Fk8zSpSSqaBloZ5ZfseJUme5wx6IZWqc6K86jja7QrlPYdTC/Mn/r3m3nue\nK6WIshjbsB4695XkultwKJfLVT57vmeVyFXOMB6xOd6m5TawDAvP9AjSgG4hpTyUVFadCr7lM4iG\nBGkw60KULI/5klbjDOIh894cEokq/ucaLoaQD+wWlcwjw4QXFp+fbZu9vfuT4kMZo+5SFcZcWTIj\nZnW3TtnyiLP4TkmpUg+UpR4StHc7w/cwmIZF+lDSq68dd5Oqu9EsNe7IinRNlzNV7XRbtrxZVM+D\nyN3xa8IhxvGEQTDSs3WDhJXlFremt7ClTc3SE8MnAAAgAElEQVSpUndqHByM2d4/IEsU46K2IdEd\nrWapQclyyb2IXjDQ+V+hhfRTpAFuVR7lvjFiXITkhMOMZKqIJzkVzyMIC8JXdFelUXQNpcD2YMAB\nli/ZUxOQEI1ybNdApia2sKmUf7jumof4iSdWDzqR3m942Im/09MnQDaVbG32GQ1CVs7U6XdDIMSr\n6Ivd1bd3WX3mPM2d07S3HiMXGdunL7E1nmO5dAaA61f2WDl31EfPlWJ3EtF2bU45Fq/CLK9KmoLr\nm31yBWfONvlT5+bJxxHjaIKpysSFfNANPMaA30jobetIx1LWY2hFZPvLPLXyYf7M4z/PX37xf2G8\ncpV88zy9aYBrOOzuDhHDAUFznmnkHO/wUwn06//eRyv88a8OUY02o5dfwqjVGaQmN67tEhehj6uX\nvs3mRz5Lz7XYWTqNrzI8O+X2QYtROcMhxpQ5G0GDsn1AzYkJgVwJDAHdsWRnVOZ8a4BxvkyUGnQD\nl3NAlGSkWcjBqM0poILurEipKJenyHGJ9YFPIxlpWZ6CUjrmZulJKirEJGdkejQb+mQPB4X5yEoN\ndXsT89kaVpyy71WAfezie3ubIcoU1OkhU5ORpXjj8ik++uwVMAX1cJdtq8K0rPd/vbcPvslcc5s8\nCkikS+PlXfqnlsilxCkkKNO8zHPlKZdqB7z9zbME05y0yFs6Fe4wsH3UYQ5T5CHrqyiVsyZvsBlW\nsUoFsRqOgRLjRN+Um2Y2G+hYbSYkof4ePkMOgDzO2XWaNMcj4utHN/Lf/uplpm6b0+ywJHa4LWMC\nBCWhu4VPT0y+WhF05kw+pxSvzbch71I2PbpZwOliXmRYEMz9mkm3e539vT0cEZMoyebOgNQqE3g+\n28PxjFh9cPgG8196ncY5n0kx1GxmRyuqQmnrfGFKrlzbZ3HRZ7S/icwNMBNWlJY73djpsLc34ra6\nyfDDb3Lm8gtUBvOs3+7huCaXdq9gS4tgqlewl5sN2IP98YC9vRFSKRwTdsZl3nnzt7l4usft7WW2\nRiEmcGHeZ/uyvqmfPdPg0vWDQ7d4bAQxiiTNqZasmeW68kz2d8e8/d2te6QnliEJwlSff++hg9lP\nAHFLOp3OYWvgk8BvAnQ6nStra2s/kE/y2traF4A/BTzd6XSGa2trpx/2nJ898xH29kakecokmfJO\n784sYcvQ5ghCSFqlBiXDpebUyFRGmEZcH9wAwDbsO4q+xfICTbeOZ91ZMBzO12SZzqtJk0yHoEpB\nmmSkac5oEN6TR/MgnGQm8G4gpeDc43N3OJQFk5iNmz3aixVOnW6ytdnH8+137WKmlNLOc5YkS3Md\nAJzl9LtTpkFMtV6i1tDF+Pd7HiRxShRl2LbxwMDRk1Dy7Jm19N2QUv7Q7dOPQwiBex/n0rth3dVd\nkUIXuJ4szf59KK88Dtd0aLonm2su+4sn/h6g7T3AU/uHjONSvUM3ScewZ8TsOM5UT6GUIslTpmmI\nbZiM4jFbk11OV1bwrTK3RhskeULVrjBXahLnCYNoyP704KHdQCkNLGme2J0zhOR+/VTbsPFtX0tb\n04i6U6fmVB44G3e+dvaBtef3cz74dhnfLvRNBe9q+M/c8RhvscSpxe8vYSlXORvjLcbxhElypMZw\nqwbuTIiVYiMxDYskEQgpWPIXyZViZ6LHNU5VVmZunwDOod0yGTBlxA+HDN+N9x2xWltb+6fAx4G5\ntbW128Bf7HQ6PxUOgcelgMO+XgU5bmXpuBZz8z47m0PK0qe9e45cZix9PubSzi360YBnF32kFOxs\n3SkHGRW2uC3H4rSvX9OYprP3GBbFZt02cQ2DJE+J84QazixM2AvLjAGvGtFDB5V6Smv281EDo/js\nf+KxX+QfdH4T1XqZOIuwpU0+mSCzjKnnE43vvIksDUxeA66econNESqOSHs9/A+/AMCXN7sopTBU\njgBODfd4y11me/EM/lAXvIPAY1KBqtLbMFE+Kt6nbGu5otLjKey9PcVRR8Xn5sDHQgcdxijyUYME\nQYjCBywVAxK/HOCOS5iZopoGhPM+zv4ENxkTyTKVYsB5YFYQrWJ1padvNGK1zO2f/xQXn7jN3Hd6\n3DZrKKAUZBgZOJFCRQrf6mFHbYLSGHW9KFpMwcceN9l78jH+7z1NvBvdPcSciykmiGzKxK7hj1Ky\nKzkHrUXae3olu+RHZJMy5xPJJM5Z8rc5c+UNAFbCPXa8FkkRrmxndZRcIEt3+WTpMv9armAVf8uS\nBCgxykwypWgYR6u3K7WASOrt2VR7XIsyplsTtheXeOLKTaKv3NaCEkvwre/eoPqhJT7Cm6yJV7mh\nUkyhLYwHeY4xUjzRMvlGnvBGlLKZhxiZw88t/yy/d/O3aBfzDX2/6JyNUjrpgM3B9dmC+DTNeU2W\n+K1f/k9pDY5mP7xBj/mdDawXPshoK8UgL2bcNITKAAtpSjZu3QTOEk0HoCQVO6Pl5FhT2Jt2CZIp\nw3hEzakSO/rCPB6FjFVCPxrw3NzTfOeKTQIsLy3jdt3ZzUEKwWq7zLVtxaT7dZ59UpFYgpevLtEC\nTs2VZwKcj378FP/y+gGlmstklFDOFYOSCdOEc0tVqmXt7DV2TPxxwrdfusVnvnBHJjuubZDlijjN\ncR6yGv4HHOHa2tpj6DDgXwD+EsDa2prgmNn+94k/D/yVTqczBOh0Orce8vgZTGlScyonFnf3Q9ny\naJWOitjJONLukAqm3YwNRpT9GMOUuCWT/Z3xA62aH4ZqvaRNAsYxlZpLybPY2RwS3WWKcpgh016s\nUPJsTEvOZpIeBq9sc/EpXaG5JeuB9skn4biN9eF7GoakvfjDI/yWbd5jHvAIf3AhhMA2rFn3rmSW\nmPeOiMJj9bN3PN42bHyrzIp/ZzxvrnKkkCR5SjfsUbX9Ozpu03SKKa17SK0mdslDDUX+IEIKyanK\nyn3/PkkCBHqfnEQMT1WOuuYL5aPu7ijWESaWNMgKR873Au+7q0Sn0/mTP+7P8OPCcWLV39I/15t3\nZgQsn66zvzvmrde3sEKPuXMuz69e4Is7X6IfDTAtg/ZShd3NIcEknhlTdCPd4m+6FnOFDbOc6Btj\nrVHiZmEWUS1uHIeFoG+W6RfW1uVQEyLD1gfjGIWdF8RqXCcstKsLw7Pk/UVkXRe2QWIQdbUWd+r4\nRNGdq107Zz/LqehlbjsBvaqB/eUv6ff7wHMM4pTLwwCR5BRdXpZ2b8H8MttLZ3hGHgBTgsjmgJzH\npV4BEmYFYkHZ0d9rGtpU/CnJ2GGUHOUc3ejVZlVVAuQ39KrLBGghEEUt6pVCHKFoJPq7B24ZtxxR\nCsaIWFAZaiJ0YFVhPiZVivBgGXxFkpjs9Ns8LtZpz/WQXZ+8ZlIbZtiROctfLCdD7OgUYXlENdRd\nC2EZpDdu4n7YIvNNRJzgTidcEib1DZcFlRGaZYRUPHn6KoOsNSNWN/IGGGDFJexmzsX0uxjkhNKi\nHfVZiLoknkXqGsjKk+RCEE1vUv7t61R+4SlK54tw52K2Ks1tenlMJdB2VgqYs3rsSL0/t3Yl/Ws3\nABv7yQrcltjTCOPZKubPtvjk7tv8Lp9jP/Y4ZwcEcYArdAE1VQ7Z3oAnLrp8I0z4nSIRtb3/NM8/\n82E++cmPcnDpr+MwZehNUcDjNyO+8VyFy/vfxUWbQ0zSjK8WobsH/tFN8OXeMueBvGrRfyfGMlN6\n/hFBVOqoSNwb6nNvOh4BPnU7I1WScm7RJ+E3L/09fRyWFziw9Xv9jRd/jX1/HYCLjcd4I9wHkRNb\nOmducmze4NRCjatbE7Yny6xWNpgU+qgKgjzJqZcs8mmCKFmYhsAoWVwbhDxZsglsiZPmfOaFVQwp\nqfsOu3HCSqPE9cv7s9X6Q7jFynoYZz/txOp/Al5BK2Nf7HQ67xS//3ngzR/wtS8CH19bW/vv0etN\n/3mn03nl+32xJM5IkkwbKrQ8rLv2W5bp7tJoEJLE2T3Wy8DM+nrYv+dP90BKPQCfpjmWZTC34GPZ\nxj0FS+vY4vPp8z+6TsMjPMJPMg7ll5Y0WfDu7eAcJ1nHId6FS+NPK8rW99fhvdvB936Ovj8o3nfE\n6qcZx4nVra52Xqo37zyAVs7W+c4r63ztd7V05Plnz1Mvgnn7oS7uLzw5z87GkDe/tcFHP6WNLa4P\nthiOf52vXV3F3PsCKlfIIMG0JJ5v09/VK++1gliNCoeomlNmq3jvkjKoWnWCvI+UgkmusPI9hDJQ\n0zI339rj4y+s8tXfvUJuvkA6uIJ1+m1yMebb71ylDUR2iYs/9xz8oy/NvtP2/AJnFz7O7Z3f4+rZ\nVYJGiWdWl6h+/Gf42v6hNjfHKgpGd3+TWm+ffmsOa1tvszC2MHsh1Vsb8BQ4bo00kJTsFEPkTEOH\nij/lrdAgynIubLWZa/Z5bWMeC4USCkoRKtDbe4KiLRXS1u/plUJsFGdjvY37Zo1WZYA1CjHSlPme\nrmC6bg05N2IvNCC3sNsxwbTEcOgTZgbtVg978xRRw8IbpNSCOyUa1ZHBsAlpvI9STUTZIrp9C2kB\nJRNzf4AANmXG5HKNBWBo+qhcsLS0y2vdo9WZS1SpklNGMCrts3pNcg7omxXm4x6y6XPjkx8nNzW1\nzPIB8eQ2E6PEue9ewn2sRaYEUbHYnUiXbhJS34xIgWFZMhfuYBkXAXhjp0UW6mPx3OIEUbd4oyHZ\n+mCZ7WGA501ZYIPf2XyMT668RqJylo0EcLCdJsnOOgvmKudNg2tphmeu0Nw5zcHuhPmlJUbuHGet\nMR1idhsmC72UBXwm4QGOpdVXb3RHTA4lckKikgxpGWxENRJhELklslwh6gdsN3Jmt7QsgmIAfZRZ\n5HnCZDQGfMp2wvU0RyYOsZOwPdDzga7pkFiH8l39dNdweLa6yj8MJwgn4J3+VXy7zMZoc6ZlX2nr\n97nU/Ril5ItsjzW5rADTSYwjBEPgW509Kp5NfxwRApXHW/S+u8PyXBm3OE9bNZdrG0NWn5/nu69u\n8pf+969z5lyTP/f5J7UEqDDFCKOUWvmn9ybd6XT+wdra2teBReCbx/50BfgPH/b8tbW1fwacxCb+\nO/R9tNHpdJ5fW1v7FPCPgfMPe825lk+Wa6OFfjdg/ca9luTd7aLTaQg9h3AMtmlim+bs76fONjEt\nybAfMp3GjIcRtXqJQW/KuYtzM5OiQxwOnIv3oX3xT4C09MeGR9vm/ni0be6PR9vmR4dHxOp9hEkS\nIIXENVz6heNR/S7t9erZxiyMzrINzjzWxLAkUsjZ8OiTzy7x6tdv8p1X1nnuo6s4rsWruy8BCQfZ\ndX7jay9hlZZYnST4bR8hBP2osDcvrLTHRWfGpUQIuEDmWSz583R6l7GrinCYMcq72EmLAMlgb8xv\n/O1vMolSjIpDsn0Wc/kKwkp5pX+JPwqkboVnP/Mct974APGVDiqOCTyffjHv8sZzz3LZ/gDtcwus\nmCaX+hPtiJUp7JIuDJP9PeZ2Nxk05jA8A20ra1G5PcFbLEJn3Qbh2MQipuHEmEZOnsNm7LCWXOPL\nr69xQ+gMoDUgsafIuetkt57U3x9wjrkLum6EDaxGuvO2Y8xxwd9EAE4aUNvTv3dbEimh19NdnMpy\nQHBNu25tpyXOumNa0mDQsPBuTGn2c1IJRq7zZ1r9jPUzsFOzeXqUcsPN+covVHihdwlhnMIbaaKp\n5DLLO7rATxv6GHnz9hLNx9xZ2TiRTmEKqGBjjvVJnXPcpGtVWYy7dJ9+HCEV3lZAxoi9yu+iUo/X\nFp/kI5vfBXwiZZMWVshTUeEg63Kuq2c6ulWT9qiLicIAfmF1n3MXd/nGzWVWzD2uLbh88RlnNgvU\nzRU/k/wunzjt8hvFinpN6uJutTIPBzEqVfxJ32U3y/kX6g9jxPvcunbAk88tYdktnrHX6SQpb593\nWfjWmKXYpeSNQESg4MVdTXyb/R269QWyQBOrPBfs1uYgPmxBjrCC0iGXwgkmBIXefyod0nCfcKKP\nJdtOuJpEDBzd1ZoW9a0hDFJLf49PNH+GC883tTzw4DpJamH4Pb65fYWmWydVGUGqu1enijmo7e6E\nER63+xV8V+KEisk4Ig5TEgQvv71LrWxzuwiarJVtkjSn4R8VyPP1ElfWB5SKzJV0EvP1N7f59PMr\nXFipUSoI2PSEsMyfNnQ6nRvAjbt+925le78MnMRAAmCdo5mtr6ytrXlra2u1Tqdz3yGkN1/dODGw\n8xDlisNk9ODAVce1aLQ8PN/GMCRhnEAM0hKULYdyVR8nrm8RhPFs0Pv9jofNIv8049G2uT8ebZv7\n49G2uT/eC8L57gTQj/AjwSSdUDY9hBB09wOkIajW79Sam6bBxz99HsOUfPzT57FsEykkTbfB3lTL\nxyzb4NmPrJLEGe9c0p2v7fGN2WtUVw6I9kKuK4VRPZQKamJVL6RD46JjtX5VC5VKQFyxWCmc44xW\niPSGKKFQkxoVz6JScZiMYqRrYpT066hiiH/X1pJBWdZuVGf+i7+AUauTOR7kgm6kH5/nmmDdHE+Z\nphm3RlPcSYpCFxLm3Bz5wT7tXT2QmPv68wsrxx7FeKUiL2o3Zir0ay65MSU3Is8lCvjw2S6hSgHB\nBbQEK7ZDjLkNygyoZhEBYDu6EFGZwnUjWtMeZ0ZXyZDckMuIwkTBklPcvrYKbS7oAna4vUhuD6l4\nAeNJCSUybhcL3svlhIPC9vRD8RhTHVVsp4sA6I15h3wv4feEYmfO4l9Pfh+ARl8TuNXpPIvja+Q1\nh7kP6NM4iM+y0tzgmz/zGb78sc+DEMf8uRT1RF9YD2w9/VkORjw2fYl6Z5fqtR5KBajU5nV1BicO\n8ZgS4BIVXbv+vsmOylEj/R17FQM1ybCmW/y5qscnF4cs18b8yWcvY8uM7z6u+0FfECb//v9zgKUE\nb0a6g/h4IW/ypSBWBkGvCRnEYzCEoGl6mGaJdqvM9cv77GwOkYnDOcvAVAZXVh0U0AygLEVB/wsr\nctNgapVQWY4oHBJVltNttNgZ6O9imhGtzSO3o+roSDMVWzbhZIcg0IWtYydspPmhoRk7hfQqVzmp\nrR9TUTUebzzGgtfm1qY+NheaDpuTbQ4vszuBPhdXi45VdxSzN/IZRQ5n500Egr3tMSpXlCs2WwcB\nlinJDmccCwlv9VjnabHoaCdFN9crjqTXr+hrQcnR23kavftgzke4F51OZ9TpdIYn/D9Fuwr+EYC1\ntbXngfBBpOp+KFccTp9vceHJeZZP1bn41AIXn1pg+XSdetOj1fY5e3Fu9vvT55tUau67nmN6hEd4\nhEd4hPcej67I7yNM4oCyXUYpRe9gQqPlneiK9MyHVvgP/sIf4pkPHQ33LZUXGCeTWYbIxad10Xj1\n7T2macg07ZGNGkhlYrf3cUoGXeAbW0O2uwH7UYIjJe9c7/I7L99mf1xInJLDjCJBXLXJ0EPTshog\nfV2MTvsVmhWXz/+bz/LEBxb5yGcvYM6IVQWhHIZuQCah3NZSNaUUWb+HqNSxhzGT3C1+HyCB9UnE\nlWFADti7U3IBjmVQfvoDACxsF2kNRZFZLY0AQbk6Jk0Nrl86oGTqAnjRC3HdCCEUvh1zbnXCpNA9\nCwECQSNx+M9qn+c/vvrPOe9bKEAWHas8Urh2yAe3voSbTXm5/iS9zANPf8dGdBlT7ROZJmfmxygF\nvV6d1B/jqIjxpEzsTtg1tTvSQnPA2XldELenEcYHj2bOVnq72KHHXiulP8o4KMr5sRiT52NObV0l\nR5AfFBlTz1aptzQZbRkBVTXi8jMf4PqaDvptF4V2KYt4enSdSJh0LU2s6t1d6uN3iJ0AO/ZAgUps\nRpZH5hpYIiPA46DZBCAIXQbbVdQ4JTcEl5ttklGOP7hMw5C81HX4v771FEkmiDO4ZefUgPP/co/y\nJKN+4DJSiktDF7eY36hKSYaB/MrrAGyMNfm8qVaoWAY/+9mLKAVf+pdvkw8UhhC0ZZlx2aBfMah1\nI3wh8MRRNsV532Fa8kknKcLTq/Z5qthwV3mto6nm6Y2LVLpH+ur2/t7s58w16e1cJypkjW4p508/\n/cschwT2pgckRcdqMtYkPM8Tbm3r8+IjZ/XcV5Dq/fPPrvwrADzXZK7mMgoTtoZ63u9sO0MI2C6c\n1laW9D4aT4/cpQ5lfRXvyGvh9IL+DrcHUzIUNUNiSMFbN/X5WzqcsXqUZfVe4leAc2tra1eAvwP8\nOw97wpnHWjOCNCNQp+o4rnnPbFPZd2gvVmi2y/fMWz3CIzzCIzzC+wuPiNX7BFmeMUkDfMuj352S\nJjmt9v0H6+6++V6o61mqv/ji/8zfeONtfuXaFo1Fn63bfa7v6aH6fFzjnHeRUdynvdynCfQnCX/l\n773Czn5AvjXhf/unb/IbX3yHf/3GVQAaTT1s6QHZnMu3DnShJpwesqpJXNyvU684tOZ9fv7zT1Bd\n8DEK0pGHZTxVITdgp2lz7sxK8VnGqCTBbDRwBjFC6O5GrgI802AriPjSpn59Z39KrsCxJINPfIpc\nCCq9Lu50gizpQiOYlDGMjIo3pTfyCIIy47EuWk83+wgBUipOezskE0V8OFBaJNbfCD3+199PGf5H\nf4m9wlDBdAvzhtjG6k1ws4Db1Qt8be7DTIFJpl/fLG3gT2MOGoLV+oj+uESamkzmaoggJcsMpt6I\n9XCXKLZYmO/SatooCflBjPnRJqJSzEqQUBnUycycb7r6u7nFkFOabHF+s8Ng8RSlULs+pnMuZW9K\nuZyyuW5ztVsjznuIkoVrCmwENhBKm6xscau0yKhRdM7Wb5BECbETIHMDM7EhM7GqLtGSJnsBLrvz\nxcBtZnLjxvOoSQZlg41qg69lj+PJhLfjlC+LA97p+/x25xzbeUYMnH1nCj1NDuZ29Pd5fWQwKjJN\nqlJgq4TTNy4zKVf44twv8FL6Ab6cfRjfMlk+XeepDy7R2w+4+tUNVK64WORo7Sy6VLYHVKTE48gc\nomVmICUijBGFjFFlOZvZHIHS/64kJYSCxqUei5c3qY2PLF1VyeRg+zbTUJOySr1K1bkzbHvOkGxO\nthFWhpSC6aSwuB90uHGgj4uPXThPza6wN91nvjTHtcGNmQ3v2aUqmYJbgT7WTjUCKrWj7vSFc01a\nVYfdY/bXtnlIrI46VucKAvY7L68TAFamODvvc2NrxDRKKRVkLHhErN4zdDqdsNPp/FudTudCp9P5\nUKfT+drDnnN8Xz/CIzzCIzzCHxw8IlbvE0yKVe2K5bNXWKW3l9699vNnlz/GRxc+jG09zXZoMExS\nhnMOSsFb39UucWpa5QuP/wICwUHza9QWbzH3ZEPn3Lyyw+3v7lPxLOplm16qZWNGkVfxS3/iKb7w\nzApSNgCLVK0jqwfkgQ+Jy9Uk4jsHo+K7ZJhF5pIKy5wu6cL81kKFx87pn5OiQ+AsLOD2IoQwETgo\nNWVczORsT2OkgijQ//Y9m1emCqkU0dIZVrevYZuZ7hCNajTqA6SAfqy3261d3WlZWigc9gR85OZb\nrP9WxOEYuPv/s3fncXJVZcLHf7Xv1fvenc5+sidAgCAEiCCMgqCCoGFwxW3EddTXV2fUcWacGcVX\nHXV0ZnRcUFFZBNQREJB9CUtCIOmc7El30ntXr1Vd633/uLfTnU6vSXdXdffz/XzySfWtW7eee6rq\n3nvuOec5hnnhmTbSpDMZfvDAAY5FE3htEAiaF8s98QCZRrNFxLVkBUHMDIL7+8yECeVdKewGJPNc\nOOwGHe2FxPxdGEYhyYhZDv2hXvoTmj7rYj1js9EVcmB0JMABvr9WRK9eytNXv41Alxn3q2Vmpa8i\nYrby2aL12DMZeha9jkDCbBVxFZozt69eUYcB7NmximC7WUkt9KUxgABmIodjrkJ2hxYRqzK3V9DR\nQjQBCY/V4hUpItNVSyqaorPE/JwSCQeRAvM7YKRdXFWchlgaR9BJ2NlD2Jqi5BWrK6kr0MXmJcfY\nZ43pWdgwOE6k8ri5zvFMko6ByYZtduzxJO5EnEyJn0WHNEtDdjI4CdjM8t906WLyCnzE61vIHI1R\n4zZf26oChJo68NlteI0+wvRgM1I0HjUr5IXdbdgNAwwDe8agN+Mkhjle0HAmueItq1jucrO8awdO\na+4vI5PBHnDR2+cjGjXLMb+4lLDb/E7ZMzZswHkeFxkjQ9gbxhdw0deboDkS5Xv3HaGupYjyAg9l\nBX6W5C+iJ9FLVbASA4P2frMlaWmlWSFqSzux2zJUhCInjacsKQ+yeX3lYDdAj5N+a5LsoS1WIb+b\n2vIQGcNgIHHs4kI/GcPgo996gnueMMfhRfulYiWEEEJMN6lY5YijR1sJdhYTcAY5Xm92ByqrDI/z\nqkE9STvNqfPweTeRMfop8jipz3dhs9to3p3AlrER9pawKK+ahfvOx5n00FyzB3t5htUbyjFSGbwe\nJ5+4fj1nV4axe6LYDDt7D8UozvOyamUZG4rCfGBFDS5nNYYRw2bPkO4wr6w9TjsPHWvHMAx6kins\nTjsen0EmGkKFrFnWa8Mn5hpJtJrjTQJV5Xi7k4R7UzjsPgxrjBVWi0YynmKvNU4mP+Sh7Yg51rzg\nwiBqSRteR5L+lJN00kNxkVnZ8Baswu6w0dxWQiLhxOkcTEdcaURo9JgtNnbAYXWVe+uxP/GFG1af\nGL+yLOChMN+8GO2JBsm0WS0SzhBB6zV1fbUYdhu+NrPCUGpd8La0FNEbbiPQYtDZYlZKKhfVAgme\nS/by8isreGhXDa1hJ7YM+J2rydhjFNZmuLxyO+VGiIGanwMgei5gI2VE6PKWcKTFTiDRScYGPNWO\ny1lBaVmMQPVxbCkXySZr4uGgQRyDQmvftXsB+4I12GsK6ff48MX6iKcg4TVba0r61uAtKMBIZdhf\nZJZR4HgraZs1Piflwm4lQ7CHnahAP6vL22jpd3Coz4nfBltWaQLufl6NgZF24HUU03/2pSTtTkq6\neyEVJuXvpjGdxgX0pMIYPeb2w+4oWyR9deQAACAASURBVHY9T7jQ7O7p6NvL8V3fpb/zWa5/zzlU\nBBPEH22ntWsJNqAl347LaumzkeFa+8MEd+3mGW3uT3XPcWzpDNhsuJ12opjTAnryInSfv4clK0q5\ndusG+vJ7cCfMz9eeyuAMuthr1NDTF8DjiRMqqCboslL02wyu8LlZ7XFRbLdT4Mm3Eg308z/3v4hu\n8uFxGmx9wwpzLKE1y/1AA3Nn3PxtLx7y267O78OejlC5wJw22+6wUVwW5KK1g/OhhANuuq1WsfCw\n7H6b15nrxV3m4TzfGGzN7o6ar+nrH3vCSiGEEEKcOalYzbDWph7+8r97uPeX29lf14JhGDz9yH6e\nvOsoC/eeR/TxfPSrTXh9zklNbvjQsTY6EylCzhjR2EMsCaVIexwULS/CFnVSfHwpyysX0FjfRSBS\nSF50A4YtQzyxk/YiF6UXV/GlW85jYXmIZFMPNl8f6ZifaCzF+iXF/Km+jb9/cT93HGjC7V6Pw+bC\nRpBU8wIcwFKPm66uGI89fpD2dvPCNhBKQtJL+FgcTyJDa/5gvIlGK4l7cTk+n5Pi7W0sDhdhECdI\nhkBDH4Zh0P5C84nXGLa9hDpacKzPw17aS1nnMfy2fnrjLtxpg6KiLtIZG2VVy/GVB3AknTS3mBUE\nI2PNuu62c9RvXogOpsRMk9ffQVHrYf7uprNZiw1VHibsjZJIOunr9WO0x8k4HES6UoSsWk+PzU5v\neLCVIW9JgJ6oh/ZImKQ7hqcrQXt7Ab5wJ4srawn4ryFQdSUN7WHiLRV0Bs3WsmebS+kPbuDlxAqc\n9jRnrTxMcbt58VyeCpAuCOKwF5FwRthW81ekDDveVB82AzK6l74HDvOgrYLny16jcL2Bz8rsGC8K\nEQPysOH2gl61Ef+qEhxeJxGfWeGLJ5PEfebnlXT6CdSGcLmBQnMOskikA8OadNlIutm3z/w8bHku\nLi/x4Hen2Jbox+aJEzXgyXQv3+2MEXckcdoX8cCb3s2eRecRC+SRn+zF6CnB5kjTmTHwZVy8ZAti\nWPOp2UMOHOtDxJxmRTxgdJFKROhqfIxM4jh0tGAPlbD3+AoKkgYtmQy2RWaFx2WD4+1e9jUXUJhn\nViyL/AaGNUbRHRg81IUL2sgPD3azPeZP4E5YE3LjIJPOcKi4lq5+N73uOAlbGS6HC6/DQ8YGDVby\nisUuB0W+AjyuXqIZg32NKRYVdvKtD69gjTXPT3XQHNMVT5stdxGrYpVJZxj45mxc2E8qEWH1hnLW\nnVvNzR+6ALvdTmHYy5XnmRWzoM9F10AmxWEVq0s3VHHzlYoPvmMDPr+L4wc72HrZMt6wsebEFAUD\nFSwhhBBCTJ+cq1gppbYopbRS6pBS6p+yHc9kpdMZGus7efwBzV0/fZFnHt1Pyura9tQj+7jrpy+x\nZ2cTjfVd/Pm+3fz+16+w84UGvHk2uvNaSHTayGQMVq6vwD7B+UViqTR1nX1U+Ny8vjxFOt2M1252\nf+tcEiLpTFByfAnrKgpptFrDnP6lFHoLSSQ1mUwPy4sClAe9HD8aoSvRic2RJhML4nbaWb6imCeb\nIthtZje/VYW1fPWCL5AXfDurNi5kFTb8rTGKX2lnz3P1tD5ZTyz2DD3+veCKE9jfQHlbknb66Iqb\n3QXjRw5jAI+8HCPalySZSOMzzIvkvG2HSBY6SbdFySTMi9hzqhu5KP8lNlUewLmpAJvNS8MLeXht\nCTqjAbyOFHmhHhq6QrQ7HRwq82IAdXsX4wicR6bR7IK349yL6PNVUI6N/HAPbWWHSFR1YcOg6/HH\n6Gnvw4uN4jIfPkcvbX0++nrdGJEkiWAAIxZly/H/xWYYRIFm9+C8URGjkO07VpPyHcMbW4xhA7s9\nTXnFHuq7XsXtLKM9HiIVyuBKeqluNCtW3UePsvuhYyz/8YO0P5EiP6+H6+MeSo4tZUGDIl0ALnsZ\n2Aw6y3spKkhgAzoXF2Ov8pLRDfS8/CI1eRXc8FeX0tQZIxNNkiguIG5L018RoPCCKsKqAH9lkHR/\nijYjgA2wp9P0+6w0rHEbAW+GT23ZzS6jl3t6YzzgKSeVjGDDQ7AqRF7M7MrW5ndgt9lIGQb70nFC\nNht/5XNTmoY4GbMrpXc9BjZ2BWx0FZXiySQpbSs8UV7K66S8oIR4r1WxKnDBsjSHD/8ZgJqqiyhd\naiaN6NzzMF1pJz8t2MyRjn6q29PYbdBUYSZpaesL8CdtTh20otqM0b98OYbDDpkMzrLBCnB1YSeF\nXjMJSyKd5IC/n1jIGr/kc9HfGMXwONlX4GZHT5Cv3v4akZ74ickEm3o9GIbBUpeTGk8Il62eDmvb\nF66vxRusPvFeA7PHd1szvHfFzW6+elcLy7FxbmWYi9ZV4vKW4nK7uPCypdQuGZwu6cbXL6Mo7KGx\nvY/2brPyVzhsPiK73caWs6pYUpXHmnOqSMRTlNvtvPPyZay1KnjNHaOn9hZnRim1Uin1jFLqVaXU\ndqXUJdmOSQghRHbkVMVKKWUD/hu4DlgKXK6UuiC7UU1MIp7i8Qc0//Otp7j3lzvYvaOR1qZeXtnW\nwMP313FQt/Lo/+4hFPZw1Q3rePt7N+L1OTl2pJNQ2EPh5jhHl7/I8gvz2HTpYjZetHDC7x1LmZWP\njSV5LMmvxWFzEHLaqQ16OdAd40jKiR07XXvaaGs2L6L9xUGuWXwlkMGTeZyra8zWsbpXGunNM8c/\nXabW8u+f2cKeuHlB977lVXz1nCW8Z3kV+d4ApX4/PWEnSxcW0tsaxW1dIGe6Eti7j+IsbWDl5v14\n6nazsM8crN3U10wmHieqNZHKtbS1Dl7wNdWZjw/V7iLmgrad5uXqisoImaXLaSefQGESHDaKFlxN\n4IY3YrNBW2cRxVaCisZoMffXt2EUuYl7oyTTTiqXXYndmkg4EglRbndSAtgW7KClZi9NajXJpYpo\n3W4Ov7AXgIqKJHabwbHuAPXNSTCg15ZPt6sQf6yTAneCGAaN/nNo91Wwq/QinnttI46WHtbv20mv\nuxj3hSm2XLyN2tZmdje8yPrWI6z+w31s2PMyAPVWwpGz9+5g1fbncWbS+F6tJxVJk7/WxZqufHpb\nS+nzhihvM1vJIrUROgrMct5XtoE7rryJhMPOhdt7uLJmCzabjerSIEYkgc1hx7UmSMeqAuxpg8Uv\nbCf0zE7anmuizWm2WHkSBs5MAm8iQspho9hjp3TBxSSAfck0rqpDYO/D6aymcIGXMmser9+lC+jL\nZGhKGiSABfVxHoglKG5L8qFwgBv8y0l0+7DZbCR9TprKzZabK8J+EkdWUJ7O5yK/nfXxw7isMXTp\nSAJ3vJJOW4H1hfgD3S3PYbO7iR2o48HSTTSlPUT7U6x/LsWHg37ingCvNRTz4+fX0dHn57wFjeAx\nW+wSHrOC445ncFaEqSr1s6GyGZXXR7HPrOAd620k5YSW684DwOV1ErMmZfVUBykOROnsTXLP4wfw\nO60xV3Y7DXEbNS4HS6L7Cfj7aMPAabdxwYb1J/02Ay4/xb4iWqPmjY6INcaq8WAHTuDC8xaQX7GZ\nihUfPCUhzYB1S4vp609xuKkHv8d5Iu36SFatr8BmA/2a2eJ41jKzYtXY3jfqa8QZ+2fgB1rrtcDf\nAt/OcjxCCCGyJKcqVsAGIKK1fk1rnQZ+AbwtyzGNq68nzn2/MitT/qCb1WdVcvWN67jl05upXJDP\nob1tPPi7XTiddt54/VoWLC6kuCzI2993Lpdfs5Lr37uRVqMZbHD2uYs4a9MCnM6Jp9Ut9Lr44obF\nbCrNo9hXxNc3f4ULq87ngtJ8sNuIFnkwgi4O6VYKq8JEloUpz/OxsWwDF1ScS1uskdte/BZ37/s9\nz3U9R2vNfpw2B1eqTbj8LvZ09lHl97Ag6MU5JP17TcBLMmOw7vIlnH3BAtzrS0htMC/k8jur+cCa\nm3l3ZgNGIsFFhRvY6j2f8sOdNNz2bxjxfuILVmO327jh/Rs57+JFlDjN1p+Yv5lYz/Mn3sdfEaY1\n4ydzz3GSj7bi3J2Hv3AVi9zmfEEdkULKSs0L173xMgJOB6vDLbiSLgKFLmw2G6mmTlIpB0ZHGCc2\nyt0tdPv7WJwpwAf8/pwtGHY7bQeP4XI7CPrN7TVEwlRGzYvUqCNAxu6gV52PWlZNGhutBXF2bryY\nvDcspndlN+cce5C+QCGU+ljkPYbXk8R5JMotd7ew/u5fUHtYE7JHsJGiw7OSHr8dZ7v5XsfCy7Bj\n0LfTjWEkOHvTIYKBGP7mGGftPIwjbScV30drcRmHF63g8OKVxFzlPHfp+YSSDtaEl9LWGaOxPUr7\noS5s6QzR0iKc/QlKXmoj2V1KLObCFmyhwWuWtY8Q1a3Q4ewmsdbNyjwvve7BVqUBXs+5JLxBKuNt\npDw+7C4/AbudY+2F5O9dyJEGs2LSm+9kydIbqFh4I6EhUye1lJmVnPzIcdLNC1nneSs+dxhfuodo\np9lNzbk8SKjyPDrdS7FjkE8X/d37MDIJDh/2cSBQzcJQJ5+8+AUSeWESf47wl/0LuGvXCuIpJ8WL\n6li2ppOIkYeNDC5rQuk1lQXYXXYuvXIZV2xoZIHLQZU198+BLjO5w+JwNV6HnVgmw+rSMImuON5S\nP9dvOkRpOMPzdS24HWZLUXEghq3HrCjaUl3EQ3nEgbOXl5xIbz7UlpqLWFG4DIC2WAfx/hTp3gT9\nDjsrhrROjeaqTbWEA256okkKx8km5w96WKxKSFqJLjYsM5OQdPYmSKYyY71UnL4MJ6aaJgQcy2Is\nQgghsujUq4DsqsKcxX5APfC6LMUyIYl4ijt/+iKxviQr11ew+YplJ03Y+Mbr1vDEQ3uJtEW54prV\n5BX5TjwXDHlYtqqMjJFhb+QAYXeIfE/eSG8zLt+QipjXaV4Ari0MsqWmiKaiIBd6fLz88AHKavOJ\ne1KsKghis9nYuuI6KgJlPHD4ER6tfxKqwWGz8w71NvI8ISJx86L39ZWFp9xRv6Asn4xhUJbvo/aS\nxZxrGOxtPcL9h+ooLilmQ+laGm7/OthspPYfoOTB/QyMmAptuoCFN23hrHiGcL6PopIgGzZVc+8B\nO4/WP0nauQ+bu4KbL6+kJ+7iOG56PUGKOgxKbrrR3EiyC5vDj63bTUefH6O3ipveuJlKj5sXm1rZ\nt6SOq86+BoCyt72HuoanSPfbqFxaxDXXXcLazo2U+UvpS7n4YZ2DvSvPYrl+grpzLqHPuRbdn8Hd\nUoxKbifpgNLrNtHx+3rCNV6u37IcW+gA243nuWrtu2lKlJP/+BMArNhyIXWhPpY5juDyluDauJKm\nF57EV1aAd2WKFeduZc+d3bT3dfLy+jwufjZCbOE69jg2UOnuwbvvKHnveDddjQ/zuk07SLQHUWoZ\n57/6NHtWV7G2ooo9176TLcVh6jr72PKmv2bxDbdgczhoaekgGk/xttctZOP6cp77rx+xYP9u8t/9\nMR54pIkrNq0gvbCTpf5VPPxILRvOWcoNi4qIdh+m68gvcPYVUe/eBMDZhUvYGTlCgXc1+f5CFvhc\nBNNxfOvO5sqQl593N1N/WHH1+vPoTfTzfLIOVzCFkYqxoCzE5/5qNT/VDTREE0RKKrAHggTTUfIC\nbgrz86hYdSudfU0c/s0/UuoA8lzE7Y209ftZHA5Qu+zTZDIJEs2NPN96B47iNJevOU5F+UKCNxj0\ndMUIvxDnOCHOXpJPcrGDhL+aUNpOod/L2gWFHGswuH5dDcZr9dQGfexo87GRHsLdu6BqMwFXgBJf\nEWuKV5Cxm9/1s1U1D75ax3NpeMW+gXeeV08yeDnb4gcByPOVUu5u5HjLWsor0/Q41uJ0NHL16xaO\n+Nu8tPpCLq2+kC8986809jXj9jjYfMUyKhfk457AvESFYS/XXbyYn/xpDzUlgXHXf8O1q8hY2QQD\nXhe15UGONPWy52jkRNdAMaU+BzyklPq/gAvYnOV4hBBCZInNMIzx15ohSqmrgFu01m+1/n4bcL3W\nemt2IxNCCDFfKaXuBUaqlX4ZuAyo11r/UCn1ZuDvtNbnz2iAQgghckKutVgdA6qH/F3NyS1YQggh\nxEy7GRhpEFwU+DmwHkBr/Xul1J1KKafWWiYPE0KIeSbXKlY7gUKl1DqgDrgJ+FR2QxJCCDGfaa17\nRntOKXUUeBNwu1JqC2brlVSqhBBiHsqp5BVa6wzwAeAu4ADwiNb6mexGJYQQQozqVuDjSikNfBN4\nd5bjEUIIkSU5NcZKCCGEEEIIIWajnGqxEkIIIYQQQojZSCpWQgghhBBCCHGGpGIlhBBCCCGEEGco\n17ICTopSaiXwY8zZ7lPAJ7XWj2c3qvEppT4HfMz680da63/IZjwToZT6KPBdYKnW+mC24xmLUupf\ngXdYf74IvE9r3Z3FkEZkZRD7IeAGfqm1/rsshzQqpVQN8BNAAXHgW1rr72c3qvEppezAM0BSa53z\nE7cqpUowj2nnYqbyvk5rvSO7UY1OKfVh4OPWnxq4WWvdm8WQctps+s2fCaXUL4ArgGat9VprWRj4\nNbACcxqVt2utm63nPoV5TswAn9Na32MtXwv8AggDjwIf0FpnlFIuzN/JZiACbNVa75nBXTwtox1H\npWxAKWUDngdKMKc2uFNr/Vkpm0HDz2dSNialVCvQb/3Zq7Vemc2yme0tVv8M/MA6cP8t8O0sxzMu\nawLJ64DVWuuBg2xOU0qVA28B9mY7lgl6HliptV4ItANfyG44p7JOIv+N+V1YClyulLogu1GNyQC+\nYn1nLwA+b93YyHUfAg5ixj8b/BB4RmtdAawDjmQ5nlEppQqArwKbtNargG7g/dmNKnfNwt/8mfgv\nzBT0Q30GeFVrvRi4E/O7g1JqCfBRYC1wCfBtpZTXes33gc9rrRcB+cCN1vKbAY+1/MvAd6ZxX6bS\naMfReV82WmsDuNqKWwGvU0pdiZTNUMPPZ1I2ppTWusb6N3BdkrWyme0VqwwQtB6HMCcYznUfAf5p\noAVFa300y/FMxDeALzJLLk611r/TWsesP58CqrIZzyg2ABGt9Wta6zTmXZK3ZTmmUWmtG7TWT1mP\nWzFbJyqyG9XYlFKlwA3A9xh5ctecYt3AuBDz94bWuk9rHcluVGOyWf/8SikH4GN2HIOzZVb95s+E\n1voJoHPY4muAn1mPfwa8dcjye6zv+zFgG3CZUqoQUFrrP1nr/YTB8rp2yLb+AGxQSgWmfk+m1ijH\n0UqkbADQWrdYDx0MXp9K2TDq+UzKZnRZK5vZXrH6HPC31gSNPwQ+meV4JmIZsEkptV0p9aRSamO2\nAxqLUupyIKq13pbtWCbLukP8buD32Y5lBFWYzdMD6snNCuAplFLLgeWYLYO57DbMGwLpbAcyQUuB\no8DPlFK7lFI/Vkr5sx3UaLTWHcD/BfZjVqicWuu7shtVTpu1v/kpcmL/rRuLLqWUG7NiMbRCPlAu\nFcDxIcsbGCyvyiHbMqz1Kqcz+KlmHUeXYR5HpWwsSqldQBuwU2v9IFI2A0Y6n0nZmBxKqb1KqdeU\nUh+0lmWtbHJ+jJVS6l6gaISnvgxcBtymtf6h1cXul8D5MxnfSMaJ2QkUaK3PUkpdDPwWWDyT8Q03\nRrz/CHwFePOQZTlx53+sMtZaP2o9/ifguNb6tzMX2YQNb/1zZCWKSVJK5QO/wex73JfteEZjjWXJ\naK2fUUptynY8E+QEzsa8QfQs8J+YN4++ksWYRmXdsXsvZh/2RuBXSqmPaK1/kN3Ictas/M1Po4EW\nz+FGu+E71o3gWXWTeMhx9INa616l1PBV5m3ZaK1XK6XygHtGOXbPu7KZxPls3pWNZaPW+qhSqhZ4\nyKqcDzdjZTMbCu5m4KoR/j2B2RpxJ4DW+vfAeqVULlQWx4q5AbgbTnSX8FsHkWwaLd6DmHfRX1RK\nHQKWAH9RSi3NVqBDjFXGA8k2NgLvy1aA4zgGVA/5u5qT72bnHKsf8r3Ad6w7ibnsAswxLIeAe4CN\nVmU8lzUATVrrZ6y7Yvdgdh/LVa/D7NrWYHVtuxe4KMsx5bJZ95ufYseAGgDrnJfQWsc5tVxqMMtl\n+F3hoeU1dFs2Tr3bnLNGOY5K2Qyhte4CHsQ8p0vZjHw+uw8pG2BwSI3W+ghwP+a1X9bKJhcqIWPS\nWveM9pzVBfBNwO1Wjb5ea52aseBGMU7M92JmS3pEKXUW0G8dRLJmjHi7gdKBP5RSdcBVOgeyAo5T\nxu8A3gW8Phe+D6PYCRQqpdYBdcBNwKeyG9LorDE0vwUe0Fr/NMvhjEtr/TXgawBKqfMxW7bfkt2o\nxqa13q+UalNKrdVav4p5nHg123GNoR44WylVjJkk5kpgd3ZDymmz6jc/De4H3gN81vp/4EbHH4AH\nlFJfxRwwvhEz61a/Ukorpa7SWv/Res1dQ7b1buCPmGMmduRyC/qAMY6jUjZmRlS/1vqI1aJ3LeZ4\nIoN5XjajnM+utfb9PczjsrG+K26tdYs1Du2NmBn/svabmg0tVmO5Ffi4UkoD38Tc8Vz3fWCRUmo/\nZvrGm7Icz1z0b5jdK/copeqVUr/MdkDDaa0zwAcwf7gHgEe01s9kN6oxXQJcDXzUKtN6pdS12Q5q\ngmzMksQrmFmffmEd02owv8s5SZvpZr8JPIc5CN/PLMjMmi2z8Dd/2pRS92D2HlDWseK9mGNEVls3\nRK8HvgTmDQXgP4DXgMeBT2mtB1In3wr8i1KqHjMZxh3W8p8DcWv5VxhM+Z/rRjuOStmYF7n3K6Ua\ngB3AX7TWdyBlM9zQ85mUjdl69IT1vXkO+LnW+i9ksWxshjFbrjeEEEIIIYQQIjfN9hYrIYQQQggh\nhMg6qVgJIYQQQgghxBmSipUQQgghhBBCnCGpWAkhhBBCCCHEGZKKlRBCCCGEEEKcIalYCSGEEEII\nIcQZkoqVEEIIIYQQQpwhqVgJIYQQQgghxBmSipUQQgghhBBCnCGpWAkhhBBCCCHEGZKKlRBCCCGE\nEEKcIWe2AxBiNlFK3QYkgQeA72mt187Q+14KfHem3k8IIcTcIOctIWaOVKyEmBzD+n8f8E/jrayU\n+gWwXWv9zSHLPgG8B1gN/Fhr/ZFpiFMIIYQAOW8JMWOkYiXEadBaHwd+c5ovrwf+HriRwROeEEII\nMW3kvCXE9JOKlRBjUEqtAn4CKOBJoAloG97FQSn1D8AHAB/QDNwMrASuBd6olLoV+KPW+lat9T3W\na67kNH+DSqmlwA+Ac6yYvqy1vtN6zgZ8xoqnHDgAvF1rvf903ksIIcTsIectIbJHklcIMQqllAP4\nHXA3UAB8F/hrzLt1xpD1zgHeBazVWhcAVwLHtdY/B+4F/llrvUhrfesUxnU/8DRQCnwQ+LFSar21\nyq3A+4BrtNZhYCvQMxXvLYQQInfJeUuI7JIWKyFGdw5QCHxDa20ADymlHhlhvRTgBzYopZ7UWh8Z\n9rxtiuM6GygDvqq1zgBPKaV+g3nyfAW4BfiS1noPgNa6borfXwghRG6S85YQWSQtVkKMrhI4ap2c\nBhxk2AlHa/0K8HngX4AWpdTtSqniIatMdX/0SuCYdXIacMRaDlCN2Y1CCCHE/CLnLSGySCpWQozu\nOGaXhaHKR1pRa/0TrfV5wBIgD/g766kMY9/5O52T13GgyupaMWAhcMx6XA8sPY3tCiGEmN3kvCVE\nFklXQCFG9xIQU0q9VWv9O6XUMuBNwL8PXckaKJwPbMPsE96HOWcIQAvDThbWicWF+ftzKKU8QEpr\nnZ5gXC9b2/2iUupfgPOAtwOXWM//CPiyUmonoDEHI7drrZsnvOdCCCFmIzlvCZFFM9pipZSyK6We\nU0o9OcJztyqlupRS9da/D8xkbEIMZ50w3gp8Vin1PPAtzEG9Awbu2gWB7wHtQAPm72pgrpAfARco\npTqUUj+xlv0DEAU+hNmvPAb84wRCMobEdQ1wMeaJ6r+BD2qtd1jrfR/4OfBHoAu4HQhMeMeFEAAo\nU/2Qf1Gl1GeGrSPnLpEz5LwlRHbZDGPmpiNQSn0E2AxUa60vHvbcR4E8rfXXZiwgIYQQYoKUUoeB\ny7TWB4Ysk3OXEEIIYAZbrJRSpcANmHdIRuu7O9VZaIQQQogzppTaDLQMrVQNIecuIYQQMzrG6jbg\ni8BY/XE/ppS6BdgOfFxr3TAjkQmRA5RSnwQ+McJTz2qtt850PEKIk2wFfjnKc3LuEvOSnLeEONmM\nVKyUUluAjNb6GaXUplFWuxOzX28S+BzmrOFvGGu7hmEYNpvcKBQzwzAMWjtjNLb2cby9j8a2PtLp\nDIVhL4V5XqpKgiyryed0v5Na69GeWgi88zTDFmImzOkDsVLKiTluZf0IT8u5S8xbct4Ss9yUH4hn\nZIyVUuoLwN9gnng8mLOBP6i1fsso6weBems28LEYra1zY2LukpIQc2Ff5sp+JFNpepMGO/Y0U9/c\nQ0NrH8faeonFx06AtG5JETe9YTkl+b4ZinRi5srnMlf2A+bcvszpWoJS6irgk1rrMStM8/HcNdXm\n0u9iqknZjE7KZnRSNqObjnPXjLRYWYN6vwaglDofuE1r/Ral1FogrrXea6UE3W9NavceYOdMxCbE\ngHgyzYt7WnhqZyP7GrrIDLnpYLfZKCv0sXpRkIpCP6UFPsoK/LicdiI9cSK9cV7c08LOA+3sOfI8\nb75wIVeetwCnQ6aKE2IO2Ar8auAPOXcJIYQYSTbmsbIxmO7zXUAr8HXgI8CNSqkM5hwGt2QhNjEP\nxeIp7nn8IE+/1kh/wmyRWlQRZvXiIkryPCwoDVFZ7MfldIz4+tryEACXbqjk+bpmfv3Ifu5+/CD1\nLb186JrVp901UAiRfUopP3Al5jlqgJy7pkk6Y9ASiVIY9sqNKSHErDOj6danwZzpTjFXmmpn234c\nauzmh/e9RmtnPwUhDxeureCidRWU5vtOe1+i/Um+fedO9h/rYuvly7h8Y800RD45s+1zGc1c2Q+Y\nc/sidw8mZ86cu6ZaNG2wUzdTLxxkgAAAIABJREFUFPayrDo/2+HklLl0zJhqUjajk7IZ3aztCihE\nrskYBg9tq+fuxw+QyRhcdUEt1160aErukPq9Lj7yljX8w0+28ZtH97OwIszSqrwpiFoIIea2WDwF\nQF8sleVIhBBi8qSdXcw7hmFw+4Oa3/5lP0Gfi799xwauu2TJlHY7KQh5+NC1a8gYBj+49zW6+xJT\ntm0hhJizZnUnGiHEfDejLVZKKTvwDJDUWm8e9pwL+DGwGYgAW7XWe2YyPjH3GYbBHQ/v4/Edx1lQ\nFuTTN2wgHHBPy3utrC3gukuWcNdjB/jRH3bz6Rs3TMv7CCHEXDEwOqE/maKrL0HeNB2fhRBiOsx0\ni9WHgIOMfE/qZsCjtV4EfBn4zkwGJuY+wzC467EDPPxSA1UlAf72xumrVA144/kLWFlbwGuHOqg7\nEpnW9xJCiNnOGHJ5UHekI4uRCCHE5M1YxUopVQrcAHyPkSfkugb4mfX4D8AGpVRghsIT88D9Tx/m\nT88fpazQz2fecRYh//TfCbXZbFx3yRIA7nvyILM8WYwQQpy2aH+KZGrsuQBT6cyYfwshRC6bya6A\ntwFfBEY7qlYBDQBaa0MpdRyoBPbNTHhiLnv4xXrue+oQxXlePvuODTPavWRxZZh1S4rYeaCduiMR\nVi0snLH3FkKcPqWUAh4esqgI+JLW+rYR1n0T5k3By7XWj85QiLNGOpNh58E2ADatKh91vUzm5JtP\n3X0JCsPeaY1NCCGmyoxUrJRSW4CM1voZpdSmCb5sQq1pJSWh0w8sx8yVfcm1/Xj85QZ+9fA+8kMe\nvvY3F1FRPPGG0Knal/e8eTWf/vYT/PG5o1y8cUFW5rbKtc/ldM2V/YC5tS9zkdZaAyfmS1BKHQZ+\nN3w9pZQP+Dzw5EzFNtu8emDkbn2Rnjh9/UmqS4IAOIYlEdrb0ElNaYiSPC9u18hzCQohRK6YqRar\nC4DLlVKHAA9QoJS6V2v9liHrHMM8ge1UStmACuD4eBueK7n558o8A7m2H68ebOff79qJz+Pgk9ev\nw2lkJhzfVO5LvtfJhqXF7NjfxmMvHGHNoqIp2e5E5drncrrmyn7A3NuXuU4ptRlo0VofGOHpvwf+\nHXg/I3d1n/dGu5ek682xp6X5PtwuBz0jZFCtb+mhvqUHj8tBRVGA8kL/dIYqhBCnbUbGWGmtv6a1\nrrYSU7wVeFFr/Ral1Fql1HJrtfuBd1uPrwF2aK37ZiI+MTft2N/G9+95FZvNxsevW8eCsuxe/F17\n0SIA7nvykIy1EmL22Qr8cvhCpdRKYK3W+i5rkfy4R1CcN9idLzPC8a+pI0pzJEoyNfqYqngyzeGm\nbhl3JYTIWdmYx8rG4InnXcBAq9XPgbhSqh74CvDxmQ9NzBWP7zjGd+/eCcCtb1uDWlCQ5YigtjzE\nWcuKOXC8m731ndkORwgxQUopJ+ZNwV+P8PR3gM8M+VtarEYQ6Y2feJyyKk9DE1kcb+/jUGP3hLYl\nN6aEELlqRuexAtBaPwdcbD3+7JDlKcyU60KcNsMwuO+pQ9z/9GGCPhefuH4dS6rysh3WCVecW8P2\nfW08ubMxJyp7QswX1lyJNVrrg6fx8iuBV7XWzcO26QDOBh4w81xQhpnR9p1a68fG2uB86D45VGlP\nAntnDICi4iBup4OnXzlOOOQ7Zd1wyIfLaR+19ep4Z5yNK8umNd5cNd++N5MhZTM6KZuZM+MVKyGm\nS0skyu0PanYdjlCc5+XTN27Iub74y2vyKS3w8eKeFrZevhy/V36CQkw3K4HST4B+YIVS6gLgE1rr\nd0xwE1uBXw3Z3logrrXeCxQPWf4n4BvjVapg7owPnqiD9YPJK1paejjU2E139NTxVOGQj+6eGJtW\nlfPc7qYRt9XdE+NYnmfeJbOYS+Myp5qUzeikbEY3HRXObHQFFGJKpdIZ/vjsYf7+x9vYdTjC2sVF\nfPFdG3OuUgXmvFab11WQSGV4vq55/BcIIabCvwKbgUYArfWzwFkTeaFSyo/ZYnX3kMVDu7GLSWrt\njI1YqZqMl/e1TlE0QggxdWbsdrmV6e95oASzD/qdQ7sCWuvcCvwzMNDR+qta6/+eqRjF7JIxDF7c\n08LvnjhIcyRGOODm/Vct49wVpVlJZz5RF66t4HdPHOKJV46z5ayqbIcjxHzg0FrXW931BqQm8kKt\ndZQhrVLWss+Osu4bTzvCeeR4++TzUhUEPSeN0xJCiFw0YxUra9Lfq7XWLUopD/CoUupKrfWDQ1Yz\ngH/TWn9tpuISs9NrB9u567EDHG3pxWG38fqzq3jbxYvxe13ZDm1c+UEP65YUsWN/G0ebe7KerVCI\neaBXKVU68IdS6gqgPYvxiDEUBD2nLFtWnc+uwx309SezEJEQQkzMjA7w0Fq3WA8dmN0QR0rtk7tN\nDSLrov0p7nhkL0+/2oQN2LS6jLdctIjSgtzr9jeWi9dXsmN/G0++0shNV0jFSohp9gXgz0C5Uupx\nYCVwdXZDml+cdjupzMjJKPICHrr6BlujioakZgdYXJmH3W6jKOyVipUQIqfN+Mh5pdQuYBFwu9b6\noRFW+ZhS6hZgO/BxrXXDjAYoclbdkQj/88fdtHfHqS0L8d43rZi1rT1rlxSSF3Tz7K4m3r5lybwb\nhC3ETNJaP2MlsLgI8+bd01rrtiyHNW8YhjFqpQrA7Roc7r1mSRGZhNlLc2VtIU3tfRSHzYqWR46T\nQogcN+PJK7TWq4EKYKlS6vxhT98J1AJLgG2YWZyE4LHtx/jGHduJ9CS45sKFfPFd58zaShWAw27n\norUVROMpXtorg7CFmG5a6w6t9f1a6/ukUjWzGtujJx477KdedlQWBU48LsobTL+eF3CjFhRgt5sd\nWQrCHgpDY080LIQQ2ZSVXM9a6y6l1IOYXTGeH7J8oKsgSqnvAf9nvG3Npdz8c2Vfpno/Hnupntsf\n0uQF3Xzp/ZtYPoPzP03nZ/LmS5byx2ePsH1/O9dcumza3meAfL9yz1zal1ymlOrn1K7nhtZ6dvUh\nnqUaWntPPE6P0HLlcTlYXBHG4x77ksRus7G8Jv9EGnbDMCCHExUJIeafmcwKWAL4tdZHlFL5wLXA\n95RSa4CE1nqvUmoZsF9rbQDvAXaOt925kpt/rswzMNX7sX1vK9//3Wv43E4+9fb1FPicM1ZO0/2Z\nuIHashDbdQuHjnYQ9E1f4g35fuWeubYvOS445LEb86bemizFMu+M17JkszGpcbJel5P+ZIpMBhxz\naNKYHfvbCHidLKvOz3YoQojTNKmKlVLqHcBdWusJpakdJh+4SylVhJnm9hda6zuUUt8AWoGvAx8B\nblRKZQAN3HIa7yPmiLrDHfzgvtdwOe188ob1s7rr32jOW1nKkeYeXt7bysXrK7MdjhBz0rBzVgr4\nrVJq3HmolJmf/eEhi4qAL2mtbxuyznuAv8NMytQKfFhr/fJUxD1fTHZ6DJfLTn8Sov1J8kbIIDhb\n9SdS9CdSLDWMnJ4yRAgxusm2WG0FvqmU+jHwn1rrYxN9odZ6H7B+hOWfHfL408CnJxmTmIN6ogn+\n8/5dAHzsurUsrcrLckTT49wVpdz52AG21TVLxUqIGaKUqgCWjree1loDNUNedxj43bDVfg/8XGud\nUUq9Gfg+cMGUBTuHLKvKx+dxsvPg4BC3jYNZ8Cesx5pc+FBjDxuWzY2KlTGkVS/SE6cwPDiWbG99\nJx6XYza0DAsx702qYqW1vkYptRD4MPCiUupp4D+01o9OR3Bi/vrln/fSHU1yw5alrFpYmO1wpk1x\nvo/FlWHqjkTo6kuQF3BnOyQh5hyl1NAMMTYgAXx8ktvYDLRorQ8MXa61HjoflpuRpxERQEHIcyIR\nBUDI78Z5Bn35+pOn03kmNw3tLbm3oZNNq8oBSKUzdPT0ZykqIcRkTXqMldb6MPB5pdTvgV8DVyql\nDgG3aq2fmOL4xDz0wp4WttW1sLQqjyvOrRn/BbPceSvLOHi8m5d0C68/uzrb4QgxFw3NDpPSWveO\nuubotgK/HOkJpdSHgS8CHuANp7HtOetQY/eJx0MrVQArTzMRkaopQNdHAIgn0njcsz8N+/BxaOlM\nhngic1LrniFZEIXIeZMdY+UBbgT+BrM/+ReB3wDnYp5waqc6QDG/dPcluP1Bjdtp531XrTzlRDwX\nnbuilN88so9tdVKxEmIqKaUGmoCjIy3XWicmuB0n8FZG6M5ubeeHwA+VUtcD/wCMO35rrnXrSmcM\neqOJk8Y87W/oJJYyCIfMFOoD+/zmS0IYY4wjGq9s3D43jZ1mK05hUQC/d/oS/8yU3mjiRDkB2N0u\nDh/rOGlZKp2Zc9+bqSRlMzopm5kz2RarQ8DjwKe01s8OWf6UUurhUV6DUsqGmVa9BLMbxp1Dx1ZZ\n67iAHwObgQiwVWu9Z5LxiVnu9oc0vbEk77xsGeWF8yMTckHIw7LqPPbVdxLpiVMQmhtjBoTIAd2M\n3jXPACZ6kLkSeFVr3TzWSlrru5RSP1NKObTW6bHWnSsZIQfs2NdGfzLFigUF5FuVq7oDJ8/RN5F9\nnki2zN5Yku6eGACH6iOU5vvGXH82aOuKndgngOd3njqEPdqfIhGLnrJczK0sq1NNymZ001HhnGzF\n6hytdeNIT2it3z/ai7TWhlLqaq11i9Xq9ahS6kqt9YNDVrsZ8GitF1kDgL+DeTIT88RrB9t5Sbey\nvDqPyzbOr5abc1eWsbehixf2tMyL7o9CzASttXf8tSZkK/CrgT+UUmuBuDVNyFnATq11Wil1A9Aw\nXqVqLhoY79QSiZEf9Ezr5L2p9OBcWK2R2KyvWB1q7KY5Mn6FacfeVlbVzM1ETkLMFZMdNfpppdSJ\nTAJKqRKl1Ncn8sIhk/86rPcdftS9BviZ9fgPwAalVAAxL6TSGe54ZB82G9x0hcI+z1LNblxRis0G\n2+rGvCEuhJhhSik/5k2+u4csfheD3f3eDhxRSjUAt2J2l5+3BpJRtHXGTloenMLuetH+waQVPbEJ\n9ebMaROpVAkhZofJtli9YVh69Fal1BuBz03kxUqpXcAi4Hat9UPDnq4CGqztGkqp40AlsG+SMYpZ\n6LHtx2hsj3LphkpqSoPjv2COyQu4WVlbwO7DEVo7Y5TM8juwQuQSpdR64IfABswEEwCG1nrcrAda\n6yhQPGzZ0PPgF4AvTF20s9tAV+b27vhJy3v7k1P2HuE5nD015HOPWVlMpTNnlElRCDG9JluxGukk\nNOFtaK1XK6XygHuUUudrrZ8fY/UJHTnm0oC8ubIvk92PnmiC+58+TMDr5Ja3rsupCR9n8jO57Lxa\ndh+OsOtoJ29fNvm5XcYzX79fuWwu7UuO+w/MORK/BlwLvINhlSUxNfoTKcBDV9/JFauygqkbMxv0\nuagoDNDY0YffM/sTVww1UqVqeXU+exs6AdjX0EVVSYCw3z1mAhAhRHZMtmK1XSn1TeAbmEkoPgts\nm8wGtNZdSqkHgasxE1oMOIY5EeNOK9lFBXB8vO3NlQF5c2Vw4ensxy//vJfeWJIbX7+URCxBa450\n7Zjpz2R5ZQiH3cajL9Rz6bqKKd32fP5+5aq5ti85zqe1flYp5dRadwP/pZT6STYDivanaI5EWVAW\nxGGf3S0QZmXKdKS5h4qik3vxr15YSMg/ta1MZYU+Gjv6pnSb0y1jGCSTmZPSww9PoW632U6MTyvO\n8xEOuE9KaNTVF6erL07A66KvP8nK2sIT8x9mMoZV/n687knPpiOEmAKTPZp/EigHdgO7MO/4fWK8\nF1ljsWqtx/mYdwx3K6XWKKWWW6vdD7zbenwNsENrPbuOmmLSjrX18ZeXj1FW4OOyc+ZXworhAl4X\naxcX0dDay7E2+eoLMYUGrvz7rPOOl5Pntppxuw530ByJ8sKeFp7b3ZTNUM5YPJk56e+hlQW/xznl\nlSqAjPWW0fjUdTGcTvFEmm11zWzf30o8MZjbJBY/eZLjxZXhE4+Lwl5K830jtkr1WV0r6450ANDZ\nG6fuaITmSJQd+9tOWV8IMTMmdUtDa90B3HQa75MP3KWUKsI8wf1Ca32HUuobQCvwdeDnwBalVD3Q\nBrzzNN5HzCKGYfDrh/eSMQxufP0y6TcOnLeqlB3729i2u5m3Xrw42+EIMVf8yjr//CvwBOa578vZ\nCiadMUhnTq6MJJJp3K6Rh3xlDCOnE/pkMie3urykB9OsL6mav1ns2jpj9PWnqC0P8erB9hPLDzV2\ns7wmH7vdxs4hy6tLghTn+Qh4XSRSmRMtUQALSkN0xk6uhA2152hkenZCCDEpk24rVkpdCiy2XmvD\nHAD8X2O9Rmu9jxEmVhw2ADiFmXJdzBM79rWx63CENYsKWb+0KNvh5ISzlpbgdtnZVtfMWzYvkv7z\nQkwBrfW3rYePKaVKALfWOjbWa6bT0abuU5YlUpkRK1aZjMG2PWa20E2ryumNJfF5HDnRfdAwDHYd\n7qA3dnKrUWpIpdHnmZ4uaW5X9vd/LJmMwf7jXQDUlAZPKpPOvjjH2/soKzg5SdHA0d7nceIbNtS4\nKM9LZ6x3OkMWQkyBSR3xlFI/xqxU7QYy46wuxKiSqTS/fnQfDruNd16+TCoQFo/bwYalxWyra+FI\ncw8Ly8Pjv0gIMSal1KPA/wB3WxWqCVeqlFIKeHjIoiLgS1rr24as80nMVOtOzEy279VaN4y2TZfz\n1ErB8LE2A+LJwW5jvbEkrx0yWzg2rSqf6C5Mm5EqVcNNV0vb0B4OvbEk7V39+DwOSqcwScaZqG8Z\nrAQl06deLjW09uIa1kujqmT0jLgjfWcGTOecYUKIyZnsraRarfWWaYlEzCsPvVBPa2c/V5xbc8pA\n5/nu/JVlbKtrYdvuFqlYCTE1/h/wXuBbSql7gZ9orZ+ZyAu11hozsRIASqnDwO+GrbYXOMdKzvQF\n4DbMzIMjamo/dd4ih33kCsjQC/QjTbmV7GS8StXiypnpBjhQ2QRypmI1NLHG9n2tI66Tyky8QjRW\nBTU9QsVN0rJn384D7YT8LhZVyHl8Ppnsr67xdN9IKVWjlHpYKVWvlNqvlProCOvcqpTqstapV0p9\n4HTfT+SuSE+cPzxzhJDfxTUXLsx2ODlnzeIifB4nz9c1y51IIaaA1voPWuvrgBXATuDflVJ6sttR\nSm0GWrTWB4Zt/3+11l3Wn09izss4KaNdY3f09J94PDwVdzKVYVtd84lEBrnGP03dAGdaOpNhb33n\nuBXJyapvGawoTyTBx+JRxqu1dPafsiw9iUqbmHqZjEE0npTJn+ehyVasepRSdymlblFKvdv6964J\nvtYAvqK1rgEuAD6vlFo5wjr/prWusf799yTjE7PArx/ZRzyZ5rpLluD3zq05SKaCy2nnHFVCpCfO\n7sMd2Q5HiLkkg3mesTE4pGUytgK/HGed9wK/H2uFvhEu0A8e7xphzdEZhsEr+9vIGMZJiRFmyvCE\nFQDF4ZPHDOVywo3JaInE6Ojpn9bjscc57lzVVFpdBUvz/WxUg3MdDq2gDRjp8xEzRypU89dkK1Z+\noBe4ELjU+jehroFa6wat9VPW41ZAY85VNdzcOBKLEb2wp4UX9rSwpCrMRWundq6muWTLWeYN70df\nOpblSISY/ZRS1yil7sY876wHPq61Xj7Oy4Zvwwm8Ffj1GOt8AKgFvjnZGKPxkTO+BUe5+dTe3U/A\nl70bU+3dJ7eShPxuKotP7tbt92a3xSoWT03JBe5AHWW8HgSpdOa0W7Um0jvBYbdx/soyFleGx+3m\n98qBNrbvbT2pK+lo4/jE1DvSnFvddsXMmWy69fdMxZtac1ct5+QJggd8TCl1C7Ad8+Q36gBgMbt0\n9yW4/UGN22nn/Vetwj7KmAIBiyrCLKoI88r+Nto6YxTn+8Z/kRBiNB8DfgrcrLU+3SvtK4FXtdbN\nIz2plLoG+BCwRWudHmmdocKhU3/TI020XNabwB45NddGS3cC7PYT24mlDRbM4JjMvY09J+3Dwsow\n1SVBDreaY4tUbQElpzl+dqITTl92vpcXdp/8cQx97eMvm5cP0WQfKxdNbJLi1kiM3YfaWb246MRx\nN5Y26LJSnQ+PrT+e4vldTajaAvbWm62OG1eWjfj5jiWc553QfpeWDn7GeeEuxqsr9cTTePwe6pt7\n6OjqZ/NZk+6lOmvk0kTl4dBgC3QuxJULMcwXk80KWAD8E1ChtX6bUmotsF5r/YtJbCMf+A3wgREm\nAL4T+BGQBD4H/AR4w1jbm0tflrmyLyPth2EY/Oh/X6A3luQD165hrSrLQmSTl83P5C2XLuVbd7zM\nc3taee+bV5/x9uby92u2mkv7ksu01mOeRyZoK/CrgT+s819ca71XKXUx5hxZr9daT+hWdXdP7MTk\nuc2RKGUFflpbT31pJBKlu+fUMTTDvaJj+Bynd7MqYxh09SYoCHnGX9nSETn59B2Peuno6KO2xI/b\naceRyYy4P+MpKQlN6nXdPSdXOoe+duC57h5obuuZUCbFgcman32l4cT6HZHoiW0Nj+0l3UIyneGF\n1wbjeHTb4VG3v3phIe3d/TR1nFy/z/M5x93v4WWzoNh/UjfQorAXj8vB8faTPxt9sPXE+zU1d42Z\nqj+dydDUHqW0wIdrAt0Tc8VkvzfTbej3Mttx5VrZ5JLpOAdPtp3+v4CngQ3W3weAO4AJVays2e7v\nBb6jtX5w+PNa65Yh634P+D/jbXOufFnmyhd/tP14fnczz+xsZHl1HuevKJkV+5rtz2RFVYiQ38WD\nzx3mDedU4Rll8tCJyPa+TJW5sh8w9/ZlLlNK+TFbrD4yZPG7GJzg/h8xu7a/YGZn56DW+pLxtrtu\nSTG9MXOAe3MkOmL2sP6E2VJSUxoacSzNSHqiCdq7+6ktC01oKottdWarT1mB/7QymC2vzj9RKQtk\nedzsdGTDG5p1b/hkzYVh75jdDauKgxxrM7vj1ZQECfndBHwubNhOZA5cVBGm9DR6JTiHVZDau/tH\nzCQ7tBLX1ZugMOwddZuN7VEaWntp7+5n1cJCySx4muw224nunc/tbmLD0mK87rmRzCWXGIZBPJnO\nqbKdbCRLtNZvV0pdC6C1jiqlJnSLTCnlAH4L/5+9M4+Ts6ry/req96V639OdPTlJIAmEsImAKIio\nIMuII4yICjoqOOqrjo6Oy/iOjts7MuKMiog6uKKAAgqCsihbCCEhkOQmnbWXpPf03tVdy/vH81R3\nVXVVV1UvVdXd5/v55JOq57lP9b23lvuce875HR42xvw46Hjwrt8aoNEY4wduxFJvUuY57T1D3P0n\nQ3aWk/e+Zf2CSWiea7IyM7hgcx0PPXuUbXvaOH9zXaq7pCiLEjt8sCLsWHCB+5hGVDiBGkbZEeoT\nDbs97DrYSWlhznjuVV52/Bsrr9oiCyWFOZQUxu+FimbcTUVVSf6UN+pzzeZVFfQOjnLELrp8sKUX\nWVqK1zdZgryxpZfVUZT1wikPGlNGkHGxbW9bQjXEGqoKqa8sYNjtGRdrcjocLKtxsaxmZhsS4bWt\nqkvzY+a1xZJ4HxiycsSG3B62m3ZqyvK17Mc0CM+Z29nYmRa15xLB5/OnfcrGwZY+OvuGOXVFOYUp\nzDkNJtGtCE+wISUi5VgKS/FwIfBW4MNBcupXYu36XWm3+SDQLCJN9rGbEuyfkma4R73cfu9uBkc8\nXH/J2rSpMTJfuOj0JTgc8OcXmzXxWFEWEA3V1k11ZgTDatfBTgB6Btzjx7Kn4bGejjJcx8n4aicH\nvCXLaqIXtU0GeTmZ1JRNrCtjHsugemFf+6S2nb3D9PS7Q44Nuz3j18DEuLr7JtpFu7cc83in9FaV\nuSzjzOFwzIkCbvBNb21ZAcuqXTEl7jNj3CjnhV0fHrK4UBkcGaPz5PCcrrPP72kbDzVNd4619bNt\nX9u4xzxd6eyzfq/SqeREoh6r3wHfA8pE5D3AR7DyoGJijPkLkQ25+4PafBz4eIJ9UtIUv9/PXX/c\nS3PHIBdtWcL5m9TjkihlRblsWVPJi/s7ONDcy9qGklR3SVHmHSKSDfwT0GCM+YgtoLTMGPNoqvo0\nMDRGVUleiAd/qh3iwrws1iwpwT3m5ViUkECvzxeSPxPPPWLfYGhtrIOtvZQUZsfMr8nNzmBgxDdl\nvk4yKS3MoWfAHTMkyDT1cOqKcnKzMxgZ9Y4XFw54Ezy2p8uPH7/fj8PhiFhjzD3mjVr4N0AywuiW\nVrnIznJSUWyFEjpjCCu3dA5O6WFMdw/FXBHIVWts7WVZtYvaaQqvQHT1Rb/thwj/nqYjgTy93oFR\ncsvSJ8wuKmm075zoO/sV4Fms3KrLsXKlEpaVVRYHj2xrYtvedtbUF/PON6xJdXfmLZec2QDAzx/b\nj8c7ObxFUZSY3A7UAWfbzwO5USkjN0Jo37Z9bRw9ET2Pqrw4d5KkeTAv7e8Med7VNxJTxrulY2DS\nsVFP7N8Zn9+fVjeHAe9eZ99kr1Q4rxzuYrtpD/HO9Q2O4vX5QupJjXl8DI6MRcxta2yOXXestnzu\nIzTqKgrGjap4iLWz3zsw9dwtBmYqlf783ojCoeN09sYWo0kXDtshtgG27bW8bungyQq+HwrvZypJ\n6FfRGOM3xvzYGHO1/e/Hc9QvZZ6z+1AX9zzRSElhNh+68lRNgJ0BaxtKeO3GWo61DfDQs0dT3R1F\nmY+caYz5GDAEYIzpAWJrb88h0WpQBQQNpoMnLK+ou3+EbXvbeGl/B6NjURTgI+S8OqJ4PdyjXl45\n1EX/0CijYz4yp6lCOBcEe/5MU09c15wMMiL6h8d4YV87bs/EPA2OeCIWX/b6fPQPj046Hk54WN18\nYCCC4TUWh6G9WBgYHouYvxdgzBP6PauL4Pk6cnzuRYuC++j3++k4OTzjjVmfzz++UbOzsTNG69ln\nz5FunttzAr/fz5jHy3YzOdw3HUhUbv1/Ihz2G2M+FOO6BqyQQQHcwH8aY74b1iYLuBM4H+gBrjPG\n7Eukf0p60NQ+wP/c/wrVV9GzAAAgAElEQVSZGU4+fPVGihNInlYi8/dvWMOrR7p58JkjnLa6YsZJ\nz4qyyAi5W7RV/lJqFXhm6WY1JysDdzSjycbt8bKzsZOz1k8ucxH52shersPH+xgYGeNY+wAen48M\nZ/rIcW9ZW5nwjVbw2CN5paIZaF7v5PmpLMnD4/GF5MWlijPWVnH4eB85WRmUuHLYe7R7Rq+3q7GT\nreuqZql36UekXMSB4bFJYggvH+xiyG39lEQTonhxf2h46NJqF919bkbGJjw8/jmOWwvkcZ2xtpKs\nzAyOdw5ysNXysM5E5CFaEfNk0TdkbWZE8gjWlhWMh+eurCuelsrmbJGoG+FFYLv9bzfQAMTj6/YD\nXzTGNADnAp8WkfVhbd4F5BhjVgBfAG5LsG9KGtDdN8Jtv9nFyKiXm966gVV18SkwKVOTn5vJe968\nDq/Pz50P7dGQQEVJjL+JyGeBfBF5HXAfVs5wyihxzY7DbOPK8pDnx6KEMUULCYwU0hPttu/koGU0\n9A+NkuF0Rsw9ShXJjIo4fHxy2NGqumIaqtJjwysr08nahhKW1bgoyp+5aEa4J3Qh4PH62H2oi+6+\nEbbtm3yjHsi9CyZgVMVLwIt6yorSSeeSIWIx5LY2Dg40nRw/FmlcsfD5/AyNjKXUQx3rnqd/aHQ8\n5/FQa+ww3bkkIY+VMeaHwc9tD9bPozQPvq4ZaLYfd4iIwar5sTeo2RVYdbIAHgR+KCIFEYoIK2mK\ne9TLt+5+ke4+N9dcuJIzF/AOVyo4dUU5F55Wx5M7W7n7T/t55xvWkDOFBHPvgJuWzkHaTw4z6PYy\nMOhm3dJSZGlJWtV8UJQk8Bn7Xxbw/4DfA/8e6yKxilI9FnSoHPi8MeabQW0uBr4BnAr8vTHmt7Fe\n98It9QnVMKsoir77Gm5QhBeHjZfq0vxxhbtINtjQSKgB5vf7yY0h7Z1ObFhWRt/gKM2dk3PKEiWa\nVyo/N5MNy8vYc2RmHqLZxOFwUF9RSE52xrjX4rk9J1hRW0R5UW5Ug7SyJC9uhcj5SHvPMIMjY+xv\nPhm7cQT6h0Zx5U+9ORJQaMxIgtHf3jNEYV5WSPhp74Cb4oLsKe8TohHwhOdkZrBjfwcen29ONsq9\nPh8Dwx5ceVmThFP8fj8tnYN0nhyZVFognEghrKliRr+Kxhi/iFTEbjmBrca0Fng+7NQSJowvv4i0\nYiUbH5hJH5Xk4PP7uePBPTQ293L+plrefM6yVHdpQXLtRavZd7SHp3a18vLBTq65cBXnnlqD0+HA\nPealo2eYXQc72bG/M+Ku6iPbmshwOlhTX8zVF6xidb16FJWFjzHGDXzR/pfIdQYrMgMAETmC5e0K\n5iBWxMVnmEVtqjJXLhlOBw6HY5Kk+VnrqunoHaai2FJ3W1FTNO3k7TJXLt39I9SU5ZOZ4aSlc4Cm\n9gFWLykKUQZ8+VBoToXP70845GWumaqIcnaWk+qy/LgMq9yszJDQrUQoys/mrHXVkVLXUkZ9lfX5\nORi0k3/4eB/HO4c4bc3ELVxwftCquuIFbVhFU9aMRrjS36tHukPCAYfdHg4ECZpUleSPf2+dDsf4\n9yyYMY83pvpmPAwMj3Eownrf3jNMZUke7tGpQ4UjMR4m65jwWM6F6Marh7sZcntwOhyTQpWDQ/4S\ntZtSqbyYaI7VN4KeOoBTgOMJXF8C/Aq4OQ5PVFwzUlmZHq732WA+j+V//7iXHfs72LS6go//w9YF\nI1aRju/Jf33iIn77eCP3P9HInQ/t5bdPHsI95mHYPfHj6XQ62LS6gg0ryqmtyKe6rACP18euAx28\ntL8D03SS//jZi1x7sfCOS9bOq/crHd+T6bKQxpKOiMhXIxz2Y61ffmPMvyTwWucD7caYg8HHjTGH\n7fM+ppm3tVWqQvKDyly5U5ZWcDodVAfVBKwqzZu2YRUQcHA6HOO5Jr2Dbl7c38HZ66txTGUhpJP1\nQGjeWm1ZActqXAwMjzEy6hn30pcW5jA44mHUE/1mc8PyUnaESamfs6Em7vCtdJUsz8/JDMmTCTYe\nm9oHaAkzOk9fUzkeXvXqkW5OWV6WnI6mCYMjYxTY9cfC83qyMkINokDtuQBLqwtDbuzXNpQw5vGG\n5GAdOdHPmvqZl1CJFt7n8fnYdbCTIleox7un302pK3rue7CqZnAeYrgwR6AcwUwIfB7DQ5WnEgiJ\nh+b2wZTloifqsWphYlEaAx4F/hTPhSKSi1Wz6jZjzCNRXrsBeNkuQlwLtMZ63UTCKdKZykrXvB3L\nc6+e4NeP7aeqJI9/vuFMemagapVOpPN78qat9Zy5poJ7nzrIvmMnqSjOo7ggm+LCbNYvK2XTqoqQ\nBNXAWOrObOCyMxvY33SSOx7Ywy8fNWx79Tjvv3zDvCjenM7vSaIstLGkKb1MeJHC7wAS9S5dB/xs\nxj2KQGaGk9qygnFFwESLlDocDqpK8mk/mVgx19Ex7/gNTXaWc1K4zQv72llTX0JxYeSQp3SzH/qH\nJpT66qssNbbCvKyQ30JZWorP72dbFEnstfUlk4ox5+dY129YVsaeICGIkoIcvD7/lBL46YR7bPLN\nau+Am4K8rElGFVjhYAGC53axsPtQF+dsqImY3zPm9eLx+sjMcMZdiDsrM4P6ykKa7RIHXX0jpKIQ\njWnqiSq+AaE5SplO57jHKly8wuP1k5U5ez8CPr9/PC/tWFtsz/LmVRXkZmdEFLNIpRx8ojlW357O\nHxGRDODXwMPBEu0ishFwG2P2Y8W8vxt4CCvfaqfmV6U/h1r7+NEf9pGXk8FH/m4TRQXZdAylXhVp\nMVBenMvNl58yrWvXNpTwpfeexd2PGp57tY2v/mwHn/mHM1KqpKMos40x5j9m43VEJBO4Ctg8G68H\nk43RykoXT+5oBsAb4XwsyssL+evOlinb5Bfmhsi8d/QMj+9mV1UVcXLES5Er9Ibk+MkRCly5k3a9\nAfILsufEqJ7ua24tyGHHPsvzV1M9dZhzUXNkD19ZWSGVpXmsXT7Gia4JQ7Wy0kVlJTR3T4THLa0r\nYllN0bT6Ol1mMt9VnUMMDofGVLX0jEDPyKT3N/B3ily9k46lK4n0L3hcsV5z2O2J+Pk/0jHEiroi\nTFPPpPO1NZE/f5WVLvrs73mifY6Ez+eP2Ldwor2/kchr6iXQOiPDEVEFE2DY66eudnr9Hx3z0t4z\nFNKvzJwsyu2abEc7hyKOKzPTOe6ZXlpviYJE+i6vXFpCZUXhpOPJINFQwDuY8FgR/tgY8/4ol14I\nvBU4XUQ+bB+7FTgP6AS+BvwUuEhEmuxj70ykb0ryOTng5jv3vozX5+OWKzbPm107xSI/N5P3X34K\ny6pd/OovjXzrly/x6evPmDJEQFHmIyJSCPwrcDHWuvUo8H8T2Ly7FNhtjJm68mcCXrBI3sq+/uEp\nz8diSWkue49ZEuH5OZm4x3whITWHj3VTXTbhmW7tHBz/mx0d/Qz2j4T0IcCOPZFzbfr6h2kom93N\nmJl6crOdUJCbGfM1AuPcvKqCI8f76LU9Ml1dA+DxUJjljPh+BB/rPZlJRxKV0mY6N+7hUfr6Y+fJ\n5GZnRhzvy/tO4PX6WVJZMOMQsNkmkbnx+nwRP+eR6OjoZ8+R7nGp72ByMjN4sWcwouLmVH2Z6fc8\nmHjCU4tceQwOukN+C+Ltn9PhiKoouqd/mKKcxHLEvD4f7T3DEYswnzw5hM/2NB1vj7zxcfb6akZG\nveRkZ0T8jAbo782hIw7P/1xsFiQaCugBtmApATqwQiO2AS9MdZEx5i9Ezpm6P6iNBysBWJkHeLw+\nvnvfbnoHRrn2otVsWlUe+yIlLbn0rKUMuz38/ukj/L9f7eSfr98y7ToXipKm3AnsA96HVRj4Zqza\nitfGef11BCnghkVbBHCQ4tpYwTUD19SXTMr7OHyij8Mn+sbDgFo7Q+3KaDdQwayuK6YxxXLGU7F6\nSXyCPLnZmYyMesjLyaSh2kWvnacSqDEUnCdV5sqd/Y6mgIriyQIKEdsVTYx3zZISDrRYynmBm2GH\n08GSigJaOwdp6xli48rytM/TDRYzSCTStrl9IMSoys/JGpddz87KCCkoHS+rlxTT2GJ9hwaGx8jP\nyZzVvDxpKJ1Ug62kMJuuvon3PhDGGIt4fhOC8fv9dPWOUFyYMym0uKVjgKaO6CF+fYOjFEVQWgwO\nR3Q4HJMKb5cX5YaMDeDw8X7KilLzvU3UsNoIXGiMGQEQkR8Ajxljbpn1nilpzc8fO8DBlj7O3lDN\npWc1xL5ASWve9toVDLk9PLa9mf/89S4+ff3ps6JWpChpQpYx5gtBz7eJyN6orYOwiwlfCnww6PAN\nQAfwdRF5LfALoBR4k4h80RizcTqdlIZSDrb0smEGIgGnr6lk2O2ZdPMRicDNSqZ9w1lTlh9Trn06\n0s3pyGmrJ9TwCvOyWFFTRHPHwLgR5QzyyBQVRM4xiyUBnW6UFeXGpXgYfCtdXpzLgbAI06b2fpZU\nFIwr6w0MjzHq8THi9rC0Ov3CBXsHR9l7tHtcFCaSreDKz2bE7aHElYMDx3i+YriKZG52xrhh1T88\nvbyz4M9WQHhiqpynWK8VbPysrCum1JXDitqiEGXgcMNjdCw+wypRjncNcay9n0ync1JR6amMKoDm\njgHqKyeH721dV8Vze05QWhg5mmZNfQmFXYMhXrAxr5fjXYOc7HfTOzRKdWk+Xp+f5TWuOd8ESNSw\nKgWCE2hGsOp6KIuIp3a18sRLLTRUFXLjZevSLiRASRyHw8Hfv2ENg8Menn31BL947AA3vGldqrul\nKLPFiIhk2pERiEgpECusDwBjzBBQEXbsk0GP/0aQJPtMKHXlcIZUzug3NScrI0R0IB5y7XCecNGG\ncM5YWxWSwD4TAzDdqC7LDwmTDPYgBIuJBDxdQFzGa7pRUZw7K7W8hoM+Bz6ff1zwIB0Nq0DR7IC3\nrm9wwiAKGCbF+dkhqofRhGCCvX6lhTkRa5otiZHbE8lQ7xuK7K2ZCr/fT6krh66+EerKCygryh2P\nNqkuzQ8xrMINsFGPl/woJkBgoyVaYeiz11dHFIyACRl7j883HqYYU100iEDh5gBnrK0EYhueteUF\n1JYXsPdI93hYb7ChFajRB/F7tadLombb08BvReQKEXkbcC/wRDwXisjdItIuIrujnL9FRHpFpMn+\nd3OCfVOSQGNLL3f/yVCQm8ktV29MeAFX0henw8G73yQ0VBXyxM5Wnn117ivDK0qSKAR2iMjXReTb\nwEvAMRH5goh8PsV9CyEVG1Vro0g+V4aJ2WRlOskO8tIkeiM4Xwne7V9Zl1yxitmmrrKAuvKCiO/5\nmiUlZGVkxCViFBxmOt0iu7PJVMp8g2FFkIIlxE9fU0lDlYvaivhUcYONonCjqsyVS35OFkti5Jtn\nZjhx5YV+dxItKr33aA/P720b/2zWVRRMGcJfHab629jci8fr4/DxPp7bcyJERc/n95OdlTHp+x/A\n4XCQleEcL4AcC08U8YsAwYbOywe7Qt6fRCNnamPMfWfv3NdmS9SwugV4EitO/b3An+1j8fAD4M1T\nnPcDXzPGNNj/7kiwb8oc09k7zO2/fRmfD/7xylOjfumU+Ut2VgYfuvJUcrMz+OnDhuMxwoIUZZ6w\nA2sjcBA4CfwYq7AvpDgvai7ZsqaSwtwsqkpCb6qOtfWHeGGCPVXBN2er6ibv7GZnWbcNednzz1sz\nXRxBH5H5bkw6HQ6WVrsi5p+UFVke05mEe7bECPeaCzp7h/nrzhb2N8U28A619o17bqpK8snKdLKk\noiBmMdlNK8s5Z0PNlGFkJYXZbFpVHle+1NLqmSnW9Q6GGnWx/ubS6sIQD7PH5+PVw93jnhxzzJo7\nr8+Hz+8nJ8s5ZW7hmNc3SX49Gj6/f0rDN3jup6ovFw+5cXx2E80bS5RE5dZHgdtE5PuBPKsErn1K\nRFbHaLZgF7j5zsioh//6zW76hsa4/pK1i65Q4GKiuiyfGy9bx/d+9yr/fd8rfO6GrQsmr0JZnBhj\nvpjqPqSC7KwMTl1ZTnvPEO1B95ytXYNRVVxPXVHOwPAY7tHINzgZTidb1lSmvVjBbFJREvkGc47v\nz+acU1eUhxSXjeYtzcpwMhahllMkmjoGWBIhT2YuaWzppciVF5cwR3CIXyK1jvJzJzYcogm4JOJd\nKZhlgSjnFJ7u809bQlfXAEX52SGhrMNB4x+zJcwD0X8Oh4NSVw6r6oo5GDTWnGnkXo+OeccNt7km\nO47+HWzpZU19SYhnbDZJVG59E5YyUi6wWkTOAt5hjPk/s9SfW0XkJqwwjY8YY5pjXaDMPT6/nzse\n2ENzxwCvO30Jr9+yJNVdUuaYs9ZXc6Cplz/vaObXTzTyrjdKqrukKNPGLlD/DmA1E+ue3xjzL6nr\nVfIYixCKE6hNU1k8OfIguKhuQ5WLpvb+EK9NrFyshcJWqaJvcHSSdyeQWxPP7ng6E6/666ZVFby4\n36oPFn6jnW7sauxk8+qQlMgQYyL8eDyEe24rSvImGVZ15QUJlSqZyhCaimG3h6Mn4pNoP311JaMe\nb4g3Kz8n8lzUV1nGcMCbE7imsiQPB4yPd9PqUFkFn88/3jZaYXOfn3HBj2DKXLlUFOfOaomXeLyF\nXX0j5HUMWGIZdZHDoGfUhwTbfwdLEr3Jfr4dqz7VbHAPsAxYhSXhftcsva4yA/x+P7/6cyMvHehk\n/bJSrrt4jYpVLBKuff0qllQU8PiOFl4JSiZVlHnIvcDVwDBWKGCv/W9RECkX4qXGDsAqADoVSyoK\nWFJRyPplpXPSt3QmM8MZMWRubUMJW6VqQXntoimugZVbt2llOaetrqC8OL2l54cjGA3ZUdQb4x3L\naByejWSJduw62MnJwcmCGZHIyc7AFRa6WhFlzGMeK98qYLQF5yJVlORxzoYaztlQMylk8kT30LhB\nFfB6heON4O3MyshgbUPJnEiiS0NpzFDlaEWPZ4NEg6QLjDEviVi718YYn4jE70udAmNMe+CxiNwO\n/HM816V7JfBESMex/PQPe3h0exMN1YX8603nTPqSRiIdxzFdFvtYPvmurXziv57ixw8bbv/kRXG9\n/3PNYn9PlGmxyhiTsNtVrMXusaBD5cDnjTHfDGqThVUn63ygB7jOGLNvhv2dVUpdOaysLeLQ8clF\nNz2e2DcYDVXJDe1KdxwOB5lJLAycDMpj3OAGh8KlG6WFOQSbPqNj3hCvaqTivgDFUWT0AYrzs8fV\n5dxj8YVBzgRHkjJhonmbW6apFHmsvZ9j7f3kZGVEDa07fHyyhy18Q2dZtStExa+6NH/aRnypK4dS\nV86UxZPnKgwQEjesRkVkPDBbRDZjJQNPi+AiiyKyBmg0xviBG4GX43mNmVatThdmWlF9LnjgmSPc\n99Qhqkrz+NjbNzMy6GYkxk5JOo5juuhYoCgngyvOW8G9Tx3itl/s4ANXnDIHvYsffU/Sk3lgIO4R\nkVpjzPFELjLGGIKk1EXkCHBfWLN3ATnGmBUicjlwG1bdq7Siyr5ReWFfe8jxzr5hVjO38sNK+rJ5\nVQX9w2NUJCBGddrqCvqGxjjeORjiIQoYI8NuDxlOR1JCRnv63fQMuClyTfR/x4EOzlxXhc8XvdbY\n5lUVEY8HWL+8bPzGfK6UINcvK2Nk1EN3n5veQTfH2vrn3PMVr5JzZgwxj3CmMlTGvJPPhYuf1ZYX\nhBhWK2rnVn0znny86ZKoYfVVLCXAWhH5CVYY4PXxXCgi9wLnABUi0gR8AViPXWQRq/jiO0TEBxjg\npgT7pswSfr+fh58/xn1PHaKiOJdPvfN0SqYIE1AWNpeds5RdjZ08v6eN01ZXcPaG6lR3SVES5bPA\nsyKyjYlajH5jzA3xvoCInA+0G2MOhp26Akv1FuBB4IciUmCMSTtJzVjKZ8riIy8nM+F6XLnZmeRm\nZ1JckM1LBzrGjwfyWwJS7NMtepsI0QpaBzYQIvVhRU1RXGM+Y21V1Lyh2aC4IJvigmy6e62b/Nau\nwTk3rLIynWxeVREilx+JJZVTy5ZP5aECK0+7f2iMvUe7qSsvCHmf1taXUDJFXtVUYamJcOqKck4O\nuDk54GZgeHKO11wR97dJRBzAbqyK82+yD3/F3tGLiTHm6hjnPw58PN7+KHODx+vjZ4/u58mdrZS6\ncvjEO0+fkxhYZf6Q4XRy0+Ub+MKPtvG/jxjW1BfrZ0KZb9yJZfRsAwJxPYneMV0H/CzC8SVAM4Ax\nxi8irUAdcGB6XU0u9TGKmSpKNDLChAL6h2LfvA4Mj9E74J415cDg/J0MpxNvWFHbE90TKoCu/Gz6\nh0apKo3POxfN2wWhBXej1YGLl94IoYoer4+27iFqKwrGhS7CjbzCvCxOWV6WcN57PEZlrLD/dUtL\noxpn9RWFOB0OAh8Pb5DU+hlrq6acV7C8V7NBQIRnzONjYHgMV142/cORw0Jnk0Q9Vv9jjLkM2D8X\nnVFSy8DwGN+9dzem6SRLqwq59ZpNaZ+oqiSH6tJ8rrt4LT/+4z7ueGAPn3zn6XGp7yhKmlBijIm3\n5uIkRCQTuArYHEfzuNxCqQqfLHKFanZUV7moTLI8dizmQWhpyki3uVk17GFszMfaZaVsCysqf7Rz\niK3rQyMc9uywxJ4bsjMptj0TMxEByWzqpSjbyv86/4wGdoSFunYPjo2HCV64pX7afyecNxTn8fwr\n1nhLSwuoLIuvwHAkgr+Tgff3SXueSn2wrMY61to5EBLyePYpNeTG6W0M/9xcck4ez796gvzcTEpc\nObR2hHr+ltWXTrnGe7w+DrdH9haefkotAHlDozR1DVNUlMewx09+biZ1tdHDjl9zWiZdvSOsWjq7\nQjllZQW09QxRXZpP/9AYu4K8rHNB3IaVvRN3UkSKjTGLRk1psXCg+SR3PLCHzt4RzpBKbnrLBq1d\npIRw/qZaXj7YxY79Hfzx+aO85dzlqe6SosTLCyKy3hizd5rXXwrsNsa0RTjXgpWH9bId2VELtMZ6\nwVTl1w0PuUNqEg0N5NKRsPNu7lhIuYezTTrOTWWh5dkY6Bumr3845Fxf/zAdFfmTjgE8s3Oims5M\nQgYLs520dg1S5MpjZNCNb8zDwEhkz9lsz11gLCdPDuGIkEcUL+6R0fGwupbWk2RnZYy/dnOrn3xb\n6KGnZyhkjvt6h+iPw1sV7XOzoWHCyNkX9t51dcUWswh/vwME/taw20Nf/zB+r5f+oVFG3Zkx34PS\nvNhtpkMW0N09SHffSNR+zxaJeqwqgX0i8hQQ8K/6jTHvnd1uKcnCPeblvqcO8egLloL+Fect54rX\nrph2jQVl4eJwOLjxsnUcau3l/r8eZsPysjlPMFWUWWINsENEdgKBrGW/Meb1cV5/HVYNRyBUeAn4\nPfBu4CGsfKud6ZhfFaDElUPHSevGYnlNEUVTKKMpykzp6XfPap2icAKhfuuXl4HXG9WoSmc2r6pg\n2z5rz2bHgY4QQzNYZCFY1XNFTdGslr5ZW1/C/ubEivjWlOWHhFoGjgUI3Ef226GOiRRknivirV02\nE+L6CyLyA2PM+4G7gUIgYE46iDNOXUTuBt4ItBljNkY4n/aStQuNV490c/cjhraeYapL83jvW9az\nZoaxwsrCpjAvi5veuoFv/nIn3//9q3zuhq1xF5lUlBTymeleKCL5WB6rDwYdvoEJ4aWfAhfZokyd\nwDtn0M85p6okj46Tw6yuK05ICU5RYhGcdxSgvWdoTg2rwN/z+f0kO8YmkLMz00LR4SF34QaIx+sL\nCZfMcDqpnkHoYSSmkze9vKaIpVUu2nqGyHA6GPX4qA8KK05HrZz83AmzZ67uXeI13S4DMMb8WEQO\nG2NWTONv/QD4NtEL/84LydqFQEvHAL9+/CC7D3XhAN54ZgNXXbAybhlOZXGzYXkZbzl3GQ89e5T/\nvm83H3/HaQuqUKay8DDGPDGDa4eAirBjnwx67MFav+YFrvxszl5frYXelVln9ZLiSV6PeNTYmtoH\nZlwrrcSVQ39v9BCvmQpMRGLdshLco76EVRVjMRpWaHe7aQ/xYp2+Zmqp+OlSWphDz4CbU5aXxX2N\n0+mIKjaRlZme95SBDYC5Ugqce5+YjTHmKRFZPUWTeSNZO1851tbPo9ubeOaVE/j9sG5pCe94/Zrx\nxEhFiZerLljJia4hXtzfwU8e3sd737xeb9SUtEVESrCKzp8GBLZmEwkFXFDod1WZCyJ5PYLz+aJJ\nl7d0ztywCtzEr64rprF1sgzAXIS8Zjid5OfO/qZi78Bk5bruvomQwLnayFzbUILX55+z1z91Rfmc\nvG6iLK8t4lBrL0ur5ubeN17DKlNENmCF/mXZj8cxxuyZhb7Ma8na2cLv93Oie4ijbf2c6BrieNcQ\n/UOjZDgdZGQ4ycpwUlmSR3VZHjVl+dSWF+DKz4q6UPYOjrLvaA+Pv9TC/iZrJ6m2PJ+3v241m1eX\n6wKrTAunw8FNl2+g++c7eHr3CapL83nra5anuluKEo0fAS8ANcDnscL1WlLaI0VZgGxaWYF7zEtb\n9xAnB93jx9t6hvB6Z18kpTA3i4GRsXHp96wokTfpHlWRk5mB22MLWHROFo5INP9pOjgcDjIz5u6e\nMDgML5VUleRRUZQ7Z8rG8Y4yC3jSfuwIehygctZ6NEFaS9bONodbe3l6VytPv9xKc3tsNZZgXPnZ\nLK1xUV6caxlgTifuMS/7j/XQFpRYePraSi4/fyVnrKueU6nshfKegI4lFl96/2v4P//1FPc+dQiX\nK5drLlo958a6vifKNFhpjLlaRC4zxjwAPCAikWpSKYoyA/JzM8nPzSQ7y8nJQ5Zhtb/pZIgIw2wy\n5PaQGZTMkz/LYXnJ4rQ1FTy/N5Lo6MIhnUTR5vIeOK5PoDFmbgI6Q5lXkrWzxcGWXu596hB7j/YA\nkJ3p5AypZG1DCXXlBdSW51NcmI3PBz6fn5ExLx09wxzvHuRE9xDHO4c43jXInsNdhHvZC3Iz2bSq\nnFV1RWyRKpZUWMINxOoAACAASURBVHGw8choTpd0lIOdLjqW+Lj16o3856938ZOH9rDvcBc3XrZu\nzvL19D1JT+aBgRgIpvcHlQyZ3WIpiqKME2zsxDKqZmIM+fz+EMGMDNvjUpyfPV54tyHN6rRFYqFH\nD21cmR5hgMkgpab9fJasnSmtnYPc83gjuw52AXDa2kpes6GajSvLI9aPCnixc7IzKC7IZnV9aJG1\nMY+X/qEx60fG58fpdFBelLvgv6xK6qmvLOTz797K7fft5vk9bZzoGuL9V2yYterpijIL7BGRcuAX\nwPMicpw4Nu4URZkmU9x6BEQSAgy5E5PhPtbWjys/G59vcmih0+HgrHXVOByw3XTg9fnSqErb1Gxa\nWcHLhzrHn0tDKaapJ6RNccHcKSzOBRuWldE7OEpB7uJRD06aYSUi9wLnABW2LO0XgPVY8rRfY55J\n1k4Xv9/PEy+18Mu/NDLm8bG2vpirLljJa89YOqPd66zMDMqK0lOBRVn4FBfm8Kl3buHuPxn++vJx\nPnvH85y6soyLz6jn1JXlaRUCoCw+jDHvth9+T0S2Y3mr/pzCLinKgiaS0RNgabULnx+K8rNo6rAi\naPYc6WZDmBrd4eN9tPUMcZadvuD3+zlyop+2niHoGqS6NLLkeCDMa/2yUk50DYXUVkpnwnOQIsnU\nr20onnQsnSkqyF50tfKSqQp4dYzz80qydjoMDI9x1x/28tKBTgpyM3n/5RvYsrZSvUrKgiAr08mN\nl61j48py/rS9iVcOdfPKoW7yczIpK8qlrCiH4oJs/IDX68fv95OXm0lxvvXDW19ZyMolRWqEKXOG\nrQ5YDxw2xvhitbevqcSqsXgmMARcY4zZGXR+GZY4Rg1WDcbrjTFHZ7vvijKfmKq2U1amk/XLrEjc\ngGHVNzTKwdZeasusSIfeQbdlQGHJsS+rcbG/6WSIpytwPhqFeVmTonvSnfVLS+kfGqOm3DIGG6pc\nNLVPbLpnpGNxKCWE+ZnlNw9p7hjgtnt20dXnZt3SEm6+/JQ5LZqnKKnA4XCwdV0VW9dVcfREP3/Z\n0czB1j46e4dp7oid21delMs5p1Rz7ik11FXMv1DCjpPDNDb3crStn6Mn+hkYGaO4IJuSwhzKinI5\nbXUFK2pdupmSJETkp8D3jDHP2EbVy8AgUC0i/2yMuSOOl/ke8Iwx5goRKQDCt1+/CdxnjLndrsH4\nDeDaWRyGosw7pvqNiyYc0HFymI6Tk2tR9fS7WVbjCjGqgsnLXji3ssWFORQXTtwblrlyQgwrJf1Z\nOJ/GNGbf0R6+c+9uht0e3vbaFVz+muVzqkiiKOnAshoX73nz+vHnQyMe+oZGcTqshdXpcDA04qF3\ncJTeQTd7j/SwfX8HDz17lIeePcprN9ZyzetWUZzmYQR+v58Dzb08/PwxdjZOxMc7gNycTFo6JlJF\nH3zmCNVl+Zx7SjVXvX5tCnq76LgAK3cX4DrgFWPMm+2aivcDUxpWIlIDnIdtKNl5v+G5v+uBz9mP\nHwN+IyLOeD1iirLYCI5KiFZ3KpiyIsvQKMrPpm9oco2n2nm4CTcdllSkvwiHkmTDSkQuwtr9ywZ+\nZoz5XNj5W4B/B/rsQ/8W545i2vL8njbufGgPfj/cfPkGzj2lJvZFirIACcjwBlNWZMVlAbzm1Fr+\nYczLrsZOHnr2KH/bfZwX97dz5WtX8vozlqRlCIQ51sNvnjjIwVbrJ2tVXRFnbahmeY2LhqpCcrMz\nGR3zcnJwlJaOAZ7f08ZLBzq5/6+H+ePzx7jsrKVcetbSiII1yqwwZowJJHucB/wWwBjTKCLxhAys\nBo4BPxGR04HngFuNMcExSLuAq4GvAldhlSepBo7PzhAUZX5T5sqNqgxYUZIX07Bq7RqkxJUzSfk4\nQOYC3qjOzc4Yr3G1pHJxGJDznWSKVziwdgevBPYCT4vIQ8aYZ4Oa+YGvGWO+kqx+zSUPP3+MXz/e\nSF5OBrdctZH1YYmZiqKEkpOVwVnrqzlDKnlyZyv3PnmIX/z5AE+/cpz3XLY+bWS9u/tG+PXjjWzb\n2w7AaasruOycpaypL5nUNjsrg6qSPKpK8jh9TSXDbg/PvXqCB549yv1/O8yTu1r5u9et4pwN1Roi\nOPuMiMgqrHIerwe+COPrUTwyVZnAFuCjwLPA94FPBV7H5hPA7SKyA3gKaAO8sV44XT7L6YjOTXTm\n09xcdGYOTqeD/Nwsegfc7NzfAUweQ5FrasMKoLlrmNz8bByZkzehysoKI77uQuGNVUUzfo2FOjfp\nSDI9VqcBPcaYVwBE5G6sXb5nw9rN+zsLn9/Pr//SyJ9eaKLUlcPH3r6Z+ip14SpKvGQ4nbx+Sz1b\n11Vxz+ONPL37BF/+yXauef1qLj69jqwIi2syGPN4+dMLTTz4zFHcY15W1Lq4/hJhZV38C19eTiYX\nbannrReu5n8fepVHtjVxxwN72L6vnXe/ad2iU1CaY74KbAeGgWeNMQfs4xcBr8RxfTNwwhjzDIyr\n2/5jcANjzHHgGvt8JXCDMaY91gsvlBpms81Cqu8228zXuRm0vVVLyvLIzc6YNIa+/sl5VZHIz8li\nyD026Xhv7xCVpXnzcm6SwXz93CSDuTA4k2lYLcFapAI0Aa+J0O5WEbkJeAn4iDGmOUKbtGXM4+PO\nh/awbW87dRUFfPzazZQV5aa6W4oyLynKz+Z9b9nA2Ruq+enDhnv+fIDHtzdx1fkrOXtDddJyFf1+\nPy/sa+eexw/S1TeCKz+L6y5ew3mbaqetYpifm8XVF6zigk11/MhWCz3Q/DzvftM6zpDKWR7B4sQY\n83MReQZLsW9b0KlG4ENxXN8oIp0istEYsxt4I7BbRE4FRo0x+0WkFugCfFiG3A9mfSCKsgCYab7s\nkHsMBw4K8jIZGJ4wsIryF0+NJCX9SaZhFR4dG2nL+R7gh8AYVrjFXcAlU71oOrk323uG+PYvd7L3\nSDcbVpTxufeejSs//h+SdBrLTFgo4wAdS7pwUaWLczbX8/NH9vHg3w5zx4N7+NP2Jq67dB1nnVJD\nZsbc5F95fX62vXqC3z5+AHO0h8wMB1e/bjXXXryWgryZL+aVlS4qK1187dZKHvjbIX760B6+e99u\nLjlrKTdfuZG8HNUXminGmCPAkbBjxxJ4iQ8Ad4tILpaq4HuBzwMdwNeBrcB3gVysAvdfmHGnFUWJ\niNPpYMPyMjp6hmntGiQr06kh1Epa4fBHywacZUTkNOAOY8yZ9vOPAPXGmE9FaV8INBljSqd4WX+6\nuDd3Hujkzof2MDji4az1Vbz3zevJzoo/XGmhuGoXyjhAx5KOVFa62NvYzu/+dphnXjmB32/VKtm6\nroqz11exaknxrBhZA8NjvLC3jT+90ERbjxWmcsbaSt5+0SqqohSlTJRI70lr5yB3PLCHo239VJXm\n8f7LT0kozDBVVFa69M4mMdJm7Uo3Fspv1VywUOdm2O1h18HOkGOZTidb11Xx3J4Tk9qfs2GyCNhC\nnZvZQOcmOnOxdiVzO/RloExENmGJV1wPfCwspGIN0GirON1oX5PWDAyP8bu/HebPLzaTlenkhjcJ\nF26u0x0URZkjKorzeN9bNnDZ2ct4fEcLL+xr44mXWnjipRayMp0sq3axsq6IhqpCqkvzqSrLw5WX\nNeV3cmTUw/GuIQ4097LzQAf7m3rx+f1kZjg4f1MtbzxrKUuSIOlbV1HAZ284g/ueOsTDzx/jK//7\nIpeft5y3nLtszrxyiqIoqSQvJ5NzNtTQO+CmsaWPZdWFIbWcFGU+kTTDyhjjE5Gbgd9ghUzcbRdt\n/AYTIRUfBN4hIj7AADclq3+J4h718tiLTfzhuWMMuz3UlOXzwStPpUFFKhQlKdRVFHD9G9fy9xev\nZt+xk+wwHRxs6eVQax+NLaEqUzlZGbjys3DlZ1khfH4rzG/M66Onb4SuvtDCk6vqijhtTQWv3Vib\n9AU+M8PJ2y9azakryvjhQ3v53d8Os920857L1s8L75WiKMp0KC7M0fxSZd6TtFDAOSLp4RQnuod4\nevdx/vbycXoHRynMy+It5y7j9VuWzEipbKG4ahfKOEDHko7EMw73mJejJ/pp7RqkvXuYtp4hunpH\n6B8eo39oFI839DevuDCbuvIC6ioKaKgqZNOqckqSYEzFM5ahEQ+/eaKRJ3a24nDAG86o54rzVlA4\nC/lds4mGAiaMhgJGYaH8Vs0Fi3FuwkMBnQ4HZ62vntRuMc5NvOjcRGe+hwLOW7r7RnjpQCfP72kb\n3wnPy8ng8tcs59Kzlk4qeqooSurIycpgbUMJaxsm15Ty+/2MjvlwOCzPULJUBadLfm4mN7xpHWet\nr+bHD+/jse3NPL37OG86aymXnNlAbrb+9iiKsng4fY16tJT0RlflKBzvGmTH/g527O/k8PE+wCqw\ndcqKMs7bWMOWNZUJiVMoipJ6HA4HOdnz73u7blkpX37f2TzxUgsPPHOE+/5q5XWev7mOCzfXUVGS\nl+ouKoqizDqFuVkMjExIq2ek+WaYoiTNsBKRi4DvAdnAz4wxnws7nwXcCZwP9ADXGWP2Jat/Xp+P\ngy197DrYyUv7OznRPQRYbuf1y0rZsraSLWsrKXVpQqWiKMknK9PJJWc28NpNtTyy7RiPbW/moWeP\n8odnj3LKyjLOXl/NqSvLZ1wrRgnFLvp7J3AmMARcY4zZGXS+BrgbqMbaf/uiMeY3qeiroiw0TllR\nht8P2/a1AaR9lIGiJMWwEhEHcAdwJZYi4NMi8pAx5tmgZu8CcowxK0TkcuA24NK56pPP7+d41xCN\nzSfZe7SHVw51M+T2AJCd6WTL2kpOX1PB5tUVaZfPoCjK4iUvJ5Mrz1/JZecsY/u+dp7Y2cIrh7p5\n5VA3AMtrXKxfXsqKmiJW1BZRVpSjKqUz43vAM8aYK0SkAGtzMJhPAU8aY74sIquAF7BEmhRFmSEO\nhwOHA5ZVuxgd86W6O4oSk2R5rE4DeowxrwCIyN3A1UCwYXUFExXrHwR+KCIFxpjB2ehAc/sAB1t7\nOd41RGvnIIeP9zE44hk/X16Uw9kbqtm4spz1y0vJ0TA/RVHSmJysDM7bWMt5G2s53jXIrsYuXj7Y\nyYHmXo6cmEhULszLoqY8n5rSfKrL8igryqW0MIdSVw5FBdnkZmeo4RUF2xt1HnAtgL0eha9JPiAg\nB1sItCStg4qySKgtn/tyF4oyGyTLsFoCNAc9bwJeE62NMcYvIq1AHXBgpn+8q3eEz/9oW8ixiuJc\nNq0qZ019CWsaSqgrz9ebC0VR5iW15QXUlhfwprOXMuz2cOR4H4dP9HPkeB/H2gc41NJHY3NvxGsz\nnA7yczOpKy/g4+/YPCN10wXIauAY8BMROR14DrjVGDMU1OarwCMi0gIUAG9OfjcVRVGUdCBZhlW4\npns8K3c81TAdlZWumI0qK1088K23xfFyqSWescwHFso4QMeSjiyUccDcjWVpfSkXzMkrLzoygS3A\nR7EiLL6PFfr3xaA21wCPGmM+IyJbgHtEZJ0xZiz8xYKIa+1arOjcREfnJjo6N9HRuUke8Rgvs0EL\nUB/0vJ5QD1agTQOM52TVAq1J6Z2iKIqiTKYZOGGMecYY4wfuxQptD+YG7JwqY8wOwAMsS2ovFUVR\nlLQgWYbVy0CZiGyy1f+uB+4XkVNFZK3d5vfAu+3HVwA7Zyu/SlEURVESxRjTCHSKyEb70BuB3WFr\n1zHs8D8RWQ+UY4W7K4qiKIuMpBhWxhgfcDPWrt5B4M/GmGewDKkr7WY/Bdwi0oQVZvGRZPRNURRF\nUabgA8DdImKwoiq+Tuja9S/AG+zzvwHeZ4xxp6SniqIoSkpx+P3h6U+KoiiKoiiKoihKIiQrFFBR\nFEVRFEVRFGXBooaVoiiKoiiKoijKDFHDSlEURVEURVEUZYYkq47VjBCRSuBO4ExgCLjGGLMz6HwN\ncDdQDTiALxpjfpOKvk5FHONYBvwIqAF6gOuNMUdT0depEBEBHgs6VA583hjzzaA2WVhjPR9rLNcZ\nY/YltaNxEOdYLga+AZwK/L0x5rfJ7WV8xDmWjwK3YH33DwDvMcaElz5IKXGO40bgc1g18TqAf7Sl\nrtOKeMYS1PbNwIPAxcaYvySpi3ET5/tyC/DvQJ996N+MMXckr5fpjYhcBHwPyAZ+Zoz5XIq7NCeI\nyN1YCoptxpiN9rEi4JfAOiwZ+7cbY9rscx8DbgV8wKeMMffaxzdire1FwF+Am40xvvmyvoQjIg3A\nXYAAbuA/jTHf1bkZL7PzPFCJdR93jzHmkzo3E4iIE3gGGDPGnK9zYyEiHcCI/XTAGLM+lXMzXzxW\n3wOeMcbUApuAcGPjU8CT9g/424AfJLl/8RJrHN8E7jPGnAJ8DetmPu0wFg2Bf0A7cF9Ys3cBOcaY\nFcAXgNuS3c94iHMsB7HG82smF7tOG+Icy37gDGPMcuBxrM9cWhHnOB4A1tqfry8D3012P+MhzrEg\nInnAp4G/JruP8RLnWPzA14LaqVFlY9843oFVUHg1cLGInJvaXs0ZP8CWoA/iE8BuY8xK4B7g3wBE\nZBXwYWAjcCHwbRHJta/5LvBp+3teArzDPj4v1pcI+LE2fhuAc4FP2xL9i35u7Dpxb7X7LcBrRORS\ndG6C+QBwiIn7EJ0bC0/QmrPePpayuUl7w8r2Rp2HbWQYYwaNMT1hzXxAof24EKvYcFoR5zjWA4/a\njx8D3mbvUKQtInI+0G6MORh26grgJ/bjB4HTRKQgqZ1LkGhjMcYcNsa8gvU5c6SkcwkyxVj+YIzp\ntZ/+FViS9M4lwBTj6DJWGQewdv/T1uANMMV3BeBfgf/C8mSn/WcsxljSvv8p4jSgxxjzijHGi7Uz\nenWK+zQnGGOeAk6GHQ5eE34CXBV0/F57TWwBtmHJ15cBYoz5o93uLibm623Ms/UFwBjTbIz5m/24\nAzBAHTo3ABhj2u2HGUzcn+rcACJSBVwL3M7Eb6zOTXRSNjdpfdNusxqrAONPRORVEblTRPLD2nwV\na2JagCexrPp0I55x7GLijbwKyMIKb0xnrgN+FuH4Eiz3a2AnqhVrAUlnoo1lPhLPWN6D5flJZ6KO\nQ0T+0a579z/AB5Paq+kRcSz2jvVGMxG+nPZGIlN/vm4VkcMicq+I1CezU2nO+G+iTRNpvrExywSv\nCX1AlohkY60LwZuhgXmpxVo3AjQzMV91zL/1JQS7wPQarPA3nRsbEXkV6AReNsY8gs5NgG8CnwW8\nQcd0biwyRGS/iLwiIu+3j6VsbuaDYZUJbAH+GyvHxYsV+hfMNcCjxpglwOuB/7VjItOJeMbxCWCr\niOwAzgLaCP0SpRUikollAP4yjuZp/VlLcCxpTTxjEZGbgWXAt5LVr0SJNQ5jzPfskJoPAV9KZt8S\nJcZYbsP67gdIa49PjLHcg/W5WoW1E3hXEruW7oQbzBkp6UX64CDyZz3aWjHVGpLW60s4IlIC/Ap4\nvzFmIEKTRTs3dipELbBaRM6J0GTRzY2dm+kzxjzD1OvDopsbm63GmLXAW4D/IyLnRWiTtLmZDxPX\nDJwwxjxjW4r3YoVUBHMDVsV7jJXA7sFa3NOJmOMwxhw3xlxjjNmClQCeE+QaT0cuxYphbYtwrgVo\ngPHcgvDdgHRjqrEEMx+8CVOORUSuwPLqXmmHJKUrcb0ntqfnEhFJ5xvViGOx+7wFeFhEDmPFfN8t\nIq9LfhfjJur7YoxpN8a47TDN24GtSe9d+tICBHvw6gn1YC10gteEYmDUGONm8rw0YM1L+K5w8HzN\nt/VlHDuf437gNtsjAzo3Idjh6o9g3Sjr3Fj5eBfba8S9WBvwv0PnBgBjzDH7/6PA77HWnZTNTdob\nVsaYRqDTVusAS2lot4icarvSwQqxezOMh9WUY7n30oZ4xiEitSKSbe8If5X0FeEIcB3w88ATEdkY\n9J78Hni3/fgKYKcxZjDJ/UuEqcYSINqOR7oRdSwicgHwH1hJwv0p6l+8TDWO0wOGlIhcCzSnuZEY\ncSzGGK8xpsIYs8JOjH0SSw30iVR1NA6mel/W2AsPwI3Ay8nvXtryMlAmIpvsiIrrsW6wFwu/x/pM\nYP8fGPuDwFUi4hJLNW8r8Bc7B9mIyFsiXDPf1hdgfCPl18DDxpgfB53SuRGpFEsZOeDRexuwB50b\njDFfMcbU22vEVcB2Y8zb0LlBRErs/LNAHtplWL+1KZubtDesbD6AtYtrsKzGr2MN8kr7/L9g5VgZ\nLM/V+2zLNN2INY6tQCOWJZyBpT6Sltj5YZcCwdLjNzAxlp8CbjsH5ovAR5LawQSINRYRea09jiuB\n74vI7uT3Mj7ieF++jLXb8oKINInIk0nuYlzEMY63A0dFpBlLPv4dpClxjGXeEMdYPgg0B31fbkpu\nD9MX24t3M9YadRD4sx3as+AQkXuBp6yH0iQi78HKETlFRI4Bfwd8HsY3Hf8beAVrY+FjxpiAdPIt\nwFftz9NJ4Bf28XmzvoRxIfBW4MP2vDSJyNvQuQFLhe339m/6TuBxY8wv0LkJx8FE5IzOjXU/85T9\nuXkO+KkxJqB4nJK5cfj98yGySVEURVEURVEUJX2ZLx4rRVEURVEURVGUtEUNK0VRFEVRFEVRlBmi\nhpWiKIqiKIqiKMoMUcNKURRFURRFURRlhqhhpSiKoiiKoiiKMkPUsFIURVEURVEURZkhalgpiqIo\niqIoiqLMEDWsFEVRFEVRFEVRZogaVoqiKIqiKIqiKDNEDStFURRFURRFUZQZooaVoiiKoiiKoijK\nDMlMdQcUJd0QkW8CY8DDwO3GmI0p7tK0EREfUGGM6U51XxRFUZS5QdctRUkP1LBSlMn47f8PAP83\nVmMRuRt4yRjzraBj/wTcCJwC3GmM+eAc9FNRFEVRQNctRUkL1LBSlCgYY1qBX03z8ibgX4F3MLHg\nKYqiKMqcoeuWoqQWh9+v3x1lcSMiG4C7AAH+CpwAOoFHgO8EQipE5EvAzUAe0Aa8C1gPfBcYBfqA\nh4wxtwS99neAzHh2/kSkzu7HVvvQNmPMZfY5Ab4NnAl4ge8bYz5v9/37WDuMo8C9wEeNMaP2deMh\nFSKSDXwJuA7IBe632w4nPGmKoihKytB1S9ctJT1R8QplUSMiGcB9wG+BUuA7wD9g7db5g9qdAdwA\nbDTGlAKXAq3GmJ9i/dD/uzFmRfDiNA0+A+wFKoBK4Iv2384HHgWeBJYAK4A/BF33Wbv96cBZwIej\nvP6XsBa/rfZrlNnHFEVRlHmCrlu6binpi4YCKoudM7B+qL9hjPEDfxKRP0do5wHygdNE5K/GmKNh\n5x2z0JdRrIVjlTGmEXjePn4pMGCM+Y+gts8BGGP2BB07LiK3A1cA/xnh9T8AvNEY0wEgIv8G/B74\n1Cz0XVEURUkOum7puqWkKWpYKYudOuCYvTgFOETYgmOM2SUinwa+CqwVkQeAjxljOu0msxFT+2X7\n3xMiMoIVznEb0AAcjHSBiNQA3wLOBrKwQiX2RWhXBJQAP7PDLMAaY+4s9FtRFEVJHrpuKUqaooaV\nsthpBarCjtUQYUEwxtwF3CUi5Vgx5Z8DPgr4mHrnL67FyxhzErgVuFVEtgKPiciTwDFgZZTLvgl0\nAacYY9wi8i7g/RFeu09EeoG3GWMmLWCKoijKvEHXLUVJUzTHSlnsvAgMi8hVACKyBngzYYuKiGwQ\nkdeISCbQDwxi1QwBaAdWh7XPEJFcrM2LTBHJsePioyIibxGRBvtpJ1YYxxhWMnKhiHxKRHJFpEBE\nzrbbFQEH7MUpHytJORrfB24TkSX236sTkUun6pOiKIqSdui6pShpSlINKxFxishzIvLXCOduEZFe\nEWmy/031RVOUWcEY4wWuAj4pIs9jxXjfH9QksFAVArdj7bI1Y313ArVCfgicKyLdInKXfexLwBBW\nfPhNwDBWuMRUnAY8LSIngceBLxpjXrXVj94IXIy1U3kQeJN9zb8CN4rIs8ADWDHswYtr8ON/BZ4F\nnrJ3AR8D1sXok6IsWkTkbhFpF5HdU7R5t4gcEpFmEbkjmf1TFie6bum6paQvSZVbF5EPAucD9caY\nC8LOfRgoNsZ8JWkdUhRFUZQoiMgFWDeadwXkq8POb8ZSZrvAGNMqIssiCAQoiqIoi4SkeaxEpAq4\nFmv3JFpc72wo1CiKoijKjDHGPAWcnKLJB4Db7KKsqFGlKIqyuEmmeMU3seoWeKdoc6uI3AS8BHzE\nGNOclJ4pSpIQkY8C/xTh1LPGmOuS3R9FUWbEGmBERF6wn3/OGPNIKjukKLONrluKEj9JMaxE5CLA\nZ4x5RkTOidLsHqyY3zGs+gR3AZdM9bp+v9/vcKiTS5k/GGOinVoOvDN5PVGUWWWx/hBnAauAc7GE\nAB4XkTXGmIGpLtK1S5lP6LqlLGBm/Yc4WR6rc4GLReQwkAOUisj9xpgrAw2MMe2Bx3axuH+O9aIO\nh4OOjv656G/Sqax0LYixLJRxgI4lHVko44CFN5ZFShPwhDHGA+wTkaNYhtauqS5aSGvXbLOQvhez\njc5NdHRuoqNzE525WLuSkmNljPmKMabeGLMCS8lmuzHmShHZKCJrwZILFZGA5Xgj8HIy+qYoiqIo\n8RK8bmEpsV1sH68HlgKHU9U3RVEUJbWkokCwgwkpzRuADuDrwAeBd9jVtQ2W1KeiKIqipAQRuRc4\nB6gQkSbgC8B6rHo9XwPuBd4gIgeBEeBDxpi+VPVXURRFSS1JN6yMMc8BF9iPPxl0/OPAx5PdH0VR\nFEWJhDHm6hjn/cCHktQdRVEUJc1JaoFgRVEURVEURVGUhYgaVoqiKIqiKIqiKDMkqaGAIuIEngHG\njDHnh53LAu4Ezgd6gOuMMfuS2T9FURRFUZKP3+9HJegVRZnvJNtj9QHgEBPiFcG8C8ixlQO/ANyW\nzI4pSjBen4+RUU+qu6EoijLn+Hx+jncN4vX5UtaHnQc62XmgM2V/X1EUZTZImsdKRKqAa4HPYqkp\nhXMF8AP79z2oAwAAIABJREFU8YPAD0WkwBgzmKQuKoucnn43T+5s4UBzL4da+/D6fGxdV8UlWxtY\nUVuU6u4piqLMCdv2tQFwtK2fczbUpKQPbo8XsDxXiqIo85VkhgJ+E8uo8kY5vwRoBktpSURagTrg\nQHK6pyxWPF4fj25v4vdPH8E9an086yoKcDodPPdqG8+92sbpayr44JWnkpmhaYmKspgQkbuBNwJt\nxpiNEc7fAvw7EJBZ/zdjzB1J7OKM6BsaTXUX8HgnPGVenxpWiqLMX5JiWInIRYDPGPOMiJwT52Vx\n3cHORdXkVLFQxjKfxrFj3/9n77zD47yq/P+ZKo2kUR91WS6yry3XFMcJaQQIJJCEkND3R5KlZJeF\nAMv2CtvYBXZZ6i4LoYUsLKSQCklIQnpxnLhburYsWVbvXaPRlPf3xxTNjKZKoyny/TyPHk15y7nv\ntHvuOed7hvjeA0fpHZ7BWmDmYzfs4PLddRQVmNE0jUMnh/n5E5KDp0a459kO7nj/npytA8il1yUW\na2UcsLbGsob5HvB14EdRnteAL0spv5Q+k1JH9+BMpk1gxu4M3D7aPkJDuSWD1igUCsXySVfE6hLg\nbUKITiAPKBNCPCClvDFom16gETgihNABtUBfvAMPD0+vhr1px2azromx5Mo4hsbn+MXT7Rw8NYJO\nB1edX897Lt9IkcWEfdaBfdaBzWalodzCZ27ayb/97A1+u/8spQUmrr24KdPmJ02uvC7xWCvjgLU3\nlrWKlPI5IURznM1ycrWlf3SWaXvmI1ZD4/bA7anZBVCOlUKhyFHS4lj5VvK+BCCE2Af8u5TyRiHE\nTsAhpTwJPATcCjyKt97qkKqvUsTD5fbQNTDNye4J2nsncbo9FOWbKMw3UVGSj63UQnlxHh6PxoLL\nQ/fQDK+1DXK615u1s6WhhA9fvYV11dEnhnlmA5+5eRf/fNcB7nnmNNXlBZy/xZauISoUiuznDiHE\nx4GDwGeklD2ZNigeU3MLdA1mh2Ov6qoUCsVaIa1y6z50LKoC3gIMA18B7gKuEkJ0AyPAhzJgmyKH\naOsa58e/aWNowh5/4yB0OtjWVMaVe+rYu7UqodS+Mmsen33vLr7009f56eOSlvVl5Jsz8fFRKBTL\nwdfSo1FK2ZHiQ98D3Ak4gT/HmzJ4dYrPkXKczswpAIZTZs1jfMYBQKHFlGFrFAqFYvmkfWYopXwF\nuMJ3+8+CHnfhlVxXKGJid7i453ftPHOoD50OLttZy/YN5WxpLMWSZ2Bu3sWM3cnwxDzDE3YmZhwY\nDDpMBj2l1jzO22yjpNCc9HnXVVu5Zt86HnrxDI+9epYbL9+4CqNTKBSpxlfn+yNgHtgqhLgE+KyU\n8oMrPbaUcijoPN8G/iKR/TKVPul2e3jhsDfLvti6NOWusrIo7XWk/ZPzAVtm7c41nVq6UtS1iY66\nNtFR1yZ9qCV3RU4xO+/k3//vEF0D09TbCvnoO7ctkULPNxspL86Pmd63XK7Zt45nD/Xx2KtnuWJ3\nHeXF+Sk/h0KhSDn/hrf5/F0AUsqXhRA/Xu7BgtPYhRCbgXYppQbcBhxJ5BiZqq/rGZ5hajp6lP9M\n9zhFaYwaeTwaXb0TgfvFVgut7UNUlqg6q3DWUl1mqlHXJjrq2kRnNRxOpR2tyBlm7E7+/edep+qy\nXbV84ba9ae8vlW82ctMVG1lwefjVc6nOKFIoFKuEQUrZHfZYQh3AhRD3A895b4puIcRH8aax+8WX\nPgn0+NLYbwQ+niKbV4WFCCmAm+pKArcN+vRFq2bszkAPrWAGxubSZoNCoVCkknQ2CNYBrwI2vHVW\n9wSnAvq2yel+IIrVwxupOsjZwRmu2F3HLdcI9BmSPb90Zy1Pvt7Di8cGeNuFjTTVqBC7QpHlzPia\n1AMghHg7MJrIjlLKm+I8/3ng8yszL30MTSx1WoosJqrLChgcT69DMzo5H/HxYPl1hUKhyCXSFrHy\npUlcJ6XcAAjgTUKId4Rt5u8H0uj7U06VApfbw3fuP8rZwRmu3JNZpwpAr9fx/qu86suPvHwmY3Yo\nFIqE+Wvgt0CLEOJZ4G7gTzNr0urj9njo6Jtibj52cE6v0wWao/ePps+56h+LLvyrnCuFQpGLpDUV\nMKjI1+A7dySN1ZzsB6JYHTRN4yePtdF2doILttj4yDsy61T5aVlfRlO1lTfkMENpXuVVKBTJIaV8\nCbgK+ATwNaBFSrk/s1atLr3DM7zWNsTQxBxHOkZiOioeTWNi1qvKFymitRqMTYVGq8qtofWqC053\nWuxQKBSKVJL2GishxHG8cupHpJRPRNjkDiFEpxDifiFEQ5rNU2QZj77cxYtHB9hQa+Xj17dkhVMF\noNPpuGbfOjTgidfCSzcUCkW2IaUck1I+JKV8UEo5kml7Vpvu4ZmQ+8c6o2c+pvtr1ePRONkzEfKY\n0+UJqZl1urJHDl6hUCgSJe2OlZRyO1ALNPuaBQdzD9AEbAL245XHVZyjHGgb4v7nOqgozuMzN+8i\nz2TItEkhXLjVRkVxHi8c6Wd6biHT5igUiigIIeaFEPawvzURatY0jfmFhHQ4cHsiOytmkyEkYrTa\nDXsjRc+m7QsU5i+qEap+VgqFIhfJiNy6lHJSCPE4cB1eQQv/40n3A1lL2vxrZSypGEd7zwR3PtqK\nJc/AF29/E+vTrP7nJ95Y3nPVZu588Bj7T47wwatFmqxaHur9lX2spbFkOUVBt814f3t2ZMgWnn2j\nh5mZeS7aVr3iY3X2TzM0MUfL+nKKC7z9+aJFe1rPjANgLTBjK8mnvDgfo8G7vtrcUML+1vnA/uZV\nXMhyuSPbl29ePKdnlZ07hUKhWA3SqQpoAwqklF1CiFLg3cC3hRA7gIXl9gNZK9r8a6XPQCrGMTHj\n4J9+cgCn080f3ryLQqMuI9cmkbGct7GcgjwjDz13msu3V6/qZGQlqPdX9rHWxpLN+BrQ+3EBvxRC\n3Bht+3SQKsfBXxN14swYACUFZiajRNBn5r2RojyjgaqygpDngtOsV9un6Y8gp76+phijQU9DVREn\npu243eeOY+VyezDodWlvzKxQKFJPUqmAQogPCiGW64yVAg8JIXqAQ8DvpJQ/B24lR/uBKFLPgtPN\nt+47yvi0g/e+eRN7Nldm2qSYWPKMXHleHdNzTl5rG4q/g0KhyDhCiFqgOYHt7hZCDAkhjsbZ7p1C\nCI8Q4i0pM3KZRHOqgplzRBayqPY5W+MzjpTaFE6k1Omacu+5e4a8tWGye3xVbcgWFpxuDsghTvVM\nZtoUhUKRApJ1kj4M/IcQ4gfA/0gpexPdUUp5Ctgd4fE/C7qdU/1AFKlF0zR++OtWOvunuHRHDdfs\nW5dpkxLizXvqeeyVszx7qI9Ld9Zm2hyFQhGGEGI46K4OWAA+k8Cu3wO+Tox6XyGEBfhL4PmV2JhO\nnK7I0aCxKa9DdWZgKuDoLBeX20Pv8Cw1FQVx62MbKotiPr+WmXN4g6lj05F7eikUitwiqYiVlPIG\n4FK8OeoHhBD3ZsMKnWJt8OALnexvHWJzQwm3XLM1Z9IibKUWtm8sp713kp4wJS6FQpEVbA76Wy+l\nrJNS3htvJynlc8BEnM3+DvgmMEcS7UJ0GewsUlcZ2WlyupdKnHf0TfHKiQFGJu1JnWNgbI7+sVna\nY0RiGm1FVBZbqLcVBh4rteYldZ5cR5WSKRRri6RVAaWUZ6SUfwm8F9gHPCiEOCKEuCLl1inOGV45\nMcBDL56hsiSfT920E5Mx7YKVK+LNe+oBePZgX4YtUSgUfoQQZiGEGa/T4/9bCHp8pcffBuwMctIS\nniZriW8ak5KC5IcRrW1FcGRJ0zQWnO5ADVd7b3Kpan4BjWl79NTE2opCmhtKQhbRmhtKAagozo+2\n25piIijtsvXMGOPTq5uGqVAoVpekUgGFEHnAB4A/wtvk92+AXwB7gf/FK5WuUCRFZ/8UP/p1G/lm\nA599766AslUusbu5gtIiMy8d7+e9b95Enjk7RSwUinOMKaI7Oxqwsnw3+AZwR9D9hMNQxVbLEtEP\nh9PNzNwCFSWWhA0YnHKgGSJ/35hNhkCj3eryAgZ9ohEVFUXYKguXbL9h3kXf8CwArT1TATv9FBTl\nJyyDPjDpoNiXchg+ztIS77Grq5eqvTqcboqtFjS9PutFUVLBie7JwDXWgP6JebZsjF5bfC5ck+Wi\nrk101LVJH8nWWHUCzwJ/LKV8OejxF4QQT0bbSQihwyurbsP7w3NPcG2VbxsT8APgcmAc+LCUsi1J\n+xQ5xsSMg2/ddwSXy8On3reLeltu5tob9Hou31XHwy+dYX/rIJfvrsu0SQrFOY+UctXCHkIIA3A+\n8JgQAqAa2COE+JCU8pl4+8/NOpaoQr5yYgCA3ZsqseQl9vM8Nj7H1GzkKMferVWAN91sanaBqWlv\nOt/EuBmjtlTyvMikD2wTiVeP9LJzYwXgraHyS7VHwr3gDBwreJxOl4eJybklj/spKy8M7Hf85CAF\n+SbaeycpK8qjqWZtTQ7nF1wRr3dr+xDtvZPsaa4k37z4PlhLSqKpRl2b6KhrE53VcDiTzbe6QEr5\noTCnCgAp5cei7eSTT79OSrkBEMCbhBDvCNvsI0Ceb5sv4F0JVKxhnC43377/KBMzC7z3qk3s2pTd\nCoDxuGJ3HTodPHNIpQMqFGsVIcROIcQWKaVbSlkppdzg+916Fvi9RJwqAIMhenBrLMF0MI+mMRnF\nqbq4pQaDXo9Br8do0Ic0341WvxrLUYLFxsF2h4sDcijgCEbC7YkcKGztiq32F5ym2NE/xbHOUeYX\nXPSPzcbcLxcZHIvsxPrTLg+1jwRUEhUKRW6QrGP1eSFEuf+OEMImhPhKIjsGNf81+M4b/q17A/AT\n3+1H8K78Lc1VUKwZfv7kKTr6prhkezXXXJQbCoCxqCjJZ+fGCjr7p5SIhUKRRQghdgshXhZC2H2y\n6B4hxFKlhqX73Q88570puoUQHwVuAd6zUpsczuin7x5KbHU5vBFwudUboMszLk0NDE5PXnDFHXpE\n5hwuugamGYjQhyoYTdPoG50NuQ8wODYXVerdj16fG6JFqSARZ7FnRP2WKBS5RLKpgFeHyaMPCyGu\nBf48kZ2FEMeBDcBPpZRPhD1dD/T4jqsJIfqAOuBUkjYqcoBXTwzyzKE+GquKuDWHFADjcdnOWo6c\nHuWFI/188K2bM22OQqHw8l94W3l8CW9z+g8CcUPkUsqbEj2BlPLaZVsXgWipdh6PFnA+zvRPhTyn\n03mly+Mp603NLlBbsbx1y0ScgcPtoyH33R4No0FHd1D0pSFH074VCoUiFsk6VpEqZBM+hpRyuxCi\nBLhfCLFPSvlqjM0TiqatpYK8tTKWeOPoG57hrsfbsOQZ+JuP7svquqpkX5O3lRXy0ydOsr91iE++\nb0/c1Jp0cq68v3KJtTSWLMcipXxZCGGUUk4B3xNCRO1NlQ0ckENc3FIT8pg/9W7XxgoK8k1LGvnO\nzbvY7FPVi0RliYWRSTvra5aKRqSSeacr5H5r1zjbN5Tj8ixG2Jb73ejRtKiqhtmEpmkxFwzHplTf\nKoViLZKsY3VQCPEfwFfxilD8GbA/mQNIKSeFEI8D1+EVtPDTCzQCR3xiF7VA3GKVtVKQt1aKC+ON\nw+ny8C93HcDucHP79S2Y0bJ23Mt9TfZtq+LJ13t4+pUznLfFtgqWJc+58v7KJdbaWLIc/0x/Vgix\nA2jH29MqI5Ra85iatsedfEfjSMco25rKyTcZQ5wYsS66UwXQXF9Cc31JzG3qK4voTXH62ey8k2Md\noVGshRipkLs3VXL49MiSxx0Lbg62D1NXUci66ux9z41NzXOyZ4KGyiIaqiIvHPobAyfCwNjcihs2\nKxSrhcej0XZ2nJryAsrPkTYJsUh2yehzQA1wAjiON5Xis/F28tViNflul+JNxTghhNghhNji2+wh\n4Fbf7RuAQ1LKtVeteo7z0IudnB2a4YrdtVy8vSb+DjnIZbtqAXjhaH+GLVEoFD5+JoSoAP4Nb83U\nEHBfpoyZ8IlTHO0YZXTSG7nwRBB7iPSYn9ausYBTtaWhlIu2VYcoyC2Xxqoi6isXnYGLW2o4rzn2\nAtHsvBOX2xO4HYlwR8IQI2IVTRHRX7cVXL+VDUzOOOjsnwrUzZ3s8faUjlUflUyvxjMDU3hUJ2FF\nltE9NMPIhJ2JGQdTcwuB9/25TlLfwlLKMeD3lnGeUuBe3w+bC7hbSvlzIcRXgWHgK8BdwFVCiG5g\nBPjQMs6jyGLODEzxm1fOUlmSv6brj9ZVW1lXXcTh9lEmZxcoKcy9vlwKxVpCSvl1381nhBA2wCyl\njK4rnibmHC5O9U5QUVLDTASHxKNp6H2tsabmojfaNRr0KU2Pa6wKjVrF6stnd7g46otGXdxSw5n+\nxKKwbvdSufd4DI4vimYc6xzFZNAj1pUlfZxUI7sn8Ggag+NzVJclGFkK8pPW1xTjWPA6ZTPzTqYj\nvNajk/NUV61uCqdCkSgutyflke21QtLLW0KINwMbffvqAE1K+b1Y+0gpTwG7IzweLIThwiu5rliD\nuNwefvhoKx5N47Zrt6ZkZTWbuWxnLT978hQvHxvgmn25r3ioUOQyQoingR8C9/kcqow7VcEMjc/R\nESRE4U/xCw5SnDgzFnX/dJQcXdxSQ2f/VIhzA9DRt2i3pmlM2xedgtrywqhiF4mKV1jMRuwLS9Pm\nZuyx1QXTSXA0Kfz6dA1MR+y/1TngvW4b60qoKl1swuzxaEzNLdB2NlSWfsGVvCOqUKwW4YqkikWS\nmt0KIX6A16k6AairqkiYR146Q8/wLFfuqaNlfXn8HXKci7fX8MvftfPC0X7ecVFjVqgezs07ae0a\n50TXOKe6J5j3rZCajHr2bq3iqvPqKSmKrSamUOQoXwN+H/hPIcQDwI+klC8lsqMQ4m7g7cCglHJn\nhOdvA/4Wr7jTMPCHUso3Yh2ztrIwpDFsR5i6nz/Fb8bupCyOwh9E70uVatbXWJc4DsGOVHiPqsrS\n/KiOVTxZ9Y21xbg9GlVlFtq6JkLOE8zcvIuC/KVTmVM9E5QU5YU4LZmgf2yWqjJLSHqjFuSIDY3P\nhdio1+sojfA9XGQxLXlMocg2sqkecHRyHg2NypL0fgckGzZoklJetSqWKNYsfSOzPPpyF2XWPN73\n5uZMm5MWiiwmzt9iY3/rEB19U2yKUzC+WszNuzh4apjDHcc5KIcCTTvzTAYKLd6P/9i0g4dePMOj\nL3fxph01fPhtW2Km/igUuYaU8hHgEV86+oeBbwohrFJKkcDu3wO+DkRTEXwYuEtK6RFCXA98B7gk\n1gFjORUGvR63Tz1Pdo9TVVrA0ETsvlGrwUVbq5c8Fs+BC09XNOr1VBZbGJkKDRDWlseXeq8KSqkr\nyDdGday6h6aXpAO63B5Gp+YZnZrPuGMFBIQ4/CqPwbLzpYWRHeeWpnLmF1wBp/vs4DTN6ytW2VKF\nIjG0KDV/ZwamssKx8mgap3q9NV8TMwtxRXtSSbKO1bKr8YUQjXh/mATgAP5TSvmdsG0+DfwL4F++\n+0cp5feXe05F5tE0jbufkLg9Gv/v6i0RVxbXKpfvrmN/6xDPHe5Lq2Plcns43D7CKycGOdw+Gigq\nX1ddxHmbbWxfX876WmtA7tix4Oal4wM8eaCb54/00zsyy+fet1utkCrWIh681S06319cpJTPCSGi\nrghJKYPl7syEVM9EJtqkBGD3pgpau8axL7iwlVoScqpiHW+5RHP+NtQW0xkWYYvE1nVl5JkNFBWY\nQhyrjbXFIU5TIlQU5y+JlPmZnU9cXW81SFZUYmxqPkR8o84W2cksLjRTXGime2gWp9sdVRREocgE\nMXR1Ms7whJ3TfZOB+yOTdjbUWjHo09P+JtlZ7rQQ4l7gMcD/KdeklHclsK8GfFFK+YKvePgNIcTT\nUsrWsG2+LKX8UpJ2KbKUV1sHaTs7wa5NFezZHLcf55piW1MZlSX57G8d4oNv3RxV6SpVzNidPHuo\nlydf72Fyxru6W1tRwMUt1Vxz6UZMUeZ7eWYDV51Xz+W7avnRr9t4+fgA/3r36/zJB/Yo6VTFmkAI\ncQNe1dnLgQeBz0gpX0zh8f8Q+BsgD7g63vbTc9EnyWaTgcaqIk72TDA8sbQUbE9zJYfaQ6XI80zp\nizBXFOcn5Fj509lMYep/yTpV4HUyohFJtCPY0dQ0jYGxOUqL8lblO7hvJHGFQn8kLZj4oiOLY7E7\nXDhdnqQUBRXpweX24PZoaf0sZpJYiqXpxP+ZspVaAp+lYKfKT2f/dNqiVsl+yxQAM8ClYY/Hdayk\nlD1Aj+/2sBBC4u1V1Rq2aeaLURQpwe5w8Yun2zEZ9Xz46i1ZUWeUTvQ6HZfvquVXz3fyWtsQV+yu\nW5XzeDSN373Ry73PnMbhdJNvNvC2Cxu4bGctjVVF6HQ6bLaiuD2TjAY9H7tuG9YCE0+81s2Xf/YG\nf3frXhW5UqwF7gB+DHxESpnyvDop5XeB7woh3gv8A3BjrO0tZiPF1sgpajabFSc6iq2OiM831pfR\nMeidzO9tqcZg0Kd9MndVSQFn+iYDUvHhXHFefeD7vrKyiMEp71j2bLElVMcZqS9asXXpZAlgU0PJ\nku3nF1wUW73pdq09XifQ7tLYt6M27rmT5UT3ZOC13FhfQkdvZDsBTvZNA7qQ1z5eD7h9+SaOnPI6\n0vuPextEX3l+wwqtTo727gmqKwqwFmS3wm0m++k9+0YPAJfvqY9bP5gJUn1tjPnzFI8tLvysry3m\njG/BJZ2vw9HTI4zNOBmdcbKruRK3R4v43VpcbEmbXcnKrd+WipP6eldtIbRBsJ87hBAfBw7iXVXs\nScU5Fenngec7mZxZ4MbLNmRFnnsmuHRnLQ+80Mlzh/tWxbEambDzw1+30nZ2gsJ8I+++rJkrdtct\nO+VSr9Pxgbc0YzLqefTlLv77gWP88ft3B9IGFYpcREoZN4qUovPcK4T4iRDCIKWM2gF36/oyFuYX\nqCqzcOT0KAuuxU2Hh6exzy6EiFsEMzw8HXhufGwWc4ZWyK1mPZ1RbBwJk2FuaSxB0zQW7AsMR6mV\n8hOtcXa06zE2ZiQvbB5rd7iWbD8Fq9KQO/g8C3ZL4H5TtRW3R6NnOLYkdTybNE0LHLPY6j1+OhuL\nnxmYYmBsjtaOxRqxbCTTDdf9r9FROUhdZfwawnSyGtdmZMIe8t6fKjQF7r9yqCdt5Q9nehYFc144\n2B11O83lZti6dGFgNZytZFUBy4B/BmqllDcJIXYCu6WUdydxjFLgF8AnIjQAvge4E2+a4Z/jrcmK\n+YOYyRWKVLNWxmKzWensm+SpN3qorSzkI9dtz9iP/0pZ6Wtis1m5YGs1B1oHmXVprK9NXR+Stq4x\n/uHHrzE772Lf9ho+9d7dlMVI3UtmLLfftJvRaQevHBvgoZe7+IP37EqFySlhrXxOYG2N5VzC99vn\nkFKeFEKcBxyRUrqFEO8HemI5VeAVgfBPvoKdKrPR+z1pMERe8S7I80aPtzSUMj3nzOj3akF+5Eh2\ntML1lWYs7N5UyeHTI1SWWBiZXJzQ9Y3MUlsROpFNVy/d+SAZ+EZbEcWFZrY0lGItMGMy6jk7uPLJ\nbCYzPZwuDwNj6RdOyWXODk1nnWO1GrSHpdu5guTXhyftNNVYs2pBNpr4zWqQ7LL294AXgT2++6eB\nnwMJOVZCiHzgAeAbUsrHw5+XUg4Fbftt4C/iHTOTKxSpJNOrLanCZrMyODTFN/7vDTwejQ+9tZnJ\nDChapYJUvSYXb6viQOsg9z11klvekYgIWXxOdk/wn/ccxun0cNu1W7l8Vy0uh5Ph4ci1G8sZy0eu\n3kL3wDSPvNBJpTVv1VIZk2GtfE5g7Y1lrSKEuB+4GKj0NbD/ArCNxeb27wMeFkIAdAAfSOb4ep0u\nIIBQ75uQud2RPYPGKm/vp/Li/KyqfwzuV5WI4t9ysOQZAxGTYMfKGaHRcLKCEssluNatpsLrUAa/\nLlVllhChiuUSSVkxHYRfx6EJO5Ul+SltRp0N2B0u9HrdOVMftVJO9UwseSz8E3d2cIaNdZltaL2h\nppjiQjOHT4+k9T2brGO1SUr5PiHEuwGklHNCiISsFUIYgF8Cj0kpfxz0ePDK32agXUqpAbcBR5K0\nT5EFvHCkn9O9U1y4tYodG5Q87O7mCipL8nnxaD83XrYhZiF2IrR2jfONew/jdmv84bu3c+HWqhRZ\nGoolz8gdN+/kn35ygJ8+LqmrKKS5ITOy8QpFppBS3hTn+b8G/nq5x2+uL+Gkf6Li+zWN1u7AkIW1\nG+C160JRhdutpaVVw+5NlThdHk50jWGL0KMmWu1X99AMeWYDHX2T7NpYEYi6aZq24shQpP3zzUa2\nrSujNazZL3jr7NZVJ7YgsaHOGuJYeTQtLRNFf69DPx19k0zPLbCpbm39DoTL4SeDR9PY3zoY+phH\ny8o6q1QRLsACUBAmDDM0Mce66qKMRq2qywtYcHrfw+GLBJ39Uyw43auyKJjsiF3BjpSvJ0iiS0NX\nAtcBnxJCdPv+bgRuYbHQ95NAj29V8Ebg40nap8gwkzMO7vldO3lmAx966+ZMm5MVGPR6rtm3DqfL\nw5OvR88BToTuoRm+ed8RPB6NT71n56o5VX6qygr45I070DT49q+OMhbhC1WhyHaEEGYhxJ8JIb7p\nu79FCJGWuqt4uIPUtSp80Y7wlXO/sl5RQXYJyfgn9xpe8Zt09b+z5BkD54o0AYmmmtc7MkOHL4Wp\na9Bb+3S6b5JXWwdxupZGvpIhmqNTUpQXccK+u7kyoebPwBKZ6ERUGVNBJMXDSEqVawXHQswM3oic\n6V+adZCuiGm20FRtpbw4j8ri0EUOeXZpZCuV+Pv9RcIfOY/2SgyOzzE+E1kgaKUkG7F6EPguUC6E\n+H3gM0RvmhiClPJpIjtyDwRt83ng80napMgi7nzoGLPzLj74luaEfzTOBS7bWcuDL3Ty9Ou9XLuv\naVkBkgJ4AAAgAElEQVSyv5MzDr5x72EcC24+eeOOtMnXt6wv5/1vaeb/njrFt+8/yl/+3vk5WzOn\nOGf5NjAL7PPdH8Zb63texizyURIUwQ5e3Q1O/7pArO4CynLR6XSgaYFeeenE78jMRehjZTbFXzOe\n9jUz9jsKnf1TbGksTaGFqaUwqKZteMKelqhRcaGZydnQyWdJlisDJkuwNH973yTb15cntX+kPnPh\nfeVcbg9zDhfFa+zaAWxrKg98h1WU5IdEVle7rilY8j04HbmsKI+mGm8kyhy0yPLKiQEubqnB4Uze\ngU6GZCNWXwJexltbdT3eWqn/SLlVipzkQNsQz7zew4ZaK2+9ML1ysNmO2WTgbRc0MOdw8dzhvqT3\nX3C6+eZ9RxmbcnDTFRvZu8qRqnCuvrCBS3fUcGZgmm/dd2RZK3sKRQbZK6X8Y2AOQEo5jreZb8Yx\n+n74w1NpJmfTV2y9XLY0llJkMdEQpcntauIP4sw5nLg9HvpHZwMOnn++VZRvYvemSsoiSLyXW0Nr\n1MLT3rKNnRsX0+rzjIkvbK2k31D30NJojHGN9dAK9oH8znYyRIpU+gMpEzMOeodnOCCHOHFmjNfa\nhtA0jcnZBU73Ta5KY+/VRNO0EMGWi1tqQhaG0r2Y/vrJYQCKC8zk5y1+JvxOFSxN0XW5PRw8Nbyq\ndiX1CZFSalLKH0spb/L9/XiV7FLkGJMzDu56XGI26vn4dS1p63CdS1x1fgN5JgNPvNad1AqvR9O4\n85ETdPZP8aYdNbzrkqZVtDIyOp2OW64R7Gmu5PiZcf7jl4eYm4/e5FShyDJC3qxCiAKypGeiXqdj\n79aqkIkzsOyWCemkpNDMjg0VmJKY6KeK4Anta21DdA1Oc2bA6wh0+f6XFedjyTOyOUIkyhJ2fecc\nzqS+l1cSpVtufVS1TyDDHcNZeq1tiGOdowDsbx1kf9sgsyn8rp7KAYc/GcKvZbLOTnVQw2t/Cq8/\nFbDt7DjdQXL7bo+Htq5xWrvGGJ6wMxWjUXgqGZmwc7J7IuGxaZpG99AMdkdoNLh7aCYg2GIxR/5+\nWlcVuWbJ49E4fmYsYoR5OUwFOcFTcwshDnKsjJoDixp5q0aycuv/HeFhTUr5R3H2a8SbMigAB/Cf\nUsrvhG1jAn4AXA6MAx+WUrYlY58iM2iaxo9/08aM3cntN+5cIn2r8FJkMXHlnjqeeK2bx149y3Vv\nWp/Qfvc9e5oDcpgtDSXces3WjMnvmowG/ug9O7jzkRPsbx3iKz87yEfftS3hAmyFIoO8IIT4G6BA\nCPFm4K/wprZnBZEWosqseUvSsBSLRPoeHJm0s6muOFB7keeLrkRyZOYdLsanQ6/v0Lg9Yans7qHF\nCXNRFOn5YFqayjnRNQbAjg3JpZv58cvxuzweXG4PRoMel9vD4fZRqsss1FQU4PZ4mLH7I3fe2ebg\nmJ2Ndampz3O6F8+d67g9nhCFSfBGsJL5ifWnn8FidNDlu0aRmAxyCFwrrOtLlOMdo0xNzzM9V5CQ\neNYbJ0dwut30jsywd2tV4PspWOHSvhDZQaoqs3A2QqRzf5tX4ONIh9cx272pclklEX6cztBrF/w6\nZnrFLNlPxuvAAd/fUaARiNy0IhQN+KKUshG4BPhLIcS2sG0+AuRJKTfglbP9RpK2KTLEkwd6OHx6\nlG1NZbzr0g2ZNierue5N6ykpMvPgC52BVdVYPHuol9+8cpbq8gI+ffOuqEXZ6cJo0HP79dt58546\nzg7N8A8/eo3vP3ycofHclNRXnDP8FWDy/X0Nb0r732fUojhUl1nYuq4s7Wm/uU5XUO+oWItQw5N2\nZHeoWt9QEsIMkzOLE+SWBByl4AlttB5g8bCVLYoDdPR5BSwGxuZwut30jMxEjUgsR/Qk+FjmsIik\n/9y5jNPlCUQ6g+lfZt+u4gJzIGoyNuVgcDz+e0mv1+FwujnVM0FH3xQzdueqCkS1nR1PKN3R6V5M\nix0YjXw9rJbIDlq4wx0e9fJz5PRoXDticao3VBgjuAYx/HOf7u/QpNxFKeWdwfd9EayfJbBfD9Dj\nuz0shJBALdAatNkNePtkATwC3CmEKIzQRFiRRZw4M8Yvnm6nuNDMx961bU1LjKaCIouJj71rG1/7\nxWG+9/Bx/v62vVF7Z+xvHeSnj5+kyGLic+/bRZElOxTB9Hodt1yzlfOFjXt+d5qXjw/y8vFBqssL\naFlfRktTOduaynIilUlxbiCldABf9P0lhRDibuDtwKCUcmeE5z8HfBrv7+kp4Pd9v3krQqfTURqh\nNkgRm+CGtiVFyZXRuZNI7ysqMDE/6aKsKC/h1L4LRdWKZNKD5fb9KXk9Ialmi85Q8AS9o2+SqtKl\nsvSxCK4527GhnDeC6lLGpnNfHbZ3ZCbi491D01jMhqT7xG1pLA2kmY1NzUfsrxaOM6zexy+EsW9b\n9apkpng0bzpeMrLyE7ML1NuWPl5eHP27Kc9owOFrfH749Ah7mpcKbWkJC4ovJVx8orHKSk25hcmZ\nhZD6Kj/RSlMabUXLtiEWK5r5SCk1IURS0mRCiC3AFuDVsKfqWXS+NCFEH1CH94dKkYUMTdj57weO\nodPBp9+zM6saVmYzOzZU8LYLGnjy9R5+8XQ7H3n7lpAvUU3TeOTlLn71XAf5ZgN33LwzJI87W9ix\noYKW9eW8emKQV08MIrsn+N0bvfzujV70Oh2b6ou5+sJGLhC2jKUvKs5thBD/GuFhDW+2iObrQRWP\n7wFfJ7oC7kngAinlpBDir4F/Bz64HHsVqaOy2LKMdLXEv6f8DlJtgqmDsHQ1P1mCMxZsERyl4IbF\nJyM0cU2G8JqVi1tqeOXEQNz9nC4PRoMu67/zZ2LUN805XCSbrGnQ62iqttI1OE1xoZnhyfgRK7/0\nfzjDk/NJO8LRiCVJngjTcwsc7RjFGLZoHmsRvbLUEuK4Br8vV4K/31x4mmVdRQE6nS6mUrJoLFsS\noU407TdZkq2x+mrQXR2wHehPYv9SvBK3n0ggEpXQN9BqNPfKFLk0llm7k//+8WvMzru44/17uOS8\nRRXAXBpHPFZrLH/4vj3InkmeOdhL3+gsH71+B5saSmg7M8YTr57l+UO92Mos/P3HLmZ9bWq6l6/W\nWG6oKuaGN2/G5fZw8uw4h04O84Yc4tTZcU71TLKruZLb37OTpprsHkcmWEtjyVImWWxlEj4TSGjJ\nVEr5nBCiOcbzvw66+zxwbVIWKlaFkSk7zSQnSR6cAhUPv99gTKNQk8looKTQW3vXPzYbcXU+Gsk2\nQW711YMlczy7w7WiZrvpZCaGoEfP8AwNEaIZdoeL451juCI4Kzqdjlm7N+0tEacqFsuJMEbjWMcY\nprzQbJfxaUdSCn6RxE8mph1RF3zrbYVRI4LLZXBsjs6BKYx6PZvqFz/X1WUFCb2vrRHSYVfL+U82\nYtXL4mqfE/gt8EQiOwoh8vH2rPqGlPLxKMduBI74mhDXAnF1qYeH49ep5AI2mzVnxuJ0efjPXx6i\na2Cat17QwHkbywO259I44rHaY/nszTv5xdPtvNY2xF9+5wUMel0glWN9jZXPvncXhUZdSmxI1+ti\nKzJz9fn1XH1+PYNjc/z8qVMcaR/hM//+DLff0MJF26pXdnz1/spKstVBlFL+W5pP+fvAw2k+5znL\njg0VAQW85WIy6GmsKqIjyaa7g7660nQL4DZWFTHZmbyoyey8K6l08kipbBeKqqB0NwcVJaFZKrnU\nPDi471EsxqbmOdkzgdloYMEV2fEOyPnHmKc3VBbRk2JnIxHsC64ljpXsHo/q+Cba3LgwRp3gStJd\n/dgdLvJMhkBkrHPA+/l0eTwhkacNCS48h0eLo6kXpoJka6y+vpyTCCEMwC+Bx4Il2oUQOwGHlPIk\n8BBwK/Ao3nqrQ6q+KvvweDS+/8gJ2s5OcMEWGx966+ZMm5SzlBfn88kbd3B17yQPPN/B7LyLretK\n2bqujO0bynNedam6vIDPvW83h06N8P1HjvP9h09gNhrS1thYofAjhCgC/g54G97Fwd8C/5zK3xgh\nxCeAJuATiWyfrc5oNpDotanwaJwdiVxcn282hBznTXuMdPROUlxoxqDX0xtUm7SuoYyRGWfC53a5\nPRRbvREFW6WV/BWomyVLlc1KsW/MNpuVYmvkdLJwzo7MceX5ifeX3Ni4wMiEnZIic8g1Ke7zLgaN\nzC6wtTm0+OZE9+TidcnA+zuZc04veJgNUpbbtr6c1jOLUbqKiiL0el3ImKIVO1SWF2CzWdEMBhbO\nRI70nbe9lqk3Ei+9TMX10zQtYLv/f7zje9/b8RcZztteG/P5aO/LK89vYP/xAewOF5ai/IjO/rzD\nxYnjA1gLzZzva44e7XjJXCf/MQotJnavcJE3FsmmAn6fxYgV4bellLdH2fVK4DrgPCHEp3yP3QFc\nCowAXwbuAq4SQnT7HvtQMrYpVh9N0/j5U6c40DbElsZSbr+hRYlVpIDm+hL+9IPnZdqMVWPP5ko+\n+97dfO2Xh/ivB47y2ffuZvsy5YYVimXyA6AN+BjexsCfwFsz9f5UHFwIcQPwB8BVUsqE8snWSrQy\n1SQbyZ2ajhwl2dhcueQ4632NjPe3DoaszE+MzwaOMzg4Ffd37UDbUCAdbHrKTrpeSZvNysjITMDW\noaGpqOOPRDLXdWR0hqm5BerL8kP2858v32wMPD40Yacw3xhiS3vnCDqdLiF571SQ7Pumt3+SKV87\ng831pejcbhorLBz3OUbPHuhix4aKhK6vxZdZYp93Ldm+rqIQTfNe+y11Vjr6plhwumOmIgL0D0wm\nvbg6ND5HR/8UF4oqjAY9bo+HqWk7xVbLErsGBicjijrYHUvHEIl41zrSMS4UVQwPTzM44t33+QNn\nuTCCYt/EjIOpaTtT03bKC4ycODMesVaswVa0rO+KUosxJMsq1SS7zOICzserBKgDPgzsB16LtZOU\n8mki10w9ELSNC6/kuiJL+e1r3Tz1eg/1tkI+c/POjDSFVOQmWxpLuePmXXzjniN86/4jfOG2varf\nmSKdmKSUXwi6v18I0Rp16zgEZ1sIIa4A/g14i5RSeUtpprqsIJCW56ekMI/8KA1MITTdqaGyKESo\nYX7BHVfRNFKNTboIti3RtC0/4f2n/CIAer0OvU6H3eHCo2kU5psCDVin55yUBKlT6tChoQV6d83N\nOyOKMLSe9aZr+Sf52UJwHRh4ZcP9KY3BsvJz8y4WnInV3PlT3yK9b4L7PBoNerY0ljJjd8ZNYbU7\nXFgLEndK7Q5XIJ31gBzi4pYaHAvR7T90agSxzqve67df07SQaxON5rr4tYt1FYUhfa92b6pc8j6I\n9jk6E9SK5mhH9OtUkGSkuLmuhL7RWarLU1O/Fo1k3+07gSullN/wpQW+GThfSvkTKeVPUm6dImt4\nXQ7zi6fbKSky88fv273sPhyKc5ft68v52Lu2seD08L2HT0RtoKhQrALzQojAr7AQogwYTGRHIcT9\nwHPem6JbCPFR4BbgRt8m/4S3Jvg13/PPptZ0RSw21Baze1NlYLLXYCti67rShPevKrOQb16cUJ/s\nXpmaXjrwRxri+VXra4opty4msJ0ZmMajaYFGtgfkEAfkEPtbB5mccXD49AhHO0ZDelgthDWx3dzg\nvc5Go3cyPh9j8g6LTXODidZvKx2EOw5bmxbfK3lB7wOrxRQiMR+LaLVlorEs4uNFFlPI6xKJUz2J\npXhCZIeoo2+KI0FOyaa6khDZc6fbw7HOUU50LqYujk0lVrtXmYCwRmNVqPhHMj0456M0Hw4nWfGJ\nylILuzZVRpVfTxXJRqzKgOArPw9UpM4cRTbS2T/F9x8+jtlk4HPv3a1k1RXLZl9LNcc6Rnnx2AAP\nvtDJzVduyrRJinODIuANIcRjeFMBbwSeE0J8AW8a+z9G21FKeVOsA0spr0yppYqkseQZseQZKbXm\nJRQdCRYuMIf1EZx3upixO5meW4gbVW9cxQL4WPink2cHI4sh+KNKAGbT4vUYmbQz4lOs270ptNbV\nH2ECQha9jIbQyat/MjsyMU9liSWqDX7CfaiDp4ZxON00VVuzImshfJJdUZzP6NQ8kwk00vUTLfIS\nK/K5pbE0RL6+ojifWbuLeafXqXC6Yi88zs27GJ9xUF9ZyFyEJrz+nlh+IsnzQ6g6Yu/IYoSpIM9E\ny/qygFiJn0hqiZEId3qCP5fBUeZXTgywa2NFYLE+kiMejWwtRUnWbXsRuE8IcYMQ4t3A/cAziewo\nhLhbCDEkhDga5flPCyEmfSt+3b5CYEWGmZ5b4Nv3H8Xp9vCH796elLyrQhGJD1+9hcqSfH79cldO\nrA4r1gRv4P29mgUmgB8Dp33PZeevsyJpEk0586d+FUdJtTrWOUrX4DQzdieapvG6HOZ0hHS32orM\n9hcMnjxvCGpnsa2pDFuphapSS1RJ7FgZA44gUYfw/f21Li6PN+LhdwSiEZyuODxhDzR37RrMTNZs\nXRxnLpoDEouSwsVUyc31peQZDZzXbCPPlFi5hF6nY3NDKXs2VwZSLEvjNLc+0jFC99A0Y1PzMXty\nJcOcY/E4jVVFET9P+QmOCaIrB4b3jzp+JrJTH49sbZWWbMTq08An8RYAAzwJfDfBfeM1WdSAL0sp\nv5SkTYpVwqNpfP/hE4xPO7jpio3sjtA9W6FIFkuekduv386//u/r3PnICf7xYxfFrIdQKFaKlPKL\nmbZBkT0UWUzs3lQZkgIYifkFV6AWZnjCTn1lYch3VSpkpZdDpAiJJSg6UlxoDohGWKLUocSKiExM\nexOTKorzQ9LjILbMdiQ0TUPTNF5tTSjzNmn8UZ/rr0xs0Tfea5ZIluKODRVMTDsC8unBUcGKkvwl\nMvTxCJ5b1duKkN3juNwaLrcHvU5H/+gstlLLkugqQNfANI4oMvArwe/YnbfZxsGglMhkxrZ9Qzn7\nI7zuhrBIU7AwxXyCdW2Quc9fPJKVW18AviGE+B8p5XyS+8ZssugjO6/SOcojL53hWOcYuzZV8M5L\nmjJtjmIN0dxQwjsvbuLRl7u495nT/L+3i0ybpFjD+PoofgBoZvF3T5NS/nXmrFJkknCHw2I2Yg+r\n7WjvDY1SneyeZNemCgryTAkLG6SL4gIzG2uLI9Y/N1Vbl0SIpmKkuvkdhkjiB9EcNT8XbKni9ZOL\n6WMejYhOVSrqXJZTqxUuXBJOpMa5LU3lnPA1TG6wFVFkMZFvNgSu03In+KKxjDlfvyY/s3Zv1Gja\nvsABOUR9ZRG9IzOMzzjYsWFp5U0iTlWwM7SnuZJD7aH1WJOzCxSGpS36U/nyTIZlN3vW63QUWUyL\nfb58hDtWy2VNOFZCiF14FQHzgWYhxEXAB6SUf5Iie+4QQnwcOAh8RkqZuOi/IqW0dY3z4POdlBfn\n8fHrWrL2DazIXW64dAMHT43w9Bu97N1ahVgXudBXoUgB9+Ntav8q4Ma7iJe5CnpF1pFvNixxrMLx\np0p5NC1lk8NU4K+XqoqS9ldbUUjv8GxIpCuRLIF4kuDBnNdsWxLdgujKheGT7eUQ7LA5XW5au8ax\n5BlYXxO9aazdV48kGssiOlGRKC40s29bNQtOT2CMwXOiwiQaLwdTZs2La0Ovz3mbsS++FskKP1WU\nWEDz7pNvNrK+ppgzA4u9qlq7QntvJau2F4tIzqBOp2PXxooQcQ0/0cRQtq8vx1pgDqlLS3dz7kRJ\n9up9C68k+td89w8APwVS4VjdA9yJ98fvz/GmDF4db6e11GQxW8Yya3fyw9+0odPr+KtbL2LDuuR6\nDmXLOFKBGsvq8ie/dwF/9s3nuOvxk3zzT9+c0I99No5juaylsWQ5m6SUKiyqiMr62mLGE1CBm19w\n4fFoWVU4Hy+KBEvTBydn4ivAJeP8BDtVzXUldA1O43R7cDojOwH+9C+ny43BoF/x4u3g2ByTsw4m\nZ8Ht1thUH1kS3OhTp4uXBupn50avY6DT6ULGGGxu1TLqsqJRUZIfiISF44/QhQtKBOOPcPkpyDNR\nXV7A6OjiYzXlBSGOVTjp6DNZkG9iW1M5rV1jmAyL19Uv3V9SmMekr8/Y3q1VESOcySgNppNkHatC\nKeVBIby/T1JKjxAiMV3EOEi5+E4RQnwb+ItE9lsrTRaTbW63mvzgkROMTNi54dL1VBSakrIrm8ax\nUtRYVp8yi5G3X7SOx149y3/dc4iPxEkJzNZxLIe1NpYs54QQolZK2Z/sjkKIu4G3A4NSyp0Rnn8b\n8FVgB/BBKeV9K7ZWkXYSFRo41D6CUa/P6KQuvEfQchj3OVbh0Ytgojkn8agstdDumyCf6o0sUDQ+\n42Bu3smRjlGsBWa2r1/ZZP50kDz58KSd0qK8iPVAbrfXOYn1+uWbjcwvuNi9qTKq06rT6bhgiw13\nEip2iRDLSX61dZCWONepuMBEb9D9retKk14EWG05cj8lhWZMhsifJUuegabqCkxGfYg9e7dWMTrl\noKI4L212JkuyjtWCECIg5yGE2I1XZWlZhDVZ3Ay0Syk14DbgyHKPq1g+r8thXjw2QFONlevetD7T\n5ijOAW68bANHT4/yuzd62bqujL0ROrErFCvkb4CXhRD7WWwZokkpb0lg33jCS6fxZnL8FSq9MKcp\nt+YzNh2/fNzl8WDRZU5wp7LEsmLHyk9wilk4iaosLkdJDwikgk0nIW2eKKd6Jygvrl4i++1Po4uV\nyrmnuTKhqKTJaGA1OnrWlBcwMDYX8bmzA9EX40wGQ0gzZ1jaTsDPeZtteDyJNQReTfQ6XSDFNrhm\nTq/TRawXNOj1KY0QrgbJunv/CjwFbBRC/AR4Gvj7RHZMoMniJ4EeIUS377GPJ2mbYoVMzi7wk8fa\nMBn1fOK6lqzqlq5Yu5hNBj554w7yTAZ+9OvWQH8LhSKF/AB4xPf3eNBfXKSUz+GVaI/2fKeU8hjg\nQQkw5TT+5reJkMlUwIJ8I3uaK2m0FbGlIfFmyJGoTFLBLpyq0gI21S29bpvrY9tlCUv7TvZ7P5E6\no8nZUIfN5fYwNbeAXqeL21w2k69vrF5Rseredjd70xYvFFWcv9kWU3Qiz2SImA55oUjvwmaw+EZw\n9C/Z5r/ZRMJLLkIIHXAUrzN0je/hL0kpZSL7J9Bk8fPA5xO1R5FaNE3jJ79pY8bu5ENv3bykz4BC\nsZrUVRZyyzsE33/kBP/9q2P8zS0XYDIm3i9DoYhDqZTy05k2QpHd6HQ6tq0ro/XsOJvrS6OmsUH8\nBq6rTb7ZSH2CzVoB8k1G5p0uyoryAmmAEBqV2lhXEqhxsUbp8QXeCNXwhLfRcIMt8lyhJKwPk1Gv\nx+XxBM4fLhQya3ehlWrML7gTqhmLVWcUb59oghrZgtGgZ+/WKl5rS3yMFcX5gdfSaNBDAj+fkZyX\nTC2oT84uhDh6kYRQcoVkY9n/LaW8Fji5GsYoMsfzR/o51D7CtqYy3nphQ6bNUZyDXLKjBtk9znOH\n+/nOr47xqffsUM6VIlW8JoTYJqVszbQhfnKgLi1jZPLa2GxWmjd4VfYGp2ILPGTCzuWe8y3lhfQM\nz1BvK+LFw32BxzesK+fsiDdatHFdOSPT3ihPdXlB1HNVVhbx3MFeaioKqK+LHJlyezSK+xbT1swm\nPZsbyyi15oWc34/eZKC1x1vrJZrKqInTyLfYurRhc7E1NEWssrKIMms+Tpeb/ScGQ57Phc/fTo+O\nrv7oIhPBnN9SQ34MhzTaeK+/0sr+4wMBtcR0Xxf/62jKM3G6fyrwGrU023I2apWwYyWl1IQQE0KI\nEinl0ne0ImcZmrDz86dOYckz8rF3bVPS6oqM8XtXb2Fs2sGR06N86/6j3HHTTuVcKVLBZuANIcQh\nwF9Eo0kp35Li8yS8FL5WhEtSTTaJukxN2wO3C/NNzIalYaXbzpVemwKDjvGx2cC4mutKGB6eRu/x\nMDHrYGpyLvCcWQfDhdEriFoavel/0ezRNC3k+jXaitCcLsbHXCGP+5kKOsxrx+whaWzDE3byzAaK\nfVE0p8uz5BjFVgt6jwe3R8Ns0jM6Nc/w8AyueSdtXeNMzIY6ydnyHouJK/K1isTo6EzUeqp475vB\nkcXn0n1d/OM7EjbOkSjKiKlmNRzJZCNWNqBNCPEc4E+I1aSUH423YwLKSia8efCXA+PAh6WUbUna\np0gSl9vDnQ+fwLHg5hPXt1BevLJ8a4ViJZiMBu64aSff+dUxjpwe5Zv3HuEP3r2DomX2CVEofPxV\nKg8WLLwU9LAOVWO1Jtm5sQKTQc8bQXLsa+E7yeBL+9raVIZH00IWVUem7DSzPFVAWJpmVl2+2GPL\nWmBOWLDC49E47UtP3LWxkrHpeUYmFgVGggVHNjeWYNDrGRibY3RqPlCHFe5U5QoFeUbKivIoL84P\nXINg/OmVEF2kItupLLYwMhXqVBVFEK3IJRJyrIQQ35NS3g7cDRQBfpc2mSaL8ZSVPgLkSSk3CCGu\nB74BvCPBYyuWyS+eaqe9d5KLtlVxcUt1ps1RKDAZDXzqPTv5r18d5fDpUf7uzle59dqt7GmuzLRp\nihxFSvnMcvf1CS9dDFT6xJW+AGwDhoGvCCEuA34OlAHXCCG+GGnxUJF7bKorYXzaQaFvonf+ZlvA\nuYok2JAr7GmuZHJ2IaQ57WpnqgQffjaGEqEfl9uD0aBnZHJx0n2kY6mC3Yba4oBj5XfmXL76t9N9\nk8tWLMwGdDodYl0ZwBLH6kJRxYzdSdvZcfJNK1OorC0vpH9sNmZd3WphyTdCWLZjOvporSaJvhrX\nAkgpfyyE6JRSbkj2RFLK54QQzTE2uQGv8wVe5aY7hRCFUsrUaIoqlvD8kT6eeqOHBlsht127NWfz\nWRVrD5NRz6dv3snj+7t54PkOvnnvES7aVsUt122nwKDep4rkEEKU4u2NuAfwh+UTSgVMQHjpBaBx\nxUYqsg5bqSVkYp6rUYFw8s3GuM3YTSkWMQieX9SUF8SViz94aoS9W6voiFFjtKmuBJNRT3N9Cd+i\nArYAACAASURBVCUlBeh96/xTcaJhmXAgVkqjrYjekVk21BZjLTBhNOgpLcpj18aKFQs9NFYXYckz\nZCRjSYsgJJLrc9Fs0tOuB3rAW88F9AF1GbVoDdPRN8VPH5cU5hv59E07437JKhTpxqDX886Lm/jC\nbXtZX2Nlf+sQn/7q7/jmvUc4cWYMT4obMyrWND/Euy5aA3wN6Adez6hFipykstjraCWiXJeL+OXb\nd2yoWPGxCvIWU7qCp8qJOAJuX4pbQYzrPOFTN6wssVAXpJAY77dhmy8KlEvU24q4aFs1tlJLyHyt\nIN+04ka5ep2OqrKCjCgCBkdNAfLWQE11ot8MRiFEC97Phsl3O4CU8kTKLcsup29Ncapngm/ccwS3\nR+MP3r2dqrKC+DspFBmi3lbE3956IYfbR/jtgR4OtY9wqH2EMmse+1qq2bu1ivU11pxf5VKsKhul\nlDcJIa6VUj4MPCyE+N9MG6XIPZobSlZUe5TtlBfnx+x/lAx5Jj1zvvKm4O9nW6mFzqBI1PqaYs4M\nTFGUbwrp0zRjdzLnCJVlDyaaavrmhlIOtntTNiP1x8pkjypFKIX5JnZvqgw0Kg7ua5WrJOpYmYBn\nfbd1Qbf92FJgSy/edIojvp5ZtXijVjHJBcnMREnHWF47McB//OIwLreHz33wfK66MPUZLOo1yU5y\nfSxvryrm6ks20HZmnKcOnOWFQ7089upZHnv1LBUl+ezbXsNF22vYuakyZ1J2cv01ySH8szUtSNk2\n95atFYocwuGMPEnW63SIxjJk9zhN1VaqyywU5BmxFph4tXUwsN2xztGYx48mIJJnNqDX6fBoWogD\nZzEbA/VyiuxhrUV/ExqNlHJVqsbDlJUeAm4FHsVbb3UokfqqnJDMTIDVlph1utw8tr+bB5/vxGjQ\nccdNO9nZVJryc2aTVO5KUWPJPmw2K5VFJj7w5k3cdNl6jpwe4+CpYQ63j/Drl87w65fOYDbp2b6+\nnPO32NjdXJm16l1r5TWBnHAQTwghKvCKTLwqhOgngYU7hUKxfGJFm8qseVwoqgLpZ8WFydc92Uqj\n1wSZjQbmnaHn360EkLKW6rICBsfnaKzK+t+SuKTNTYyhrDQCfBm4C7jK99wI8KF02baW8WgaB0+O\n8IunTzEyOU9xgYlP3bSTzQ2Rm/opFLmCyWjgAmHjAmHD7fHQ3jPpSxMc5eCpEQ6eGkGnA9FYyt5t\n1VywxbasH29F7iOlvNV387tCiAN4o1VPZdAkheKcZ6U1PbF6HIY7VYrsZn2NldqKgjVR75+2ESSg\nrOTCK7muSAFjU/O8cLSfF470MzI5j0Gv4x0XNXL9mzZQkJ/7b1yFIhiDXo9YV4ZYV8YH3rKZ/tFZ\nDp4a4Y2Tw7SdnaDt7AR3PyHZuq6MvVurOF/YAs0mFecOPnXABqBTSulJYHvVf1GhWCZWi5lpe2L9\nqlabWCIYisyj0+nWhFMFaXSsFKuPy+3hcPsozx3u41jHKBqQZzJw2c5arr14HbUVhZk2UaFIC7UV\nhdRWFPLOi5sYm5rnQNsQr7UN0do1TmvXOD99QrKloZTzt9g4f4uNihLVGHstIoS4C/iulPIln1N1\nBJgFqoUQfyGl/H6cQ6j+iwrFMtncUILsnqCpOvH0Lr+QRTSKLCZm7M6klfBUlo4iXSjHag3g0TRe\nax3ivmdPMzLpbZS3sa6YK3bXsXdr1ZorDFQokqG8OJ+3X7SOt1+0jtHJeQ7IIQ7IIWT3BLJ7gp8/\ndYp11UWct9nGBVtsNFQVxT+oIle4Am/tLsCHgWNSynf6eio+AMR0rFT/RYVi+ZhNBnZuTE62vaa8\nYIlj1VRtpWvQW49aUZzP5vpSjMbYyn55RkNAYS64lkuhWG3UjDvH6eib4u4nJGcGpjHodVx1Xj1X\nnVevJocKRQQqSvJ5x0XreMdF65iYcXhrsU4O09o1ztnBGR58oZP6ykIu2lbFJdtrqAxqDqrISZy+\nvogAlwL3AUgp24UQedF3S5iQ/otCCH//xVMpOLZCocCbgeB3rOYX3An1wbIWmHFM2WmoLFJOlSKt\npNWxEkJcBXwXMAP/K6X827DnPw38C95GjgD/mECqxjmJR9P4zStdPPB8J26PxkXbqrjpyk1UqYmg\nQpEQpUV5gYWIuXkXRztGOdA2xOHTo/zq+U4eeL6TXZsqeMsFDWzfUI5e9cnKReaFEJvwtvN4C/BF\nAF9Lj9WQi1QzOIUihYQ3Kna7E2sM31hVhNmkp6ZC9elUpJd0qgLq8KZd3Ai0Ai8KIR6VUr4ctJkG\nfFlK+aV02ZWLTM4u8L2HjtPaNU5JkZnbr2th2/ryTJulUOQsBflG9rVUs6+lGrvDxQE5xDMH+zh8\nepTDp0eptxVy3SXr2bu1SjWXzC3+FTgA2IGXpZT+SNJVwLEUHH9Z/RchJyTqM4a6NtE5F67NNZcW\n0tE7webGssD37Z6t0NE7yUW76jBEiUCFX5uGelVX5edceN9kC+mMWO0BxqWUxyCgtnQT8HLYdmrW\nEoOugWm+ed8Rxqcd7Gmu5PffuRWrUjdTKFKGJc/I5bvquHxXHZ39U/z2QDevnhjkfx46zgPPd3D9\npevZ11KddPG0Iv1IKX8mhHgJqAH2Bz3VDvzRco6Ziv6LsHZ6MKaatdTfLdWcS9emvMDE6OhM4H6+\nHloaSxgbi/zxOpeuTbKoaxOd1XA40+lYBXLRfXQDb4qw3R1CiI8DB4HPSCl7ImxzTrK/dZAfPtqK\n0+Xh5is38s6Lm9Cp9CSFYtXYUFvM7ddv58bLNvDrV87y4tF+7nyklYdf6uK6S5rY11Kt8vezHCnl\nGeBM2GNnE9lX9V9UKBQKRTKk07EKT4yNVH14D3An4AT+HK/E7dWxDrqWwpvRxuLxaPzv42388smT\nWPIM/MUt+7hoe02arUucc+E1yUXWylgyMQ6bzcr2LdXcOjbHPU+f4sn9Xfzg0VYefPEM775iE2/f\nt46C/ORLdtbKa7JWUf0XFQqFQpEM6XSsevE2ZvTTQGgECynlkP+2EOLbwF/EO+haCW9GC9XaHS6+\n//AJDrWPUFVq4Y6bd1JvK8zaca+lkLMaS/aR6XHogPdfuZG37Knlif3dPHekjx88dIyf/uYEF4oq\nLt1Zi2gsTagOK9NjSSXKQVQoFAqFIr2O1RGgXAixC694xe8BfyyE2AEsSClPCiE2A+0+edzbfPuc\ns/SOzPJfvzpK/+gc25rK+OSNOyiyrIaQlUKhSIbKEgsfvnoLN1y2gd8d7OX5w328dGyAl44NUJhv\nZNv6clqaymisKqK2opCCfNXZQqFQKBSKtU7afu2llB4hxCeAe4F84G4p5UtCiK8Cw8BXgE8CHxBC\neAAJfDxd9mUbLx7t56dPSBacHq6+sJH3v2WTKpZXKLKMIouJ69+0nndd0sSp7glePj7I8U6vbPuB\ntkAAHmuBicJ8E4UWI2ajAb1ehyXfhNvlxvj/2bvv8DivKvHj31GXLMmyrJG7YzuxTxzbiZM4lVQS\nEhJCGhBCsiEECL1lF/jBwu5SdheWHhZCAgspJKE5lVRSIL0Xdx93W5JVRr2PRjPz++N9JY1GM9JI\nsjQz0vk8jx/PvGXmvFcj3bnvvffczAxysjMoKcxldnEe3ln5LJtXbAt7G2OMMWlmUmtuVX0aWBG1\n7SsRj/8Z+OfJjCnVtHcF+MOTO3hpSy35uZl85tLVrDuyPNlhGWOGkeHxIItnIYtnEQ6HqW3qYkdF\nMwfrO6iq76C+pZuO7gB1TV2EwiOvw+LxOOuwHHVYKSesLGfJ3CJLVGOMMcakOLslmkLe2uHjjseV\nlo4elswt4lOXrKJ8li1uZ0w68Xg8zC0tYG7p0N/dcDhMMBQmHA4zq7SQmtpWeoMh/IEgzW1+Glv9\nHGzoYGdFM3uq2zhQ285jrx7AW5LHyUfN5fRj5lE20xYBN8YYY1KRNaxSQFV9B796cAuvba0lK9PD\n+85cxrtPWmxD/4yZYjweD1mZTs9Tfm7WoDmTc6JuogR6g2ze28hr2+t4a2c9f31xHw+9uI9VS0s5\n45j5rF1eZqnejTHGmBQyaQ0rETkbuBnIAe5S1W9G7c8GfgucDjQBV6nq9smKLxlCoTB3P7mDv79V\nRTgMKxaVcM35woKyGckOzRiTZNlZmRy73Muxy734e4K8tr2OZzccZPPeRjbvbaS4IJtTV8/j5FVz\nWFReaEMFJ0gCdddhwO9wFiFuAq5W1f2THqgxxpikm5SGlYh4gN8Al+JkBHxBRB5W1ZciDrsGyFXV\npSLyXuBG4PzJiC9Zmtr8/OOtg8wtLeDjl6xhibfAvhwZY4bIzcnktKPncdrR86jytfPshmpe3FzN\nY68e4LFXDzBvdgHnnbCIM9cuSHaoU0qCddePgPtU9Rdu3fVD4IrJj9YYY0yyTdY4krVAk6puVtUg\ncCcQvfDixcDt7uOHgLUiMqW7bmbPzOPHnz2V73zsRE5cNdcaVcaYES3wFvKhc5fzk8+dxmcuXc3x\n4sXX3M1fX9yX7NCmokTqrpXAE+7jJ4FLRMTGaBpjzDQ0WUMBFzB4MeAK4NR4x6hqWEQOAvOBnZMS\nYZLMLMxNdgjGmDSUnZXBuiPLWXdkOV3+3oSyDZpRS6Tu2oDT2PoecBmQDcwBqicjQGOMMaljshpW\n0TV+ZgLnJHLHz+P1Fo0hnNQ0Va5lqlwH2LWkoqlyHTC1rmWKSqTu+jLwCxF5E3gWqAWCI7zulKq7\nDjUrm/isbOKzsonPymbyTFbDqgpYGPF8IYPvAvYdswjY6I5rnwccnJzwjDHGmCFGrLtUtRp4H4CI\neIEPq2odxhhjpp3JalhtBEpF5GicCcBXAzeIyGqgR1V3AA8C1wIP48y3eltVOyYpPmOMMSbaiHWX\niMwDGoAQznDAXyctWmOMMUk1KRNsVTUEXA+sB3YDT6nqizgNqUvdw+4A/CJSAXwL+MJkxGaMMcbE\nkmDdtQ7YhTPCIhP4jySEaowxJgV4wjbh2RhjjDHGGGPGxVLCGmOMMcYYY8w4WcPKGGOMMcYYY8bJ\nGlbGGGOMMcYYM06TlRVwXETkbOBmIAe4S1W/GbX/MOB3wFygCbhaVfdPeqAjEJE7gfOAWlVdE2N/\nNvBb4HSc67hKVbdPbpQjS+A6zgV+CKwGrlTVeyY5xIQlcC1fAj6H87uyE7hOVaOXCkgJCVzLR4Bv\n4kyw9wGfUtU3JzXIBIx0HRHHXQg8BJyrqk9PVnyjkcDP5HPAfwGt7qbvqOpvJjHEhCXycxGRa3GS\nN+QAj6rq9ZMYYsobqS6bKmJ9VkSkGPgjcCROyvoPqGqtu+8G4PM4mRW/qqr3utvXAHcCxcDTwPWq\nGkqXujKaiCwCbgUE8AM/VdVfWtmAu8zOK4AX8AB/UdWvWNkMEJEM4EUgoKqnW9k4RMQHdLtP21V1\nZTLLJuV7rNxftt/grBNyBHCuiJwSddiPgPtUdRXwPzhf6lPRr4ELh9l/DZCrqktxvpzcOClRjd5I\n17Eb51r+zNAFNlPNSNeyAzheVZcAf8f5rKWqka7lr8AK9/P1XeCXkxLV6I10HYhIPvA14LlJiWjs\nRrqWMPA/qrrI/ZeSjSrXsNciIscA/wacpqoLgf+crMDSQYJ12VQR67PyZWCTqi4D/gJ8B0BEDgc+\nC6wBzgR+JiJ57jm/BL7m/s0qAT7obk+XujJaGPiWqi4CTgG+JiIrsbJBVcPARW7cApwqIudjZRPp\nk8AeBr5XWdk4eiPq0JXutqSVTco3rIC1QJOqblbVIE5r8vKoY1YCT7iPnwQucVv2KUVVnwWahznk\nYuB29/FDwFoRmTHhgY3SSNehqntVdTPO3QDPpAU2BglcyyOq2uI+fQ5YMCmBjUEC19Lgpo8G5455\nSjZ6E/g9AecL/M+BTlL4M5bgtaRs/JESuJZPAjeq6kH3+JQbNZBkidRlU0Kcz0pk/XY7cFnE9ntV\ntUNVq4BXgXNEpBQQVX3UPe5WBsrrEtKgroymqpWq+rz72AcoMB8rGwAiFtbOZOD7qZUNICLlwBXA\nLxioM6xs4kta2aRc4yOGBQxe6b6CoV9uNzBQAJcB2cCciQ/tkOu/VvfuzUGcP7omNVyH0+uTtkTk\nU+5acb8CPp3seMbCvcO7RlXXu5tSsoE4Cp8Xkb0icq+ILEx2MOOwHFgqIq+5/85PdkApJpG6bCqL\nrN9agWwRycGp46oijusrl3k4dWCfSgbKaz5pXleKyAqc35lXsLLpJyJbgHpgo6o+jpVNnx8B3wCC\nEdusbByZIrJDRDaLyCfcbUkrm3RoWEV/acqMccyXgXUi8iZwIlDL4A9fukqHn8+0ICLXA4cBP052\nLOOhqje7w1A+A3w72fGM0Y04v/N90qLHJ46/4HyuDse5c3ZrcsMZl2yc6zgFZ+jEbSJSmNyQUkoi\nddl04iH27268em+4+jCt6koRKQH+BHxCVdtjHDJty8ad0jEPOEJETo5xyLQrG3duZshdnHy4+m7a\nlY1rnaquAN4D/IuIvCPGMZNWNulQcFVA5F3chQy+64eqVqvq+1T1OJyJ4LkRXcrppApYBP3j8aNb\n0Oko3XsTEJGLcYY5XeoO4Ul7bm/Pu0Qkrb7cufEeBzwmIntxxkjfKSJnJTWwMVLVOlX1u0M0fwGs\nS3ZM41ABPKiqve7E3v04DS3jGLEum+Ii67eZQI+q+hlaLotwyiX6rnBkeaVtXenO57gfZ9js4+5m\nK5sI7vD7x3G+KFvZODerznXrvHtxOhIewMoGAFU94P6/H3gQpx5NWtmkQ8NqI1AqIke7mTmuBu4X\nkdVuVzoiMk9EckQkC/gezsTZtCAia/quA+cDca37+GLgbVXtSE5koxN1HX3i3SFIaZHXIiJnAN/H\nmVTbltzIRi/qWo7ta0iJyBVAZbo0FPuuQ1WDqlqmqkvdiaTP4GQB/UeSQ0xY1M9kufuHGuAjOH/v\n0kbU7/39wLnu9oXAYmBvsmJLQTHrsiTHNJkexPmM4/7fd+0PAZeJSJGbNW8d8LSqNgEqIu+JcU5a\n1pXu398/A4+p6m0Ru6xsRLziZHju69G7BNiKlQ2q+t+qutCt8y4DXlfVS7CyQURK3PlnffPQLsD5\nW5u0skn5dOvqpDq8HlgP5AF3quqLIvJDnJTRP8ApmF+6+x/GydqRckTkXuBkoMyd5/IfOIk36nGy\nGd4BnO3uqwc+lKxYhzPMdfiAH4jIacAfgFnAu0XkWzpM2uxkGulacLLnzQNeExGAPap6ZpLCHVYC\n1/IB4K9918FAxpuUksDvSdpI4GfyaeCDIhLCmcj+8WTFOpIEfi734kwC3o2T+vYz7th2Q/y6LMlh\nTYgYn5V/x5kj8kcROYDTm/kBAFXdJSI3AZtxhvDfoKp9qZM/h9MjfTNOgqo/uNvToq6M4UzgIuBY\nEfmsu+1zWNmAk4VtvYjMBnpxfj/+IG7a7GleNpE8DIwEss+N8/3sPnfYeQ9ws6r+XUTeIEll4wmH\n036kljHGGGOMMcYkVToMBTTGGGOMMcaYlGYNK2OMMcYYY4wZJ2tYGWOMMcYYY8w4WcPKGGOMMcYY\nY8bJGlbGGGOMMcYYM07WsDLGGGOMMcaYcbKGlTHGGGOMMcaMkzWsjDHGGGOMMWacrGFljDHGGGOM\nMeNkDStjjDHGGGOMGSdrWBljjDHGGGPMOGUlOwBjUo2I/AgIAI8Bv1DVNUkOacxEJASUqWpjsmMx\nxhgzMazeMiY1WMPKmKHC7v87gf8c6WARuRN4S1V/7D7PBn4KvBuY577Ov6nqXycmXGOMMdOc1VvG\npAAbCmhMHKp6UFX/NIZTc4EQcAVwGHAT8GcROfxQxmeMMcZEsnrLmOTyhMPhkY8yZgoTkaOAWwEB\nngNqgHrgceB/+4ZUiMi3geuBfKAWuAZYCfwS6AFagYdV9XMx3kOBb6jq+mHimO/Gsc7d9KqqXuDu\nE+BnwAlAELhFVf/djf0WYJUbw73Al1S1xz2vf0iFiOQA3wauAvKA+91ju0ZdaMYYY5LG6i2rt0xq\nsh4rM62JSCZwH3APMAv4X+CfcIZVhCOOOx74MLBGVWcB5wMHVfUOnD/0/6WqS+NUTnOBJcCmEcL5\nOrANKAO8wLfc8wuAJ4BngAXAUuCRiPO+4R5/LHAi8Nk4r/9tnMpvnfsape42Y4wxacLqLau3TOqy\nOVZmujse5w/1D1U1DPxNRJ6KcVwvUACsFZHnVHV/1H5PrBcXkVzgDzh36nSEWHpwKo7DVXUX8Iq7\n/XygXVW/H3HsywCqujViW7WI/AK4GGesfLRPAuepqs+N7TvAg8BXR4jLGGNM6rB6y+otk6KsYWWm\nu/nAAbdy6rOHqApHVTeIyNeA7wErROSvwA2qWu8eMmRMrTsZ+M84wy++mEAs33X//UNEunGGc9wI\nLAJ2xzrBvav4Y+AkIBtnqMT2GMcVAyXAXe4wC9xrzEsgLmOMManD6i1jUpQ1rMx0dxAoj9o2lxgV\ngqreCtwqIrNxxpR/E/gSzoTfQRWaiGQBf8SpuK6OqgBjUtVm4PPA50VkHfCkiDwDHACWxTntR0AD\nsEpV/SJyDfCJGK/dKiItwCWqOqQCM8YYkzas3jImRdkcKzPdvQF0ichlACKyHLiQqDt5InKUiJzq\nVjxtQAfOmiEAdcAREcdmAHfi3Gn7MJAtInnu9rhE5D0issh9Wo8zjCOAMxm5UES+6r7ODBE5yT2u\nGNjpVk4FOJOU47kFuFFEFrjvN19Ezh8uJmOMMSnH6i1jUtSE9Vi5v2h9GWv8wE9V9Zdu1+4fgSOB\nSuADqlrrnnMDzp2PEPBVVb13ouIzBkBVg27l9Bt3yIQPZ1Jvn76KqhD4BXA4zuf57wysFfJ/wJ9E\npBF4AGfy7hXuuc0Rr/Ul4OfDhLMW+JX7O9IEfEtVtwCIyHk4E5S/hjOm/Vc4Y9n/DfidiFwFdOKM\nYT85Rvy4x34DeFZEyoAqnErr8WFiMmbKEJGzgZuBHOAuVf1m1P5zgR8Cq4ErVfWeiH3fBj7oPn0e\n+KT792Mh8Cec4Vmb3PM6J/xizLRl9ZbVWyZ1TVi6dbeyWaKqz4uIF3gTOA/4EJCrqv9PRD4PrFbV\nT7prJTwOHINzx+QlQCylpjHGmPESEQ/OoqeX4mQxewFnvslLEccsBWbgZDq7t69hJSJH4zSe1uDc\n+HsK52bhgyJyB/CSqv5KRH4M1Kvq9ybx0owxxqSICRsKqKqVqvq8+9gHKM4dvYuB293Dbgcucx9f\njFORdahqFfAq8M6Jis8YY8y0shZoUtXNqhrEGfZ0eeQBqrpXVTfjNJ4ihXFGeOTjTLbPAardfe8F\n7nAf3xr9msYYY6aPSUleISIrgOU4XcALcIYA9k1MzHYXgJvft91V4R5rzJQhIl8idqall1T1qsmO\nx5hppL/ucVUApyZyoqpuEpG7cYYhBYDbVfU1ESl093e4h1Zi9ZaZYqzeMiZxE96wEpESnCEUn1DV\ndmch7kE8xF5LYcTetHA4HPZ4Yi7DYExKil4SpNvfS5e/l1nFeUtwhskak47S4Q9x9Lj3zERPdIe2\nnwksxpmr8riIXAA8F3VoQqNArO4y6WSYpayWYPWWSW+H/A/xhDasRCQPZ0LljaraN9GwCmd9gy0i\nMhPocTPDVAELI05fxAiTEz0eDz5f2wREPjG83qK0ihfSL+Z0iPflrTU88tJ+Glq76fIHAThxZTnX\nXbCS3JyEv+slTTqUcSSLd+J5vUXJDiER0XXMQgb3YEWLbIhdAGx2U0sjIo8Cp6nqoyKCiMxwe60W\nuu8zrHSruyZTOn7+J4uVTXxWNvFZ2cQ3EXXXhM2xEpFMnEXmHlPV2yJ2PQh8xH38EQYy2TwEXCYi\nRW5GwXXA0xMVnzGTLRQK8+end/HrB7dS29TF7OI8jpNyFpcX8uq2Ov7z969T22TJxIyZIBuBUhE5\n2l0E9WrgfhFZ7Q5XjxQ9kmI/cLqIFLjnvhPY6u77KwN12nXAfYkEEwxFT+MyxhiT7iZyHaszgYuA\nz4pIhfvvEpyF4VaJyAHg/cC/A6jqLuAmYDPwDE62pu4JjM+YSdPRHeCnf9nAY68eYG5pAd+67gS+\n87GT+PYnTuGb167jnOMWUuXr4Du3vc6WvY3JDteYKUdVQzjr5azHWUj1KVV9EbgWJ1MgInKaiFS4\nz28RkU3uuX8DnsRpnG0BdgF3uy/9r8DV7nmHAz8bKZaWdj+vba+jqr5jpEONMcakkQlLtz5JwunU\nvZmO3bHpFnMqxrt5TwO3PrqdpjY/Rx8+m0+8dxUFec4o3Mh4X9hUze2POWPZP/++NaxZNjtpMQ8n\nFct4OBbvxPN6i2zC0CjsqmwOb9vtIysjg3VHlic7nJQS7/Nf19xFV3cvh81Ni2GnEyId/zZMFiub\n+Kxs4puIumtSsgIaM5UEekPsqmymodVPU1s3bZ0BvLPyWTq3mEVzCsnNzqQ3GKKjK8B9z+3h2Q3V\nZGZ4uPT0pVx0yhIyMmL/Hr9jzTxKinL5+fqN/O89m1K6cWWMMZNpz8EWgGndsDLGpD5rWBmToC5/\nL8+8fZC/vXaA5vaemMd4PJDh8RAMDfQELyov5GPvWcniOSN/IVi1pJQvvP9ot3G1kU+8dxXHixfL\nIGaMMYdGoDdIdlbqJwoyxqQfa1gZM4JQOMyTr1Xw4Av76PT3kpudyTnHLWTRnEJmFeVSmJ9NTWMn\n+6rb2F/bRjAYIjcnk9zsTA5fMJPzTlhEVmbi0xlXLSnli+8/mhvXb+Sm+zezYlEJl52+FFk8awKv\n0hhjkiMYCpGZMZFTvgfsq2mlprGTo5aUUlyQMynvaYyZPqxhZcww6pu7+O3D29CKZgrzs7ns9KWc\nfdxCCvOzBx23dF4xp6yae8je96glpXzjmuO579k9bNjdwP/c/RYLvYWUzcyjeEYOJYU5lBbnMbs4\nj7KZeZTPyrdeLWNGICJnAzcDOcBdqvrNqP3nAj8EVgNXquo97vZzgNsiDi0HrlbV9SJyVt66nAAA\nIABJREFUGnCj+5odwMdVdfNEX8uh1NDSzc6qZo45vIz83Mn9WtDY2s2OymaWzSumfFZBQuds2dtI\ndlYGKxaVjOq9Ort7qWl0Mq+2dfRYw8oYc8hZw8qYOF7eUsMdjyvdPUGOW+Hlw++WSa2IF88p4osf\nOIY9B1t54Pm9bN3XSKWvPeax3pI8TjhyDieuLGdReaE1soyJIiIe4Dc4Gf+2AS+IyMOq+lLEYbuB\na4CvE7GOlao+hbO2IiIyAyf9+qPu7p8DX1TV50Tko8B3gcuGDSbFckbtducv+Zq7EhqyfCjVtzjJ\nf2ubuhJuWLV1xR6KPZJ4fz+NMeZQsYaVMTE88XoFf3hyJ3k5mXzsPSs5dfXcpDVWls0v5oYrjiEc\nDtPp76W1o4fmNj8NrX4aW7upqu9g454GHnl5P4+8vJ9l84u56NQlHHP4bGtgGTNgLdDU15skIncC\nlwP9DStV3evuCzF4HatIl+Okau/LlR4CCt3HRSSwQPBUEgqF4ybkSURjm9Ow6ktQHA6H2by3gbKZ\n+cwtTayhNRbtXYEJe+1EhcPhmH+ju/y9ZGdljGoIuTEmNVjDypgoD7+0j3ue2cPMGTl8+cq1LPAW\njnjOZPB4PMzIy2ZGXjbzZs8YtK8nEGTj7gZe3FzD27vq+fn6jSwqL+SiU5dw/ArvuL74GDNFLAAq\nI55XAKeO4XWuwhlO2OdTwMMi4gf8wMljjjCGhpZu2rp6WDK3eMi+Ln8vvuYuFpYXkpGEmyhNbX60\nooll82dSXpI/6vNjNW6q6zto7wrQ3hVIuGEVCocJhcKjaog0tfsTPjZRLe1+unuCzEkw7jd31JOf\nm8nSecVkZnjIyc4kFA6zYXc9GR4PJ66cc8hjNMZMLGtYGRPh3mf38NCL+5hdnMuXP3QscxIcmpJs\nOdmZrDuynHVHllPla+fhl/bzyrZafnX/ZuaWFnDhyYdx8qo5dgfUTGfRA/BGnRZORLzA8cAjEZtv\nAK5V1cdE5PM4C91/MJHX6w2F2Li7njXL4vcu76xqBmCht7D/97fL30tvMMTOyhZ6eoPk5mQm5W9V\nfUsXADUNHSM2rFra/TS39wxKlx7oDfU/7vQH2FXZQs8Yhklu3N1Ad08vJ62ck9Re+m0HmgASblgF\ngkECnUE27K4H4OSj5tK3tmgovdcYNWbasoaVMa4nXq/goRf3UV6Sz5c/tJaymaO/A5sKFngL+cTF\nq7jktKU88vJ+Xtxcw+8e2cYDz+/l4ncs4dQ1cyctA5cxKaQKWBjxfCGDe7CixfpmewXwgKoGAEQk\nB7hYVa92998DfC2RYIqLBv6+zJ5dSGacmx7FRc78p7KyIrIyPXg8Hp550wk7Lz+HPGDmzAK83rHP\njSquaiUUClNaOmNUr+Nr7yEQ9jAjP3vIeeFwmMq6dmbPzKMgL5utFc51zChyngNk5GRR3Nzdf05f\no6qvbCJfs68cvN6iQY8BcipayMnNHrYcAeraeuiNGOE5njKLJTquRI+PjCcYClNc1RbzdZpau6lt\n9XPU0tk2CiGGQ/3znEqsbCaPNayMAd7a6eOPT+50hv+lcaMq0pzSAq67cCWXnLaUR185wDNvH+TW\nR7fzyMv7ufT0ZZy4stzmYJm0JCLZwCJV3TOK0zYCpSJyNE7yiquBG0RkNdCjqjsijvUQe47VVUB/\nJkFV7RGRNhE5XVWfA84Hto4USHO7n9a2rv7ndb42sjIzCIXDVNd3UFaST26206HWd1x9fRtv7awn\nNzuTTv/gIXSNjVnkue2JUDjM3oOtzCktGJK9NFLk/J7W1i5C4TCNORkUZo9806Wyrp3K+nZKZuTS\n2uGntyeAz9c26Ji+YYLg9MQMXIeTQGLD7nrmlc4YVA7gNKr6tkW+Zt+2mtqWIfv7n9e3DXvTqLm5\nk9a2gYZcdMzglF8wGBqyztXe6laKC3KYPTMv7uvHins40de+r6KR/JysuK+ztcK59mzClBbHj2M6\n8nqLEi736cbKJr6JaHDabWsz7e2tbuWWB7eQnZ3BF95/9JRoVEUqLc7j6net4PufPJmzjl1AfUs3\ntzy4hd8/rgRDoZFfwJgU4qZM34k7HE9EThGRP450nqqGgOuB9TjZ/55S1ReBa3EyBSIip4lIhfv8\nFhHZFPG+S4DFqvr3qJe+FrhJRBT4OPD5kWLpiJM4oa6piwpfO3qgiXA4jD8QHLQ/GAoNaVSB04jp\n09DSja+li817G+K+f0tHD69sq6WuqZNQaPRDzirdxlGnvzfuMb3BUMzHfXOIAKobO4acF62zu5fu\nnoH3eW173ajjjSdyKGLfELzNexp5Y4dvUMyB3hC1TZ39wzIT0RsMsW1/E60diWcw3LSnYdAQwPau\nQP9wy8bWgQahjRI0JnVZj5WZ1hpauvn5+o0EAiE+9741LJ03dIL4VFFanMeHzxfefeIibrpvM/94\n+yD1rd18+pLVk752jTHj8H3gdOAOAFV9SURuS+REVX0aWBG17SsRj5/HTase49x9sfap6hPAmsRC\nH17fF/3uniBVvo7+BsxIItOPR8/Nae8KoAeakMWzKMzPpr0rwLb9jQDsqW7lYEPnoOOr6jsoKsim\nuCCHcDhMKBwmMyOD6oYOZuRnD1pyItEv+G+or/9x3zpSiQiHw2zcUx93f2tnDwURf7ve2lHP4jmF\nCadtf2NHHScfNbc/xhn52f0N195gaFxzUutbumnp8NPS4e9/j0REJvToaxwX5mezo7J50PBRY0xq\nsh4rM211+Xu5cf0GWjp6uPLc5Ry73JvskCZF+awC/t/Vx7Fm2Ww272nke3e+Scso7qoak2SZqloR\ntS1+10maim5UJdqIiR6/uHlvA4FgiAO1bf3PI3X39PYPCewJhKioa2PrvkZ2VbXwyrZaXtteR08g\nyP5aZ/tgiQUVjjiuJ5B4L/kr22qH3b91XyOb9gxcT28oxJ7qVkLhMLurWmhxM//5A8ERe+d7QyFa\nOgZnCuzucZKEVNSNfv2rcMQPzNfcRU9U7+NoBKN6FaN7Mo0xqcMaVmZaCoZC3PLgFip9HbzzuAW8\na13Mm9RTVn5uFl94/xrOOnYBlb52fvPXLZaFyqSLdhEp73siIucB8ce9pYG3d9YP+v2biN/FUCjM\n/prY8yz6Gh31rQNzfvqGoEH8Rl0gOPqhxNGNl/GK1chobHWGQ2470ERdUydv7fTx2va6mDeQ9hxs\npa1z6PaWjh7e3lXP61pHXfNAL9vG3fUJNWx6gwOFtvtgC2/u9A1z9OgcqGvD3xNkz8HWQcMZjTHJ\nZ+N/zLT0p6d2sXF3A6uXlfKhc5cnO5ykyMzI4JrzVtDU2s2G3Q089soBLjz5sGSHZcxI/hV4Apgr\nIs8AK4GLkhvS+PSGQnT7J7YXor07QHv3xC6K29EdIC8nM+lZRyMbgnuqW/sfx+q1qmvuHNRw6rM3\n4rxInf5eaho6B6WNh6ghfHsahi3rmsbOuPPsEk0ntOtgS3+DcNn8+EPYqxs6CIdhftmMuMcYYw4d\n67Ey087f36zkyTcqWVA2g09dvDrpXwKSyePx8NH3rKSkMIf7nt3D7oMtI59kTBK5CSfOxklE8RPg\nKFV9NblRHRpdwySDSOrwr4hv+/6e2HF0+XvZtKeBbfudTIBT+W9JKBweNNQvHA4PGmIZr1HVd86+\nmlZ8LV0xj0lUr9tTNdIQx/21bRyos4xwxkyWCe2xEpE7gfOAWlVd4277EXAd0HeL6HpVfczddwNO\nRqUQ8FVVvXci4zPTz7b9Tdz1xE6KCrL54vuPpiDPOm2LCnK4/r2r+NEf3uKWB7bwretOtHIxKU1V\nG4EHR3uem1HwZiAHuEtVvxm1/1zgh8Bq4EpVvcfdfg5wW8Sh5cDVqrpeRDLccz6EM9fr26r629HG\nFgqH4/ZiANQ0JJ70oU91w8hZ9xKxu2qgkfTWrthD2rrdBld7VyDpcza74zT+DpXapk46ugMcuXgW\nbZ2B/rTyIwmGwvhi9I6NRZebKbEvq6M/ECQ7M2PQ+laRja7eYIit+5pY6J0x6lTtXf5euvy9luLd\nmARM9LenXwM/A26N2BYGPq+qd0ceKCKHA5/Fya5UArwkIo+q6vhu6xjjqmvq5Kb7NuHxwGcvW0NZ\niWVY6rPysFm859QlPPTiPv741E4++p6VyQ7JmJhEpJuhWRPCqjpsKjgR8QC/wUmlvg14QUQeVtWX\nIg7bDVwDfD3yPVT1KdyMgCIyA9gPPOru/ixwBLAECADzx3Jdw6VHh8Hzn+Jp7wrQ0T3Q67W/9tD0\nVLTGmIMUKXqeT1/WwWSpSjCb4ni0dwV4XUeX+n3DrgbGMkCisTX+vLSmdj+B3hBv7fSRl5PF2iPK\nANhR0UxjxJpdOyqa6fQH2FHZPKoshUB/evzjlnvJyc4c4WhjprcJbVip6rMickSMXbGGEV8M3Kuq\nHUCHiLwKvBN4eCJjNNODkwFwIx3dvXzkgiNZsagk2SGlnEtOW8LGXfU8v6ma046eZ2VkUlVhxOMc\nnPlVqxM4by3QpKqboX9ExeVAf8NKVfe6+0LEn+5yOc4aWH3dQZ/C6d3qa31UJXgdh1RLR0/SGjSB\nYCjhXpvpLBAMwgidadsODC3HkRqKb+xwGniR631FNqpg5MZxc7ufzu7eYediRWcnNJMncukDk9qS\n9RP6HxHZIyK3iUjft7f5DK6QKoAFkx+amWrC4TD/99BWqhs6OXfdQs44Zkw3lKe8zIwMrjlfAPj9\n33TQApnGpApV7Y3416mqf8bpMRrJAqAy4vlY65irgLsB3GGAS4D3icgmEXnMHX0x6ZLdS2TS2/YD\nTRyoa+vPSBkKh9lX00pnRA9o2DLHJs2GXQ2HZHHs5na/1e04mUP31cROUDNeI/ZYiciVwHpVPVTr\nhPwU+BqQiTPx+Ic4k5CjJdTo83qLRj4ohaRbvJB+MUfHe98/dvHWznqOPqKMz11xLJnjWPRxIqRS\n+Xq9RZy/s57HX97Py9t9XHZW7O+rqRRzIizeqUtE5pFYwyr6W+GoxzSJiBc4HnjE3eTB6TXrUtU1\nInIN8FvgrJFeyxZ7jc/KJr6RyiY7L4ec7Ixhj4v196W4yJlHV1ZWRGaGh+r6DjoDYSoaO/tfq3R2\nIUURC0Snmqn8dzOnooWcvOwxX6PXW0RTazcHK1oo7glx7MCKFYdUZ3eAYCic0p8TgK0VE5dcJ5Gh\ngFcBPxaR3wK3qOq4hjmo6kH3YVBEbgZ+7z6vAhZGHLoIeHyk1/P50ifbjddblFbxQvrFHB3vzspm\nbntoKzNn5HDdu4XGxkMzmftQScXyfc9Ji3lhw0Huemw7Ry2aOWTCcirGPByLd+JN5hcaEYnMnuAB\neoAvJHBqdB2zkME9WNFi3Z6/AnhAVQMAqhoUkRpgvbt/PfC/CcRCa5tNH46luCjfyiaORMrmuTcP\n4J05/HE+Xxv7a9rweGDxHOd3t+/4el8bew624g8EaesaPHywvr6d7vzscV7FxEjHv5uj0ffzGcs1\n9pVNbWMnrW1dtLZ1sbB09Dcvahs7aesKcMSCmXGPeXlrDcCo5/FNpHA4TFtngMKCbDLcxdAn8m/M\niLfuVfVi4B04d+VeF5H1IvLOsb6hiIj7fwbOJOGN7q6HgMtEpEhEFgHrgKfH+j7GtHb2cPMDWwgT\n5lOXrGJmYW6yQ0oLhfnZfODsw/EHgvzhqZ3JDseYaMsj/i1R1fmqun6Ec8Cpa0pF5GgRyQauBu4X\nkdUisiLqWA+x51j1DwOMcD9O9lvc/zcleB3GTIhE5kJVN3ZwsKGDUCg8aM2urp5e6lu7hjSqADwe\np0diZ2VzUoeTNbX52VHRPKWGJja0dE/4kgqjXUy6y9/Lgdq2/vXS9ta0Ut/SNSELmE+k6oZOtu5v\npLJu4pPaQILD7VR1n6p+DXg/cBLwgIhsFJEzhjtPRO4FnnUeSoWIfBT4rogcxMmqtBz4ivseu4Cb\ngM3AM8ANqtod+5WNGV7InVfV1Obn8jOWIYtnJTuktPKONfM4YuFM3lAfG92MUMYkk4jkiEgOzlId\nff96IrYPS1VDOMPO1+Nk/3vKXRPrWpxMgYjIaSJS4T6/RUT6G0kisgRYrKp/j3rpbwOXi8gO4KvA\nJ8Z3pcaMT3TiiuH4WrqobRpIAT/SQtXb9jfT0NpN9RjS/x8qWtFEY1s3bcMsT5BO2rsC7KxqZtPu\n4TODjkd1QweVo8yWuWF3PQcbOtiyL33mb4bDYTburqfKN3CtfQ3DkRK4HCqJzLHKBT4IfAZnTPo3\ngD8BJwB3AYfFO1dVL4+x+XfDHP8TnHlXxozLU69XsnlPI6uXlXLByXE/oiaODI+HD58nfOvW17jz\nbzv47sdnkWtpdk1ytRJ7eB7u9mHTrQOo6tPAiqhtX4l4/DxuWvUY5+6LtU9V64F3jfTexqSKyJ6R\nUFTvVmTvVSyBoHNuKvUWdfl72V3ZTGH24HW8IvUGQ2Sl2PzqPn29f70jLPY8VuFwmNqmiRn6FgyF\n2F3VyvyyGRSOYphoTyA4Ian7ewIhOv29dPra6Q2GqWvuGohrkj6yicyx2stAD1Lkeh/Pi8iTExOW\nMWNXWdfOX/6xm8L8bD524cr+MbVmdBaWF3LeiYt47JUDPPzSPi4/IynJzowBQFVtdVJjDoG3dsZe\n5HkkkUMM+xZh7vL3kpeTiSeJ9ez2/U3k5ucwqyCLebOHpovv8veyYXc95SUFLJtfTCgUZn9tG3Nm\n5VOQN7QxMNov/TWNnTS1+TlycUlSyyGeFzdWD0rFP25h+gdK1zZ20djWTXO7nxOOTCwhxr6aVmoa\nOzlqSSnFhyDJRaWvnWAwTPmsfHZWNvdvr3bn1Ad6J3aIZbREmu/Hq+qHohpVAKjqxyYgJmPGrCcQ\n5Nd/3UJvMMRHL1xp86rG6eJ3LKG0OJdHXz7AwfrUSvxhjDFmfILBwbfxh+s12XtwoDersa2bKl87\nG3bXs68muUkj/O4X53hzy/qGgtU1O8MX693hj5v3Dh3i1tjazZs7fYOGkvUJhkJ0+Yc2UPbVtNLS\n4eeVbbWD0tPH0+Xv5a2dPlo7Yg9Na+8K8PLWGuqbx9bLFAqH2V/TRmd3Ly0dPXHnw411nlxz+8CC\n1X0lHgqHeWVbbULn1zQ6P4e2jh7qmjqpGud3i0pfO9WNHeytbqUzxs9nsjtXE2lY/bOIlPY9ERGv\niPxgAmMyZszueGQblb4Ozlo7n7XLy5IdTtrLy8ni6nNXEAyFufNvmlLDP8z0JCLHiMhLItIlIiH3\n3+TekjRmihjNvJuuqF6PCrfx4TRSGmI2OlJBdK3V1wCLlYShqc1pNPiah85T27S7kQ2764dNAhE5\nXy2e6oZO/IEgu6uclN+Nrf5B+31ug+pAgskWQqEwm/Y09J9X39xFdWMHW/c1xl3frrqhg9e1jl1V\no0873hKnQRg3vnAYX3MX/p7goKGmvcEwe6pbqahrc5+P3NBrbO3u/xnFep9Y+j637d2BYRuah0oi\nDat3qWr/T0ZVfcAFExeSMWOzq6qFB5/bzZzSAj74zuXJDmfKOHaFl7VHlLH9QDPPbaxOdjjG3AT8\nM/AyUAJ8Cvi3pEZkzDTX3hVgw+56Wjt74vZA1DV30d3TOyk36Dq6AzS2Htr8Z90B5wv6aLPrjSRe\ngzTRYqpp7KSjO8Dug04jqa/hOFzv4/5apzFT3zLGXrFQmPYEk4e8uq2W3QdbeGuXb1DDszpi+Zsu\nfy+va92gRXub2vz4ewbfM9tR2YxWNMV8n0TiqfK1U+Wb2NE3icyxijXQNJHzjJk0vcEQdzy2nXAY\nrrvgSHJzLNHCofRP561AK5r409M7OeuExckOx0xv+ar6kohkqWor8GsRuTWRE0XkbOBmnOVD7lLV\nb0btPxdn0frVwJWqeo+7/RzgtohDy4GrI9O8uyM5vgxkuRkIjZl2troZ5Mpm5g1KeNTW2cMe94t/\nYX42q5fOJhwOD5mTVN/cxa6DLRy9bHbM+U+J2rTHybB34so5E5q0ILqR2N0zeZ3n3T295GZncqBu\nYCimHmhixjjKLVE7K5tpavcza5jpFqFQOOEpBH0Z+2oaO8nLyaK9M0B9q9Poi7UmVjAUIjNjbMlI\nElmOYDwSaSC9JSI/xqlsPDjp0V+d0KiMGaUnXqug0tfBeScdxopFJckOZ8opLc7jA2cfwR2PKb+6\nZyOfuGhlSk7SNdNC3+3dDhFZDezCWbpjWCLiAX6Dk0p9G/CCiDwcNX94N876il8n4uuYqj6FmxFQ\nRGbgLBfyaMRrr8HJkGtLhBiD0+CobuggMzOD8pJ8eiPmcrV3Bahr6mRPdSurl86mtaOH4hk5FOZn\ns8ttfPmauzlsbjbdPb20dwUomznygrYx5zeN8B26sbWb0uKx58XpjZqjNtJwSF9z15CetHBEkDsq\nmod9jc17GjhqaSmd3b1s3tswJDlXU7ufpvbYQ+Xi6QkEqW/pZu7sgoSTffW9R7z3enlrDXnZWf29\nfKMR2WsFTpn5mrsGpUuv8nUwb/YMqkaZQj7M2OeWJSqR5t6XgLnAVmALUAZ8cSKDMmY0fM1dPPD8\nXooKsvnIRUclO5wp64xj5nPk4hJe2VLDa9vrkh2Omb7uFpHZwPdx1kmsA+5J4Ly1QJOqblbVIHAn\nMGhJEFXdq6qbgRCxFwjGPecpVe2A/gbbj3BuOtrdBmNwhrHtr23r76WKVuHOH6qobeNAXVvcOVob\ndjWwq6qlv9EUOY+mOWquTWNbN+FweNDwsbauAHujvqgHoxp5o9XXGxbLSMP3dh9sGXaIXmNb95C5\nbJHauwPsONDcH/ehWKx3R0UzB+raqItIyT7ccMdE33I0jaqm1viNweZ2/5A1qA42dLCzsrk/EUai\n2jp7RrXO21iM2GPlzq+6ekKjMGaMwuEwv/+b0tMb4toLjqSoIIfujtHdrTGJyfB4uPaCI/mP373G\nXU/sYOVhsyg6BKlSjRkNVf2Z+/AfIuIFclQ1kYkCC4DKiOcVwKljCOEqnOGEfT4G/ENVD4jIGF7O\nmKmnOaonoy4qqUPfaKyWiC/MsXoS+npzeoMhQuFwf8IHcL5czy0dvHxdXXMX7Z0DjaVYyRu6A+Mb\nrhcethss/r7onqr+RlHcU2LvaO7wU1J06DIet3c75dUTGFijbP8kZ3psHuZ7W0OcuXKTteDvaCU0\nV0pEzgKWucd7gLCq/noC4zImIRt2N7B5TyNHLZnFyUfNSXY4U96cWQX807uP5Hd/3cLdT+7kkxev\nSnZIZpoRkadxFpq/x21QJTr7OvpbyqgnYroNueOBR9zns3EaVme6PVeQYK9VcdHIQ5umKyub+NKl\nbGbOLKC40+mxyMnPIejJGDH22bMLKW5wfp1LSgrweosoLmrp33ewvp1A2DPodTp6w/3Pi4vyycvP\nJSM7C3+cDhevt4iGjgA97v72nhAVjV2Uz8pnYXkRDZ2B/nM7e8Pk52UR6A2Rl5M56H293iLAWSOp\nuHqgEZKVldG/L1pLd3BIGbQHQmRkZ1GcPfTreLb7WuFweMh5hUV5FHck3tuWyOdm1qwZeL1FvLq1\nhp7w4HMONnf3P+8ODo3HDBixYSUiv8VpVG3FGR5hTEoIhcPc+8wePMCHzlluc34mycVnHM4/3qjg\nla21nHhkOceu8CY7JDO9/AS4DvipiNwP3KqqLyZwXhWwMOL5Qgb3YEWLdbv4CuABVe37RrMaWAqo\n+zwX2CkiR6nqsONNWtvGlo1rqisuyreyiSOdyqY+J6M/1mffOJDQOfsrm/rPKcj24MvL7H9e39DO\n7gNDe5/yMj20tnX1l022Jxy3hwPA52ujqblzUDm2tnVRVdNCRjBEU9PAvo3DlPXrmw5y2NwiAr2h\nIT8Tn89paPmau8jOyiA3O5P83CyamjuGHLt5hJ/nEy/tjbm470jnRUr0c9OYnUFRTga1vqG9Veny\nuUsFifRYHaaqZ094JMaM0mvb6qj0tXPKqrks8BYmO5xpIzPDw3UXruTbt77KHY8ryxeVUJg/8VmI\njAFQ1YeAh9zeoquAn4tIkaqONA5vI1AqIkfjJK+4GrjBTYDRo6o7Io71ELvn6SqgP5Ogqj6DMwcZ\nABHpAo6wrIBmujvYMPqU1n0pwEcjenjdcI0qcIYkxksx/tZOX8KJLKobO6hu7IiZVOO17XXk5WTS\n0T3Qo3TyUXPp8o9+CGKsRtVECYbCY16U2AxIJHmFLVxjUk5vMMR9z+0hM8PDJacvTXY4086Cshlc\nctpSWjp6+ONTO5MdjpmeQji9SvEaQYO4jZ3rgfU42f+ecnu6rsXJFIiInCYiFe7zW0RkU9/5IrIE\nWKyqfx/mbWwFbWMOAX9PkO37I9YripMxYbhEELHsqW6Nuy8UDvfPM0pUrEZaMBQa1KgCqKxrpyXF\n53/XNXf2Z2U0Y5dIj1WbiKwHHgP6PilhVb1j4sIyZngvbq6hrqmLs49bQHmJjfVNhneftJjX1ceL\nm2s44chyjjmiLNkhmWlARC7GaQydDjwAfEFVX0jkXFV9GlgRte0rEY+fx02rHuPcffH2RRxTMNx+\nY0xiotN41zZNTk/KRCVEqBxlWnCTvhLpsSoA2oF3AGe5/2xooEmaQG+QB57fS05WBu89dUmyw5m2\nMjMy+NiFK8nM8HD7Y9vp7B592lpjxuDzwL3AElW9PtFGlTEmfU10imxjDpVE0q1/ZBLiMCZhz7x9\nkKY2PxectJiSYVb9NhNvYXkh733HEu5/bi9/fHoXH71wZbJDMlOcqr4r2TEYY4wxsYzYYyUis0Tk\nlyJyr/t8jYj808SHZsxQvcEQj716gJzsDN590uJkh2OAC08+jMXlhTy/sXrYhRONMcYYY6ayROZY\n/Rp4AWfVenAm/f4BZ9X6YYnIncB5QK2qrnG3FQN/BI7ESXX7AVWtdffdgDPMIwR8VVXvHdXVmCnv\npS01NLb6Oe+ERbY4bYrIyszgo+9ZyXdvf53bHt3Of378JPJzE1oiz5hJJyJn4yzjwgS7AAAgAElE\nQVTwmwPcparfjNp/LvBDnFTqV6rqPe72c4DbIg4tB65W1fUicgfOEPkg8ATwaVWdvHRexhhjUkIi\nc6wOd1e67wFQ1U4SXAARp1F2YdS2LwObVHUZ8BfgOwAicjjwWWANcCbwMxGxrASmXygU5pGX9pOZ\n4eH8E623KpUsnlPEe045jKY2P3c/sWPkE4xJAncR398A7wOOAM4VkVOiDtsNXAP8mYgsf6r6lKou\nUtVFODcG24BH3d0P4axndQQwH/j4RF6HMcaY1JRIw6o3YkX5vpXmE0opq6rPAs1Rmy8Gbncf3w5c\nFrH9XlXtUNUq4FXgnYm8j5keXtc6apu6eMeaecwqsrlVqeaiU5dw2NwiXthcw8tbapIdjpmiRCRH\nRL4iIj93n68QkUTnXa0FmlR1s6oGcUZeXB55gKruVdXNOCMn4t1EvBwnXXuHe86fVbXX7aV6Gadx\nZYwxZppJpGH1AM6wiVIRuQ54Erh1HO+5AHe1e1VtBbJFJAenIqqKOK7CPdYYwuEwD7+0H48HLjjZ\neqtSUVZmBp+6ZBW5OZnc8bhS19SZ7JDM1PQLnPriJPe5D/hBguf21z+usdYzVwF3R28UkTzgCuDh\nMbymMcaYNJfIRIj/xlkzxAu8F7hRVW87hDHEW9wxkUYfXm/RIQxl4qVbvJAaMb++rZaKunbOOHYB\nq1fMGfbYVIh3NNItXogfs9dbxGfffww/uftNfvvIdv7nc6eTnZXQr/KESrcyTrd4J9kJqnqsiPwd\nQFWb3JtziYgebZE52jcXES9wPPBI1HYP8H/A/ar6ykivU1xkI93jsbKJz8omPiub+KxsJk8i6dbD\nOBN2bztE71mFs8jiFhGZCfSoql9EqoCFEcctAh4f6cV8vrZDFNbE83qL0ipeSI2Yw+Ewdzy8FYBz\njl0wbDypEO9opFu8MHLMqxeXcMqquby0pYab/vIWHzpnOR5PotMyD710K+N0ixcmvSE4aME0ESkg\n8Xm/0fXMQgb3YEWLNez9CuABVY1euO0HOPXZvyUSSGvb5Cx4mm6Ki/KtbOKwsonPyiY+K5vJNWLD\nSkR+FWNzWFU/M8b3fBD4CPAV9//73e0PAY+JyHeAEmAdznALM81t2tPA3upWjl/hZVF5YbLDMQn4\np/NWsK+mlSdfr6QoP5v3vmNpskMyU8fzIvINoEBEzgK+jjNkPREbcYa1Hw1sA64GbhCR1TiNosjM\nK/FGU1wFRGcS/CpOQotLR3MhxhhjppZExui8Abzu/tuE05NUkMiLu2tfPes8lAp3jtaPgFUicgB4\nP/DvAKq6C7gJ2Aw8A9ygqrbU9jQXDoe5/7m9AFxymn05Txf5uVn8ywfXUjYzj/ue28vfXqtIdkhm\n6vg6kO3++wnwEm49MhJVDQHXA+txsv89paov4gx3vxRARE4TkQr3+S0isqnvfBFZAixW1b9HbMsE\nvg+cAOxz67rvj/cijTHGpB9POJxQgr9+7jjyu1X1QxMT0qiE02nITLoO8UlmzG/vqufn6zey7shy\nPnPp6hGPT3a8o5Vu8cLoYq5r6uT7d71Jc3sPHz5fOOvYyc9Hk25lnG7xAni9Rckb65mGnnmzMmxD\nc2KzYUvxWdnEZ2UTn5VNfO89c/khr7tGvYqnqoZFpOxQB2JMtHA4zAPP7cUDXPKOJckOx4xB+awC\nvnzlsXz/rje543Gl0tfOB9+5PCUSWpj0IiLfi7E5jDNcL6yq/zrJIZkkKcjNotNv6y8bY1JPInOs\nfhjx1AOsAqonLCJjXG/vrGd/bRsnrixngdfmVqWr+WUz+NdrjueX923i6Ter2FvdxqcvXUXZTMtS\nZEalhYFkEtF3GUc39MJMqNVLZ7N5b8O4X2fFwhJ2VA5eCnPtEWVkZ2Xw2va6cb32/NkzONjQMa7X\nMMaYaIn0WFUxcFcwADwB/G0igzImGApx33N78AAXW+KDtDe3tIBvXrOOOx5XXtpSw7dvfY1PXbKa\nVUtLkx2aSROqavOWprh5pTPoCIT6n+dkD82Gn5cz6oE2ky4zI4NgKDTygcaYKSeRdOs/m4xAjIn0\n7IZqKn0dnHb0POaXzUh2OOYQyM3J5OMXrWT5wpnc/eQOfvLnt7n8jGVcePJhSU3HbtKLiBQC/wac\ni3PT7wngP1XVuh9SRMYIv84ZHg+hGPO7F80pZHtla//zvJz4y4xlZ2YQCCbeeCmbmU99y+TMM5lb\nWkBVffukvJcxJrUkMhTwNwz0WBH9WFU/MUGxmWmqozvAfc/uIS8nk/edsSzZ4ZhDyOPxcNaxC1g0\np5Cb7tvMPc/sYW91G9dfdBS5w3yJMibCb4HtwMeAHJwsf7firC81LBE5G7jZPe8uVY1Om34u8ENg\nNXClqt7jbj+HwWs5lgNXq+p6EVkI/AmYj5M590pV7RzPBaaSsuJ86ltH1yApyMse9Ly0KI/GtpGT\n/GZE3WDJyszgmMPL2LC7fsix2VmZo2pYRTfSRpm3K2FZGRmM9z7ROinndR3fUEdjTHIkMoO8FzgG\nJw36FmAt4AeeB16YuNDMdPXg8/to7wpw0alLmFmYm+xwzAQ4fP5M/v0jJyCLSnhzh49f3LuRQG8w\n2WGZ9JCtqv+hqm+r6quqej2wZqST3Iy2vwHeBxwBnCsip0Qdthu4BvgzEfO2VPUpVV2kqotw1qtq\nAx51d/83cKeqLgV2Al8c3+UlbmHZxM49nVc6gyMWzkzo2ILc7Lj7ls4b+wLS+bmx7//m58a+EbO4\nvIhl84qHbJ9bmtAqMf1mzkis7snOtBtCxpgBiTSs1gBnquqN7rDAs4DjVPV2Vb19QqMz0051QwdP\nv1mJtySPd61blOxwzASaOSOHf7lyLWuPKGPLviZ+df8WekdxB9pMW90i0v9tW0RmAbUJnLcWaFLV\nzaoaBO4ELo88QFX3qupmIETsxYFxz3kqYujhe4E73Me3Rr/mRBrtMOmZBTlx92VmDP06cNjcoQ2i\nRXESCR2+YGhjZixWHz47oeNK3Jtu3pLBSXDml80gK3PotURuO2LBzCHnRYvVOIt28lFz4zbwjDHT\nUyINq1k4PVR9uoHE/vIZMwrhcJg/PrWLYCjMFWdbSu7pICszg09fuoqVh83i7V31/PbhbYRCluDN\nDKsQeFNEfiAiPwPeAg6IyH+IyHALBS8AKiOeV7jbRusq4G7on+9FRCOrcoyvyYJhep9WL53Nkrkj\nf9GfM6tg2J6ZwmEaVuvES2lR3ojvscBbGPO4GXnxe6yGxJEf/9jZCWYL9Zbks/aIMg6fn1iPWrSC\nvOFnQmRljW0836GYLhr5GoV52ZTE6T07drl3/G9mjDmkEkmv8wJwj4jchnMH7zrgHxMYk5mm3lAf\nm/Y0sPKwWRy3wpZKmy6yszL5wvuO5sd/eptXttYyc0YOV56zPNlhmdT1pvsvDHTizH2Kl4Y9UnSL\nfdRdDSLiBY4HHolzSMJ3g849eSmvbqnpf7525Vza3q4aclxeTiZLF5fSGwzR2BEYtM/rLaK4aiDZ\nw4lHL6CzO0Dn1tqYCSKOOXIOs2oLOFAzdAHq8vJiysuLCYXCPOfG4fU6PVbFRS0AZGVl4PUWUdfW\nQ29UUXu9Rf3Heb1FlM9up7sn6D4vprjaSeZw8pp5HPS1D4lh0Zyi/vc7/9RleDye/ptrfa8bGVOk\n6P1FxfnUtPgpK8mnvrlrSHyzSwvxlhb0P1+5pJRt+xoHX09ZEcVFAzGWFObS3O4ffIy3iJLmbsjM\nJDcnkwyPh+WLS2ht76G1e2xDm72z8pk7ZybFVc57n3ncQlra/by9w+de60DDc+H8EnbXWJKMPpFl\nYwazspk8iTSsPgd8GmeiMMCTOJN/jTlkOrsD3PXEDrIyM7jmfLEscdNMbk4mX/rA0fzX79/gb69V\nsHReMScdNSfZYZkUpKrfGuOpVcDCiOcLGdyDFS1W1+kVwAOqGnBjaRcRRGSG22u10H2fYZ153EJ8\nvjZa25wv/cce4aWhob3/OTgJDDIzPHg8Hny+NnqDoUH7AXz1A69x1GGl+HzOl/GjFjm9OFW+djr9\nvTS0dpOdmUljYweF2RlDXgfoPxfo39+3re95VkYGPl8bzc2dtEYkoyjKzxl0PT5fGzPzsqhrcL70\nNzd1MLswmxl52bQ2d5KXAXmZHkoKc/rXqeoucl7D6y2ipXlw7g9/Vw/+3iDemfmD4oyONzLmFfOL\nyPB42FPR2L+977jGxg48wWD/88jH80pn0OnvHVS2MwtyyPGE+5+vk3LCYec1Q4FeWtu6WFhWyMLy\nGfR2B+js6B4U06zCXJqiGmXxzCvJG1KWrZ09tLZ1UVyUP+RnEf2zzM3OZG5pAftrh5bTVBZZNmYw\nK5vJlUi69R7gRhG5RVVHTutjzBis/8duWjp6uOyMZaOeZGymhoK8bD53+Rq+e/vr3ProNhZ4Z7DQ\nFoY2/5+9+46P6ywTPf6bpt6lUbMsW5bsx92OnV5JISEBEpIsBJILYWGz9F2429hd2At3926BcPcu\nsCxlQyAkhIQEAiGkQTrpiRP3x92WmyRbvZeZ+8c5kkfSSBpJM9JIfr6fjz/WnDbveTWjc57zvu/z\njiAiacBNOAkoBq9hYVX9uwl23QwUiMhaYAdwC/AFEVkN9KrqrohtPURv/boZ+NKIZQ8DHwX+E6dH\nxy9jPxtHtIyYI8cJTfSsKSdzdDe/BcEsQuEwqQHfsDFFqX4fPeMkizljaTDqeMeywuh/m/2+iR+E\nleSf2tfv87Kk3OnaeEZNkBOt3RTljt0NceXiAk60dlM+xvsPikw44fd5o6Z0H4/f6x0aVxa574rF\nBTS2nrr9ifzdlBdlkpORQlbGqe6NhTlp7DlyqhUtPydtKLCaSpbFaOXcIMO7ARbnZeDxOEk6Rras\njbS+poi39ozOtGiMmb4Juy2IyFoR2YqTFRAROVtEvpHwkpnTxq7aZp556ygLgplcfU7lbBfHzKKy\nwkw+/u4V9PaF+PYvttDZ3TfxTuZ08wucBBFdQDPQ4v4bl6qGcFKzP4CT/e/3qvoicCvwPgARuVBE\nat3X3xORLYP7i8hioFJVnx5x6L8DbnH3qwamPPdjzQKnpakqyniqqaYH93o8VJZkD8uuV+gGMSPT\nmw9KDfiijpla4D7oKMyZeCxWrFJTfCwoyhy3l8JE26xdUkhNeS5SmTds+eDWY51npI3Litmw7FSw\nMnKfwYmJs0bUi9fjISczZdj2451LTUUuG5YGWVSSzcLiU90a093jZ2eMP1atIpjF6iUFQ++3YlEB\na5YUsqQ8h6qynDGzKI48l/HGuRljpi6WroDfwkk/+3/d168DPwH+IlGFMqePvv4QP35sJx7g1nct\nj5rNyZxeNkox15y7iN++fJA7HtnBZ29YY11DTaRqVZWp7KiqTwHLRiz7q4ifXwCipiNV1QPR1qnq\nYeD8qZRnpKLcdApz0mL+vM/Wt6IwN43crGJ2HmqivSv6w4/BFrTK4qmnWo9VRlpg1NxZ4AQ462uK\nxmz9W1ddNBSgTJQsKSPNz+qqwilnAUwN+MhOd+okJeCjrDCTvv4QRxraWVSaPaxFb6QUt2xpKb5R\nrfi5UVoqI52zooSt+xvpGPGQShbm09c/wJ4jrXT22AMsY+IllrvYTFXdNPjCferXn7gimdPJA8/s\n5djJTi7dsGDoaa0xN1y8hOWVeWzafYLfvzHeMBhzGtouImWzXYhEmexDBFmYP+XMeNPh93mHWrUG\ng5ol5blD2QsDfi/nriyddEr4eEtL8Q8FVjXluaSn+MnNcoKR9FT/pCYmz0oPRE1LH4t1NUWjUtIH\n/F7OXlEyblAFzjmsripkw/LYxp1Gtm56PJ6orY8Bv5eMtMCE3SthdEp7Y8zYYmmx6hWRob+MIrIO\n6Bhne2NisnnvSZ58vZaywgzef2nNbBfHJBGv18Nt713FV+58lfuf3sPSiryoc+qY09LfAy+JyKuc\nmgokrKofmcUyzZr87MlPop4ScIKJjFQ/i8typjzFwaKSbHIyUobKUJzkN+BFeekUzUIZC7JTY+qO\nGKkkP4POnlPPsLPSAzFPQeJzx7z5pxgEgtM1sau3n8KcNKrLc2lotuQHxsQilsDqX4DfA2Ui8mPg\nPTiDfo2ZspaOXn74yHb8Pg+fuHYVqQGbZNEMl5+dyp+8ZyX/fv/bfPdXW/mHj54V0/gBM+/dAfwG\neBVnIl+InsFvXvF6nZvlFL+PXjfxxFS7yBbnpxMOhynMSRsKsqZapsJxkk4YJ/HGVLq4V8UwQfFY\ngrnpdPX0U5zntEaFp/D1yM1KoSYvd+hvbnZGCm2dvVMukzGDJpMlcy4a9y5FRDzAFuAjwLvcxf+s\nqjrdNxaRBpzJhgHaVXWFiOQAPwOW46TBfb+q1k33vUxyCYXD3PGb7bR29vHBy5dSWWItESa6NUsK\nedc5lTz2yiHufkK57b2rZrtIZvblqepnZ7sQM83r8XDG0iB+n4cDx9omzPw20bHKCmPvoldVloPP\ne/qNc8zPSiVzDiZ58Ho9MU0oDcOfSJQVZFLX1EkoHMbD8C6EKxbl09s3wI6DTfT0TW2OLjN/bFxW\nTF1jJ30DIeqaOifeIcJ8H0sfy+Pf/1LVq4FdE245Of2qOnIg8F8CW1T1GhH5HPC/gU/E+X3NLPvl\nc/vYur+R1UsKuOLMiol3MKe1Gy5egh5q5qVtdaxcXMAFa+bt8BoTm9dEZIWq7pjsjiJyKc48jCnA\nPar6pRHrrwC+DqwGPqiqD0asqwZ+CCwF2oCLVbVORC4E/sM9ZgfwJ6q6NZbyrFlSOKnuWoMt+9Uz\nPB51ojFA85VU5s92EWbUotJsGpq7oqap93o8Q5kRjQn4vVQUO4lUogVWyyvz2XmoaaaLNa7CnDRO\nutMmyMJ80iYxvnIyxv2LrqphoFlEZuqv+LXAj92ffwxcP0Pva2bI468e4pGXDlKcn86fvHvlpPud\nm9OP3+flk9etIj3Vx91P7OLYSRvieZpbCrwpIi+JyNPuv6cm2sntgfED4EacObCuEJHzRmy2FycL\n7v2M7l54H/BdVS3HyQLY6i7/JvB5VV0DfB/4x1hPJDMtMKnkCcZM18pFBdM7wIhvxcpFBWxcVjy9\nY5o5LdrDobysU2M/V1cVzmRxACfD6kiDc+eBk2EzUUMLYjlqENgpIs8Bg2FpWFU/Ns339onILqAX\n+Kaqfh9YgNMFEFVtFZGAiAQGZ7k3c9sfthzjvqf2kJeVwl/etD7qhJbGRBPMS+ejV6/gvx7aynd/\ntY0vfWQjAb/dkJ6m/naK+60HmgZbk0Tkbpz5sF4a3EBV97vrQkRkMxeRswGvqt7rbncy4rghYDAH\ndjZwZIrlMyahUgO+Udfd6Q5OzEjzJ6xr19krSnh1x9weDbJxWTFv7Kqf7WIkVDAvnWONox94ninF\neDxOa2dRTjo+n4e6pk5KCzNoaHGSoQwmSZkqD56oYwgLslMZGAgNG8s11YyekzVmYCUi31fVPwXu\nxrlotLmrPMRnoPCZqnpIRBYBT4jItijbeJi9qTpMHL2+s547f7uTzDQ///Om9bOSmcnMbWctL2b7\n+nKefeso9z21h/9x5ZSmMjJznKo+M8Vdhx7cuWqJff6pZcAxEXkYWAI8Cvy1O/3IJ4FHRKQHJ0vh\nuVMsnzEzLt9NPb/IHetcWZLFvmOtBPOiJyUZvPnLzUihtDBzKKhas6SQLftOjtq+OC+D+ubRXcUK\nstNobOsetTzSXO/RUlmcHXMmx/koMuCuqXAnP3eTskR2y5uOYF76qM+XLMwnP9sZHxk+2kpzx8wm\nyhivxepqAFX9kYjsV9WqeL6xqh5y/z8oIr8GzsR50rcQ2OZ2P+xV1XHT0ASDcyvxwVwrL0y/zL95\nYR/f/9VWUgM+vnLbeSxfPM2uCBOYa3U818oLs1fmz950BvuPt/HUm0dYJyVcdmbUuVxHmWt1PNfK\nO5NEJA/4G5wWqMG7v7CqXjbBriMfCE6mydMPXARsAA4BD+EkdfoR8AXgVlV9zB0b/B3gpokOaL/j\nsc2HusnJbgGgqDCL3KzJp8Qfy1Tq5mRnHz0DTvenaPuXl+UNO/7KpcVjZpzMOd5Gb1+I0qJMlkWM\nQQsCBxtGB1Alxdl0DzhfvXVLg7y9u4EViwuob+qkHw9pKT66e6MnwwgGs1m/HPYdaYm6PjM9QH52\nKofr252yZSfXA9v8/AyCweyhz0IsVlcXsnXv6AA1FhXFWUN1MVI862ZxWc6wz1FLzwAdfSF8Pg95\nWamUFmZO+PC8ob2XvrCHzPQAgTEmGY80sl42Li/G6/WQnurnuU3DOwksW1I09HNFeR4HjrWSk5lC\nQU7aqe9lUVbUScXjYVZGIroXxhRVrReRYpwg7nPAr4GPAn/l/v/QRMdqaGibaJOkEQxmz6nywvTK\nHAqHefCZvTz6yiFyMlP4wvvXUZgZSGgdzLU6nmvlhdkv8yevXcU//fh1vnX/JtL9ngknlp7t8k7W\nXCsvzPiN8A+B14BS4B+ADxFb97sjQGS2nAqGt2CNFBmI1QKbVXUPgPswcL2IBIBrVXVwCpIHgS/G\nchJz7Xc8U+bi5z+a1janq9OJk+30dsUnTflU66a5qZPWti56A/5p121fdx+tnb3kpvlGHauqOJO3\n955g6YI8unr6ycoI0NTYMVQXfd29rFyYCwMDpPk8tLZ1UVSWQ/3J6MFAQ0Mbad5TdTlSXrqfnFQf\nrW1d5GSnj7ndZI3VvWyyGpv8pLvnOVJpQQbHG0cHoj2dvVG3XxjMorYhej0N7ZudEnXfydaN1+MZ\nlsBk6YI8stIDbNrT4LxPXtqw370vFKK1rYuq0hxKclIJ9/VP+DlLdX+vpbmpHKuPXrb0FD9SmUfA\n7yXU2z/sHLrcVqiOttGfj5Hvnen3MNDTR0NDH91dvfT2D9DS3EmHz5uQa9d4bZR+EVkpIquAgPvz\n0L9pvm8Z8JyIHAZeBu5S1aeB24FVInII+COci6aZg/oHQtzxm+08+sohSgsy+PsPb7QJXk1clBZk\n8Kn3rSYUgm8/uJmTLdPvTmDmlCWq+i9Am6o+rKo3A+Ux7LcZKBCRtW5AdAvwkIisFpFlI7Yd2Q39\nBaBURMpExAtcgZPBtg9oE5GL3O2uArZP49yMSWo1FblUFmdHTdefnurn3JWlFOamUVGcNSyBwUi5\nmSmcs6KE/OzJzYOWNcVWhpEJFjLGSVwQr3k1093ENGcsDY5aN1Y6/LF6Py4IZkVf4SrKTZ/SnHJn\nrygZllwiPcXP6qpCyiN+v/k5qcOS7HhHTL2QlR7g7BUllBTEnj00J8P5/RfkjF/mtBT/qLFR00mG\nsba6kLVLihKa8n28FqsA8Kz7syfi50GjPykxctPkLo+yvBW4ZqrHNcmhp2+A/3poK5v3nqS6PIc/\nf/86subgXCAmea2qKuCDl9fw09/t5lsPbuZvbtlgkwefPgb7jYRFJFdVW4AJ82KrakhEbgMewOlC\neLeqvigiXwcagK+5qdPvdY/3LhH5iqquUdUeEfk88DTO9fAZ4E730LcC3xGRFOAE8PG4nakxcRDP\n2bMDfh/lRbHPgTYej8eD3wcBn4++geHdAfPHCMpWVhXw+s56Z66tGIdgycJ8+gdC7D3qdANbs6SQ\ntBQfHjx4vR5e3n582PZZ6QG6+6aeUGHQYNAQr0Bt1eICDjd00BJlzNBEPTfG4vV4yEoPcO7KUjq6\n+0hP8eP1eqhMy+boiAy8a5YU0tTaQ26UxGNTGQ830QTnY31up3M/6fd5Ez6P1ph3IqpaNNY6Y8bS\n3tXHNx/YzJ4jLaxZUsin37fa0gmbhLh8YwVHT3TwzFtH+bd73uQLH1gX17EMJmltF5FCnADoFRE5\nBhyNZUdVfQonEUXksr+K+PkFnHG+0fb9DfCbKMufBNbEXHpjzBCPx8NGCY4KbiLnEFtXXURtfTvZ\nGQG8Hg8rFxdw7GQHxfnRx/F4PR7ys1OHkiPkZ6cO69mQOaLVa+XiArYfaIwo1HTPKjZ+r5f+UIgz\npZjXdeLMgdkZKaxYlDKqrgJxChRG1ku09RNtEw9pKX66o2QKDOaljxuk5meljmpNmw32iNfETUtH\nL9/42SYON3Rw7soSPvbuFfN+hm0zezweD7dcuYww8OxbR/k/P3mD/3nTekon0R3BzD2qeqv743dF\n5HWc1qXfz2KRjBlTMmS2K8lP50RLFxXF8WlpmmnpqX6WLTyVYCMrPcDSirwxt8/NTCEj1U9kCojB\n7HwB3+gb85yM4S0wk21hSgv4p9TCtXxRPl09/RPeJxVMorvkhqVBmtt72HesdcxtUgM+evqiJwyJ\nJtGf4KJc5/M5qLI4i12Hm0ddy6vLx2+VS5YJvS2wMnHR1NbD7T/bxLGTnVy2YQE3v3NZUlxQzPzm\n83r5yFVCXlYqv3phP//8kzf4xLWrWFWV2MyTZva5SZAqgP1u2nNjksbqqkKa23uSoht8tjueZaKu\nV3NVSpQ5DcuKMkkN+MjPcXox5GSmUF2eG9P8mcX56aT4vU7yjdYeDp8YO2lEqt/H6iUF9PYNsNlN\nN5/i943qmre4NAevh2EBT1Z6YMLPx5LyXIpHZNgL5qXT0HwqEFlYcmr8ekrAR5rbLX6sOaIyUv30\n9A2QljJ+CDDZAGyqahbksrg0m637GxkYCFOQk8a66iLSYuztlJ/lpFZPFhZYmWlrbO3ma/duor6p\ni3edXcn7L62et3/ATfLxeDxcd2EVeVkp/OTxXXzjvrc4f3UpN11WQ3aGTUI9X4jIXcB33XFReTjJ\nKDqAEhH5G1X9weyW0JhTYrlpnkmzdU3OzUrh8AmGJUOIt+WV+XSFwqT6oKG5i8x0p8vgyJTfwRjn\nz/R5PUOJGFIDPg6faCc3M3VobFNJfgaNrT30DQyQlREYNW5n5eL8UUHLYOvLWC1JPq+XgVBoVFe2\n1CjzYC0qySYtxU9hTiqpAd+o321ORgqyMJ+s9AB+n4fm7oGhzHmLSrIpyndDOBIAACAASURBVE13\nJu6doNvcupoiQqHwjHx2/D4v66ojkmhMYsx0srRUDbLAykxLXVMn3/jZW5xo6eY95y/i+ouWWFBl\nZsUl6xewuDSHHz22kxe3Hmfz3pPccPES3nfZyIRvZo66GCdRBMDNwFZVvUZEanCm5pgwsBKRS4Hv\nAinAPar6pRHrrwC+DqwGPqiqD0asq8ZJ9b4UaAMuUdXjbpbAr+Okfe8Hvqqqd0zrTI2ZJ7IzUjhT\nihM6LCAjzc+iYDZ1aX4KstPIzZr6A7Xq8txhZfX7vJwpxfi8Hpraemhs7WFxaTatHb2MbMxZXplP\nS3vvhC1B0ZyxtIi+/tCwnj41C3Kjjhv2+7wsmCCBSH72qf0qirPYfeAkNQtyJ8zCF8nr8eD1zdz9\n3Hy5d7QBMGbKDhxv5Z9/8gYnWrp530VV3HCxtVSZ2bWoNJsvfWQjH7ysht7+Ae56XPnEv/6OZ946\nQv+A9Rab4/pUdTBR1AU4c0bhzi01YdYSEfHgBF83AjXAFSJy3ojN9gIfBu5ndFKq+3BazMqB84HB\nWT8/4x5vMbAIeGxSZ2XMPDdTY629XidpxXSGIRRFSVnu93nxeDwU5KRRU5E77D7HEzECKS8rdcrT\nyvh93lGtNEW58ZnUNyPNSYc+maDKTJ21WJkp2ba/kW//cgu9vQN8+Crh0jMWzHaRjAGcLhVXnl3J\nOStLePSVQzyz6Qh3PaY88uIB3nXOIi5aW0ZKnNLfmhnV7bYaHQEuA74CQwFTLH2u1gNNqrrV3e9u\n4AbgpcENVHW/uy5ExJhtETkb8Krqve52kePiP4nTujU4C2wskxUbY+awhW6ChZKCyQU/qxYX2APo\nec4CKzMp4XCYZ946yk+f3IXH4+HT169moxTPdrGMGSU3K5UPXr6UW65Zyd2PbOfZt45wz5O7ePgP\n+7nqnEqu2FhBIMqgZ5O0/gV4HegCXlLV3e7yS4GtMey/ADgc8boWp+UpFsuAYyLyMLAEeBT4a3fd\nYuBGEfkpTlD1GVXdG+NxjTFJoKosh46u/piDnoKcNM5dWTrp94ll3O/qqkL6+q2HxVxlgZWJWU/v\nAHc9vpOXttWRlR7gM9evTrpBg8aMVJCTxoeuWMq7z1vEk6/X8tSbh/n503t56o0jvP/Sas5aXmxP\nEOcAVf2piLwIlAKvRqzaA3w6hkOM7No3majaD1wEbAAO4Yzp+gjwE5zxWl2qukZEPgzcAbxjogMG\ng1PrMnQ6sLoZ23ytm5zslqGfszNTpnSe06mbZKrXYCKOmUTnN99ZYGVicrihne/9ahtHTnSwpDyH\nT123msIofZGNSVY5mSnceEk1V59TyW9ePMiTr9fy3V9t43evH+Yj7xIqglmzXUQzAVU9ABwYsexQ\njLsfwUnPPqiC4S1YI0UGYrXAZnc8FyLya2C9qv5IRI4DD7jbPQB8K5bCNDS0xVjs00swmG11M4b5\nXDeDWeuqy3PJy0qd9HnO57qZLqubsSUi4LTAyoyru7efB57Zy+OvHmIgFObyDRXcdHmNTfxr5qyM\ntAAfuKyGd5xRzs+f3ssbuxr46p2v8d4LFnPNuYvssz1/bQYKRGQtsAO4BfiCiKwGelV1V8S2HobP\ni/kCUCoiZUAdcAVOd0BwWq+uBP7L/X9LQs/CmHks1pToxiQru4MwUYXCYd7QBj53+9P89uWD5GWl\n8ud/tJZbrlxmN55mXijOz+AzN6zhz/5oLdkZAR56fj//+OPX2Xd07BnrzdzlTiJ8G06r0l7g96r6\nIk4K9/cBiMiFIlLrvv6eiGxx9+0BPg88jROUnQTudA/9VeAGEdmFM+7qT2fspIwxxiQVTzg8stv5\nnBKeS82bc6E5diAU4rUd9Tzy0kGOnOjA6/Vw5VkLue6CKlJjnAV7Ns2FOo4018oLc6/MsZS3s7uP\n+57aw/ObjwFw0doybnxHNTmzMMHwXKtfgGAw2wapTc6cunbNpLn4+Z8p87luXt5+HGBKCSFgftfN\ndFndjC0R1y7rCmgAOHKig5e2Hufl7cdpbO3B6/Fw3qpSPvzulaRZA5WZ5zLSAvzxNSs4f3Updz+5\ni+c3H+MNbeDKsxdyybryqJM0GmOMMcZEssDqNBUKhzl4vI2395zgrd0nOFTfDkB6qo9Lz1jAVedU\nUpyXbk86zGlFKvP5yh+fxVNvHuGh5/fz0PP7efgPB9goQS5YU4YszLM5sIwxJs5WLCqgp29gtoth\nzLRZYHUaaW7vYfuBRrbtb2TbgSZaO5z5LH1eD2urCzl/dSnra4rsxtGc1nxeL+88cyEXrinj5W3H\neWrTEV7dUc+rO+oJ+L1IZR6rFxcglfksLM7C67VecMYYMx25mTPf7dqYRLDAah5r6ehlz+Fmdhxs\nYuehZo6e6Bhal5OZwgVrSllXXcSqqgLSU+2jYEyk9FQ/l26o4B1nLGDPkRY27TrBlv0n2bqvka37\nGt1tfFQvyKVmQS7VC3JZUpZj3yVjjDHmNJV0dwAicinwXZxJF+9R1S/NcpGSXigUpqGli6MNHRw5\n0cHBujYOHGvlZGvP0DYpAS+rqgpYtbiAVVUFVAQzbVJUY2Lg8XhYWpHH0oo8PkANja3d7DjYxO7D\nzWhty7BAywOUFGSwqDSbypIsFhZnsaAoi7ysFPu+JYGJri8icgXwdWA18EFVfTBiXTXwQ2Ap0AZc\noqrHI9Z/DfhLwO9mIDTGGHOaSarASkQ8wA9wUt3uAP4gIo+o6kuzW7LkEA6HaW7v5UhDO7UN7Rxx\nA6ljJzro7R9+Hc/OCLC2upAl5TmsWJRPVVmOpUk3Jg4KctK4YE0ZF6wpA5yW4X1HWthztIX9R1s5\nWNfOK9vreGV73dA+mWl+yosyKSvMpLwwg+KCDApz0ijMSSU91W9B1wyI8fqyF/gw8LcMnyAY4D7g\nG6p6r4gUAp0Rx14DLAK6E3gKxhhjklxSBVbAeqBJVbcCiMjdwA3AnA6sQuEwoVCY3r4BenoHnNfh\nMAOhMOFQmFAY+gdC9A+E6OsP0dXTT3tXP+1dvTS391Lf1EV9cyd1jV20d/UNO7bf56W8MIPyYCYL\nijIpL8pkYXEWhTlpdrNmzAzIzUzhjGVBzlgWBJwHIA0t3Rw63sZh9wHI4YZ29hxpYffhllH7pwS8\nZKYFyEjzk5HqJycrFQ+QluIjPcVPeqqPjLSA83+qn/RUP2kpflL8XlICXgJ+Hz6vB5/Pg8/rwevx\n4HX/x+POdOv+LRhreo3T5G/FhNcXVd3vrgsRMUGwiJwNeFX1Xne7kxHrPMDtOHNkXZv40zDGGJOs\nki2wWgAcjnhdC5w/S2Xh9Z313PW4EgqduhkZef8RDg8+1gw7P4edmxcnmHKCqnjweT0U5aYhC/NY\nEMykIphFRXEWxXnpNnjemCTi8XgozkunOC+dM5cXDy3v6x+grqmLYyc7qW/qpLG1h8bWbprbe+no\n7qO5rYejDR2jmklmrtyQlR7g7z+8keL8jFkqRUJN5/qyDDgmIg8DS4BHgb92u/x9HHhGVQ+JSDzL\na4wxZo5JtsBq5D3FROnpPMFgdqLKwtXBbK6+qDphx58rElnHiWDlTby5VuZkKW95WR5nzHYhTl+T\nvb5E8gMXARuAQ8BDwEfcQOvjwCVuyxVEtHSNI6HXrrnO6mZsVjdjs7oZm9XNzEm2QTdHgIqI1xUM\nf8JojDHGTMVkry+RgVgtsFlV96hqL/BrnK6Fq4AqQIF9QCqwW0TS4llwY4wxc0OytVhtBgpEZC3O\n4OJbgC/MbpGMMcbMA1GvLyKyGuhV1V0R23oY3vL0AlAqImVAHXAF8KiqPgeUDm4kIl1AjWUFNMaY\n01NStVi5F6PbgAdwsjP9XlVfnN1SGWOMmevGub7cipMpEBG5UERq3dffE5Et7r49wOeBp3GCspPA\nnVHeZraGyBljjEkCnrGyRBljjDHGGGOMiU1StVgZY4wxxhhjzFxkgZUxxhhjjDHGTJMFVsYYY4wx\nxhgzTUmTFVBELgW+C6QA96jql0asvwL4OrAa+KCqPhixrhr4IbAUaAMuUdXjEeu/Bvwl4I9ntqZE\nlFlEvO4+HwL6ga+q6h1JWN6LVbVORC4E/sM9ZgfwJ6q6dTbLKyKXAz+K2LQYuEVVHxCRCuA+oBzY\n4u7XGY/yJrDMdwGXAgPAk8CnVLU/WcsbsW/cv3cJqt+EfecSWOak+965674K3OS+fAH4hKoOJPp7\nN1dMVLfzhYjcDVwJ1KnqGndZDvAzYDlOmvv3q2qdu+4LwOeAEM7Ey79wl68B7gZygKeA21Q1JCIB\n4A6cucWagJtVdecMnuKUiMhCnKQnAvQA/66q/2l1A+48cK8AQZyMnD9X1b+yujnFvVa9CPSp6kVW\nNw4RaQC63ZftqrpiNusmKVqs3C/UD4AbgRrgChE5b8Rme4EPA/czOvPSfcB3VbUcOB9oiTj2GmAR\npyo92cv8Gfd4i91yP5ak5W11l38T+Lx78fw+8I+zXV5V/b2qLlTVhThfqjbgUXf1PwN3q2oVsBv4\n83iUN8Fl/g3OXDk1ODemf5Lk5U3I9y6B5U3Idy7BZU6W713kvmuBD+AEXCuBauDd7uqEfe/mihjr\ndr74PnDNiGV/CWxR1SXAz4H/DUMP7T4DrAEuAf5fxDxg/wl80f3c5HEqaP8wkOou/184DxnmgjDw\nFfc7fR7wRRFZgdUNqhoG3uOWW4DzReQqrG4ifQJnvrzB64TVjaN/8FqpqivcZbNWN0kRWOFMtNik\nqltVdQAnYrwhcgNV3e8+kQ0RMb+IiJwNeFX1Xne7k6ra5a7zALcDf8XwOUmStszAJ4EvqWqvqoZV\n9UiSlzcEZLk/Z+NMwjmr5R3hBpy0yh3u6/cCd7k/3znymMlYZlW9X1X73Vaql3GCq6QtbwK/d4n6\nTCTqO5fIMifL9y5SGKcXRDoQwGmVOeauS+T3bq6YsG7nC3Xm92oesfha4Mfuzz8Gro9Y/gtV7XC/\ne68Cl4tIASCqOvgwIfJzc13EsX4DrBeRzPifSXyp6mFVfcH9uQFnYulyrG4AUNV690cfp+5PrW4A\nESnGeXD1bU5dJ6xuxjZrdZMsgdUCnKa6QbXuslgsA46JyMMisk1EbnebSwE+DjyjqofiWNZBcS+z\nW+7FwI0iskVEHnOj66Qsr7vuk8CPROQQ8FmcaH62yxvpZuCnACKSBRBxc3p4isccS9zLHMl9qvIB\n4JEplW60RJU3Ud+7RHwmEvmdg8TVcdJ971R1i1vGI8BR4BVVfW0GvndzRbw+C3PV0PmraisQEJEU\nnMAi8sHAYL2U4XyOBkV+bsojjhV2t4vXA6cZISLLcLrWv4LVzRAR2QacADar6uNY3Qy6Hfh7nCEB\ng6xuHD4R2SUiW0XkT91ls1Y3yRJYjex25pvEvn6cfo9fAM7A6YLyEREpxLnB+4b7BB3i+/Q87mXG\nKV8K0OV28bkHp19nPCSivLjLblXVSpzuSd+ZZjkHTae8AIhIENgI/HaMTeL9+U9Ymd3P8H8DD6nq\nK1Mu4XBxL2+Cv3eJqN9EfucgcZ+JpPveueOoLgEqgQrgTBG5OsqmyXLdmWnT/izMMx6i/20Y6/Mx\n3udmTn2mRCQPp3v9n6pqe5RNTtu6UdVVODe5NSJybpRNTru6EWdsZkidCc3Hu56ednXjOlNVl+F0\nPf8LEbkgyjYzVjfJUnFHcC7EgyoY/mRvpMgLVC3Ok409qtoL/Bqny8UqnHEpitMnNRXYHdGXMunK\n7HYPOQ4MJgB4AOdckrK87oC+a1V1cEzKg8CFSVDeQR8AfqWqfQCDF7CIJtwK4teFChJQ5ghfA3pV\n9cvTK+IwiSjvahL3vUvEZyKR3zlIQJndp27J+L27Gtiqqs1uV+FHgQtn4Hs3V0y2buebI8BCABHJ\nxfl71sPoelmIUy8jnwpH1lfksTyMftqctNy/hQ8B/+G2yIDVzTCq2gI8jnOjbHXjjMe7QkT2A7/A\neWj1K6xuABjsHaOqB3HuT89kFusmWQKrzUCBiKx1b9ZvAR4SkdVuc3mkkVHnC0CpiJS53XquwBmw\n9pyqlqpqlToDznqAGlWN12D6uJfZXfcQTjYl3P+3EB+JqOM+oE1ELnK3uwrYngTlHRStS93DwEfd\nn/8Y+GWcygsJKrOI/DVO8oLb4ljWhJRXVZ9N4PcuUZ+JRH3nElJm9+FGMn7vDgIXiUiGu+9lEeVK\n5Pdurohat7Ncppn0a059Bj7KqXP/DXC9iGSLkzXvTOApVW0CVETeHWWfXwO3uj9fC7wV0dU0aYmI\nDyfpy2Oq+qOIVVY3IkERWeT+nIczrmU7Vjeo6j+raoV7Tb0eeF1Vr8PqBhHJE2f82eA4tKtx/tbO\nWt0kRWClTirm23CeFu/FGaT9Is6JvA9ARC4UkVr39fdEZIu7bw/weeBpYAdwEmfQ2UjRngQnY5m/\nCtwgIruAvwb+lDhIYHlvBb4jIoqTre5zs11ed91ioFJVnx5x6L8DbnH3qwb+XzzKm6gyuxfifwXO\nAg6ISK2I/GuyljeKuH3vEljehHznElzmpPveqeoTwO9wLmrbgD2cCggT9r2bK8ap23lHRH4BPOf8\nKLUi8sc4Y0RWiTMu8I+AfwBQ1T04XVm3As8CX4h4EPNZ4F/cz00zcK+7/C6gx13+FeDPZuTEpu8S\n4D3AZ9x6qRWR67C6AScL269F5DDwFvC0OgmzrG6G83Dqump147QePed+bl4G7nKvl7NWN55wOK7x\nhjHGGGOMMcacdpKixcoYY4wxxhhj5jILrIwxxhhjjDFmmiywMsYYY4wxxphpssDKGGOMMcYYY6bJ\nAitjjDHGGGOMmSYLrIwxxhhjjDFmmiywMsYYY4wxxphpssDKGGOMMcYYY6bJAitjjDHGGGOMmSYL\nrIwxxhhjjDFmmiywMsYYY4wxxphp8s92AYyZ60TkdqAPeAz4tqqumeUiGWOMMWOy65YxiWGBlTHT\nF3b/3w3800Qbi8jdwCZV/Yb7OgD8O/AuoMw9zpdV9eHEFNcYY8xpzq5bxiSAdQU0Jk5U9aiq3jeF\nXVOBEPABYBHwHeB+EamOZ/mMMcaYSHbdMia+POFweOKtjDFDRGQlcCcgwPPAceAE8DjwrcEuFSLy\nVeA2IB2oAz4MrAD+E+gFWoFHVPWzUd5Dgb9X1QfGKUcJcBewAfAATwKfUtXm+JypMcaY+cCuW8bM\nDGuxMmYSRMQH/BJ4EMgHvgX8D5xuFeGI7TYCHwHWqGo+cBVwVFXvAh4C/o+qVo1xcSoFFgNbJiiO\nF/gmsACoAXKBr07n/Iwxxswvdt0yZubYGCtjJmcjUAB8XVXDwBMi8vso2/UDGcB6EXleVQ+OWO+J\ndnARSQXuBb6nqjpeQVT1GPCI+7JXRL4G/N/YT8UYY8xpwK5bxswQC6yMmZxy4JB7cRq0jxEXHFV9\nW0S+CPwLsExEHga+oKon3E1G9cF1BwPfj9P94s8nKoiIZALfAC7F6bbhw7kwGmOMMYPsumXMDLGu\ngMZMzlGgeMSy0mgbquqdqno2UI3T3eFL7qoQIy5oIuIHfoZz4bplxAVwLH8LBIEzVbUS+BD2nTbG\nGDOcXbeMmSH2YTZmct4AukTkegARWQpcw4gneSKyUkTOdy88bUAHzpwhAPU4fcsHt/UCdwN5OP3b\nAyKS5i4fTw5wQFXb3Pf59LTPzhhjzHxj1y1jZsiMdQV050C4EqgbayI6EbkV+F9ACvCoqt42U+Uz\nJhaqOuBenH7gdplowBnUO2jwQpUFfBvnqV8P8DSn5gr5b+A+EWkEfgV8BSdlbRiIzIz0eZxBvmP5\nOvBTEXkV6HTf4/wpn5wxpykREeB3EYsKca5Fh4Ev42RSO0tV3xznGBnANuAFVf1wAotrzKTYdcuY\nmTNj6dZF5GKcL9Gd0QIrEVmHk7HmYlU9KiKLogycNMYYYxJKRA4Al+PM1dMH/BD48wkCq38DFgL9\nqvqRGSimMcaYJDNjXQFV9TmGP9UY6RPAf6jqUXd7C6qMMcbMKBG5CKhX1b2qul1Vd8ewzypgGc6T\n/KiZ04wxxsx/yZQVcCnQLSKvua+/pKqPz2aBjJltIvJ5omdaeklVb57p8hhzGrgZuCfWjUXEg5Mu\n+pPA2YkqlDFzhV23zOksmQKrAE6/3vNwBkg+LSJLVbV9rB3C4XDY47GHg2b+GmdKkMU42ZSMSQbz\n4g+xO5j+emDdJHb7KPCyqu4XkXNi2cGuXWY+mw/XrcP1bew93DL0emFJNksW5A7b5tk3Dw97nZ2R\nwoblI5MvmiQX9z/EyRRY1QLPqGo/sFNEDuIEWm+PtYPH46GhoW2mypdQwWD2vDiX+XIeYOeSjObL\necD8O5d54ipgi6rWTWKfc4BrROQjQCaQLiLfVtXPjrXDfLp2xdt8+l7Em9XN2OJdN5t2HB/2eltb\nF9kpw0fPtLZ1jXq9sDA9bmWIF/vcjC0R165ZDaxEZA3Qo6q7cDLU/BFwh4hUAJXA/tksnzHGmNPK\nzcBPx1g39GRTRLKB81T1CVX9ZMTym4D3jBdUGWPmvoFQKOryUDiM11qjT2szlrxCRH4BPOf8KLUi\n8jGcuQ+udzf5BdAkInuBx4FPq2rrTJXPGGPM6ctNl34VTnbawWUfEpFa4EzgERF51F21CPiPMQ41\nM6l2jTGz4mRLN3WNXVHX7YnoPhgKh2nt7CUUkX17676TtHT0UtfUSTgc5mRLNz29Awkvs5k5M9Zi\npao3TLA+jE0UZ4wxZhaoaidQNGLZvcC9UbbdCqyIsvw+4L5EldEYE3+tHb1sP9jIysUF5GSk0NrZ\nO7RuzZJCtuw7OdQK1dHdx+4jYye4bmzrpqdvgNSAjx0Hm2jr7CUnI4WViwvYtLuBnr4BdhxsBGD/\nsVNtB+euLE3Q2ZmZlkxjrIwxxhhjjJkRoXCY7W6gs/1A46j1mWmBoe36+kM0tfUMW5+flcqS8hx2\nHGyis6cfgE27G4Zt09rZy8vbh4/ZGk9ndz9pKT68XutSOBdZYGWMMcYYY+a9UCiM1+uhrz/E9gON\ndPX2j7ltRurwW+Q3dtWP2ibg9xHw+1i2MI+39pyYcrnau/rISPNzormLfW5L1tnLSyy4moMssDLG\nGGOMMfPa5r0n6Ozpp6Ioi8MnxpzJZ8ja6qIJt6kqc7LKpaVM73Z658Em+kckxDjc0E5lybzJuHra\nmMnkFXeLSL2IbJlgu2tEJCQil81U2YwxxhhjzPx0orlrqKtefXP0xBNjWbogL+rymvJcIuejWxjM\nirpdVVnOsNdnyui5rkYGVeC0Ypm5Z8YCK+D7wDXjbSAi6cAXgednpETGGGOMMWZe23P0VLa+3v7x\ns/ClBnycURMcel2Qkxp1u5Gh0IJgFueuLKUo59RcVn6vl5L8jGHH8/u8LBkRbEUz2UnE+/qHl6ix\ntZuXtx+nPSIZh0m8mcwK+JyI1Eyw2ZeBbwIfJwGzIRtjjDEjiYgAv4tYVAj8L+AwznVJgLNU9c0o\n+64D/gtYCHQAX1LVBxJeaGPMuE60dNHbF6K8KHPc7arKcjh6ooOePifgOmNpcNh6j8fDuStL6XJb\nvJraejhU30ZeZkrU41UvyCGYn05dYyc1FbkApKb4WF9TRIrfB0BxfgYFOWk0tvWwLyLoi9TS0TM0\nJmw8kYkxVi4qICczhXA4zK7DTvbCN3bWs3Jh7rjHGDQQCtHTGyIjzUYKTVXS1JyIrADWqOrficjH\nsblAkl5rRy+7Dzejtc0caeigZkEuV1+4hLSZbAc1xphpUlXFCYwAEJEDOHMrpgLXAT8cZ/d+4FOq\n+raILAVeFpEnbB5GY2bXniNOwFJamDHmNtXluQTz0inOS2cgFMbvG/sGJt1NZpGe6h83WPN4PORm\nppA7IvAaOQ7L7/OSnzW6NezsFSW8uqMOgFd31iEL88nPHr1dX39oVEKN7QcbSU/xD5V10ImWLgJ+\n36gyRdq0q4EetzWvIphFxRhdG834kiawwpls8XMRr2NqsQoG58/AvrlyLu1dfXzzvk28tOXYsOU7\nDjbx8IsHWLIglxveUcMlGypmqYTxM1d+J7GYL+cyX84D5te5zBcichFQr6p7I5aNub2qbov4ebeI\nNOHMh2WBlTGzJHJS3sEgBZxxULUNTuKKRSXZBPOcbnsejwe/b+Y7SgX8XjYsDdLa0cueoy2csTQ4\nNGfWIK1tGjXP1es766OOywLo6u0fle1wMMjcsDRISsA3bF1Dcxd7R7SaHW5o53BDO+uqi0YFaWZ8\nSVFbIuIDNgCPuRewEmC9iHxIVZ8Zb9+GhrbEF3AGBIPZc+JcDtW18Z1fbqW+uYuqsmzWLw0iC/Mo\nL8pk6/6TbNpzkjd31nP7PW9w6GgL7zqncraLPGVz5XcSi/lyLvPlPGD+ncs8cjNwz1R2FJGLgS5V\n3RffIhljJmNgIHqnp/KizKHAarqZ/OIlJeCjKC+dorxTY7NS/L5hY8H0UBNSmQ84Y6fGCqom8ubu\nhqEgLZa5td7ee8ImL56kWf1UicgaoEdVdxEx472IPAp8faKgysysl7Ye58eP7aS3P8S7z1vE9Rct\nGdb399yVpbz3kqVs3nmc23/2Fvc/vYeevgGuvWDxpAdhGhNvff0hdtU2c7K1m5aOXlo7egmFwmSk\n+clI85OVFqDI7RKSn5M66qmhmRtEJAAsnEpwIyJ+4Hpg3RT2rQR+AHwglu3nWTAaV1Y3Y7O6GVtk\n3Tz75mFystNHbVNcnMM1hVn09A2Q4U7+m4yuCmbz7JuHh14PAGGfj2B+OttrW6Ke23gitw8GswmH\nwzEfwxPw4/N5yM9OAwaTZIQJ+H3j7zgNnd19dHb3Dws254oZC6xE5BfAuUCRiNTiDAxeAZwA/m2m\nymGm5tUddfzgN9tJT/XxuevWjBrcGamsMJMv3rKBr9+7iV+9sJ+evgHe/45qC67MjAuFw+yubebl\n7XW8vrOeju6xJ4OM5Pd5KSlIp7wwkwVFmSwIZlJRnEUwL90CriQmShGI2AAAIABJREFUIpcCdwLd\nwHIROQ/4c1X9YIyHuArYoqp1E245/H0LgV8Dn1XVt2PZZ760VsbbfGrJjTerm7FF1k1Hdx+tbaNT\nqp9RExxWfx1t3TNWvqkYeQ479zbQX5E3avnGZcV09/az7UDjsOUF2WkUZKdS39Y7bJ/6+lY27T4R\nNTviGTVBNu1pGLbspbedAO/sFSU0tfaw+4iTFCNRLVnhcJhX3O6b5YWZHD3ZQX5WKssW5o26j2zr\n7CU14BvVvTFWiXhQMZNZAW+YxLZXJ7IsZnIO1bXxw0d2kJri42//x8aYBjQG89L54i0buP1nb/HY\nK4coK8jgonXlM1BaYxxNbT384OFt7DzkXARys1K48qyFLCzOIiczhZyMFHw+D53d/XR299PW2UtD\nSzf1TZ3UN3VxrLGTIw0dvBZxzNSAj4pgJotKs1lSnkNVWQ4lBRkWbCWPfwUuAu4CUNWXRORHk9j/\nZuCnY6wb+iWLSDZwnqo+ISJZwCPAv6nqk1MqtTEmLjq6+9iy7+TQ66UL8oYCgdSUxLWwJMKZUsyW\nvSeHEkq0dPYOZS4EqCzOHkqiEfAPT0oRGfSsWFrMw8/uHnrd1tkXNahaUpYzbh1FjlUDJ4Ogzxv/\nbGV7j54annr0ZAcATe097DzUzIpF+UPrevsGhgWTydJlMTk6mJqk1drZy7ce3Exvf4jP3bhmUlli\nCnLS+Iub1vPlO17hZ0/tYfWSwqiZbYyJt817T/Lfv9lOe1cfa6sLeedZC1lRmT9h2tpI4XCYxtYe\njp7scAby1rdTW9/OgeNt7D3aylNvHgEgKz3A8kX5rFycz8rFBRTPwa4L84hPVWtHJJuIqZlSRDJw\nWqw+FbHsQ8DXcLqqPyIim9wHf4twEi6twOn6twH4moh8zd31far6xnRPxhgzOZFBFTCn04b7fV7O\nWBaksbWbXYebSQ346B9wxlblZqaOykxYnJdBfXMn5YWjMxZWBLM47I4t2314dHr3lYsLyMlwgrNY\nx2AdON5GRVFWXALWgVCIt3afoLQwk7aO6PNutXT0DHt9qK592OtXttdxzsqSaZdluubuJ84kXP9A\niO/8cisnW3u4/qKqcbv/jaUwN40PXFrDXY8rP3lc+dyNa6xLoEmYcDjMg8/u47cvH8Tv83DLO5dx\n2YYFU/rMeTweCnPTKMxNY82SwqHlff0DHKpvZ//RVvYda2VXbTOv76zn9Z1O2tvKkizOWVHCWSuK\nKcq1IGuGtYtI8eALEbkSODnO9kNUtZOIsb7usnuBe6NsuxUnqEJVf8j46diNMRPoHwjh9XiGHn4d\nO9lBbmbqpAKjoyc6hr0uzssgPdXP2iWFc661KlKem5K9p2+AnYeagNFBBsCS8hwWBDNJjdItLjKw\n6hs41VqVm5HC4rKcKWX+a2juoqG5Ky4tRYfq2ukbCFFbP35X131HW1lS7kyu3Dpi4uNwkszSZIGV\nGdNDz+9nV20zGyXIe85fPOXjXLy+nFd31PHWnhO8sr2Oc1clR3OtmX8efeUQv335IMX56XzqutUs\nKo1//+mA30d1eS7V5c6Ei+FwmLqmLnYcaOTtvSfZtr+Rn9ft5efP7GXFonzeeeZC1tYUWnfBmfF3\nwJNAqYg8ixP8vGd2i2SMGU93bz9v7TkBwDkrSobG10AbG5cVE/B7aWrrQWubWF6ZPxRoROrq6efQ\niJvygN/pppbMSSpiEa2nxVi9h6IFVeOpXpA75vikNUsKR7UARtPU1jPt3kh1TZ2jlqUGfMO6PgLU\nN3cOBVbRujMmAwusTFQHj7fx2CuHKMpN4+PvXjGtViavx8NHr17OP/zwVe55chcrFheMO0mdMVPx\n1u4TPPjMXvKzU/nbWzaQG+Ximwgej4fSggxKCzK4dEMF7V19vLmrgZe2HmfHwSZ2HGyiOD+dd565\nkIvXlSU0k9LpTlVfdBNYXIgzJuoPqnpilotljBnHYFAFRARVjpET4O48NHpOJ4DautEtHRXBsSfx\nneum0uV847LiYfW5vqZo3KQPmWkBygszyclMwet1xiOX5KfT3N6L1jYNbae1TWNOYjwda6sLOXay\nk7ysVBqau4aCr/6BEOGIecoiE26EwuFZf4g5k1kB7wauBOpUdU2U9Z8HPuuWaTfwx6p6eOR2JvEG\nQiHufHQHoXCYW69eHpe5HorzM7jx4mru/f1uHnh6Dx9/z8o4lNQYx+GGdr738DYCfi9/duPaGQuq\noslKD3DxunIuXlfO4fp2nni9lpe31XHPk7t49JWDXHdBFeevsVbbRFHVRpwMfcaYGXakoZ3e/hBV\nZTkz+r7ZGWMnb5iPppIFb7AFb1As93aVJad6fQyOwYr2YDzaJMaxipzMOZLP6x1qmctM8w8FVtsP\nNLGw+FSLXWQ3z4bmLkryM2hp7yHg985Ka2X803mM7fvANeOs3wVsVNXFwNPA7TNRKDPaE6/Vcqiu\nnQvWlLJqcUHcjnv5xgoWBDN5cdtx6hpHN/saMxVtnb1884HN9PQO8PH3rExI97+pqijO4mPXrOD2\nT5/Pu86upK2zjzsf3cmX//tVXtl6bNhTNzN9ItItIl0j/tkfG2NmSG1DO3VNnQzEOIGtHmqaeKMR\nNu89MZRYIRwO8/L24+yKOM666qKxdp2zllXkDf18zoqpJ2hYGYd7Oq/Xw+qqQtYuGV7PzvxWp/T2\nDcR0jRsYGP1ZGRmkRfaa6uzpo7NneE6iwVaq7p4Bp6fIoSY27ztJY2s3TW09dPXENtVKPMxYYKWq\nzwHN46z/raoOpip5HlgwIwUzw9Q1dfLQ8/vJzghw02VL43psr9fDdRdUEQ7Dwy8eiOuxzenrvqf2\ncKKlm2svWMxZy4sn3mEW5GSm8IHLaviXPz2XS9aXU9/UxT/d+Sr/fv/bHDvZMfEBTKyygGz3XyFw\nK/aQzpiEC4fDw1Jfv7azntbOXtq7+sbcp7G1m6b20UkYAFZXFUZdDgzdVB883jaUJW9QeWHmlBIx\nJLvBFrn0FP+0hmZkpwfISg9QWTy9B5BZ6QEy0vyUFZzqbjkYJPf1h9h5sIk3dzdw5MTE17fjjc4c\nW6l+H2dKMWePETjKwlOp1geTXCxxxzrXLHD+P9bYMSyxx67DzWhtE2/vnbke4cn66ftj4OHZLsTp\nJhwOc9djSl9/iI9ds4Ks9Pg3oW6QIAuCmby07TjvPX8xJQUZcX8Pc/rYc6SFF7cep7Iki2svqJrt\n4kyoICeNW9+1nCvOXMiDz+3jrV0N/MMdr3L5xgquu7BqXt4QzCRVjXws2Q/cLyLvm2g/cfKz/y5i\nUSHOJPaHgS8DApylqm+Osf8HgX/CeVh5u6p+Z2pnYMzctONgE20jsrRtdwOtyNaH5vYeMlL97D7S\nMmz71VWFdHT1sf+4M4dRZgzZAFs6ejnWOPzGPbLr2nwS8Hs5a3nxtOeN8ng84watk1VZkjX0OwiF\nwxw83jbsd3K4oZ2unn6qy3OjJuHoHwhx5ISTrTAvOxW/b+zzi9r65S7ri9LqNVsmdRV3Lx4PjLh4\nxZWI3IYzR8htsWyfiFmTZ8tsn8sf3j7KjoNNbFxezLsvrp7yU5GJzuPDV6/kX+96jSffPMIXPrRh\nSu8xU2b7dxJP8+VcBs8jFArzz3c7UwV95v3rKSmZ2T790xEMZrNueQmvbDvOf/9qK0+8VstrO+v5\n2HtXccmGCpuSIE5EpAyomWg7VVVgYcR+B4BfAKnAdYyTTt2dLPh24CygHdgkIr+2McLmdDIy9fVI\nA6EQbZ19Q+nCR8pyW1KC+elD3boWlWRz0E1KUZSTTnlRJpv3nWp56OwZ3hpWOs8f1CZiMt7pGgzU\ntu4/SWdP/6guegAnW7vJz0qlKErCjdf1VDKN5rYeKBv7vaIlx8h0GwDys1LZP0FZjzd2zshnZLKP\nR28GviEidwDfU9Uj8SyMiFwLfAK4VFVjyqPY0DB+zvu5IhjMntVz6e0b4AcPbcHn9XDjxUs4caJ9\n4p2iiOU8asqyWBDM5Ok3annnhgVJ22o127+TeJov5xJ5Hs+9fZQ9h1s4d1UJwayUOXd+wWA21SVZ\n/O+PncWjrxzikZcO8o2fvsnDz+/j5iuWzqknr8kStItIQ8RLD9AL/Nkkj3ERUK+qeyOWjbfLFcCL\nqnrM3fYhnGDsPyfzvsbMV3qoibbOPvrHGHdV43bnAoZldCsrzMTr9ZCXmRrTPFTFecl5LzHfpcXw\nu9lztIVAwIff5yFzjIQSPROkT4/2wHHwWLEk8zhwvHVGAqtJhb+qei1wAZACvC4iD4jIZVN9cxFZ\nIyLL3J8vBv4VeI+qzq07pHngsVcPcbK1m3eeuTDhHzyvx8Zamenp7O7jwWf3khrw8f53TNggkdQC\nfh/XXlDF//mTczhjaRG7apv56p2v8ePHdtI6xgz0ZkxLI/4tVtVyVX1gkse4GbhnEtuXA5EPGWux\nMcLmNON3W1OiJUdoau8ZM6gaqyVjUEl+RkxBlSzKn9RkwiZ+xuq+NzJT446DjWzZd5KW9h72H2sd\nlQ1w47LghO9VXnhqTNcZNcO3X1x6qtfKWBkK27v6xh33Fw+T/hSq6gHgiyLyMPAz4CoR2Q981k1Q\nEZWI/AI4FygSkVqc/usrgAbga8A/4jQCvuY+HdynqpdMtnxm8hpbu/ntSwfJyQjw3gsWz8h7Ro61\net9FVRTlTn5OBnP6+tULB2jr7OPGS5bEfe6M2VKUl87nblzLtv2N3Pv73Tz71lFe3VHHe8+v4vKN\nFaNS5ZpTRGTwCt4ZbbmqxhShiogfuB5YN43i2C/KnFa2HWgcCpxyMlKoKsth/7HWmPaVyvyJN4qQ\nm5k6LDlBRVEWFcVZBAsz51yvhfkkmJdOQ3PX0Ovq8lyCeekcqmvj6IgETTvc7qCRkwLHmqq9siR7\n6HgjA+7Sggwy0/xRx3IN2rrfmfA4IzXA2ur4jTWLNNkxVqnATcCnAR/w98B9OH3L78EZGxWVqt4w\n3rEtiJo9P39mL739IW5557IZGzzv9Xh419mV3PHIDp5+8wjvv3RutzqYmdPc3sPTmw5TlJvGlWdV\nznZx4m5VVQFf/dhZPLPpKA89v4/7n97D05sO8/531LBRgjb+KrpWYKy8vmEg1mb4q4Atqlo34Zan\nHAHeEfF6IbBnop2SpftkMrK6GVuy1U1DUxcen4+cbOfhaDCYTU8YctpjaxWY7PkMbt8/EKKts5f8\n7LQpH+t0kui6CQazhzI0hkLhoa55wWA27W9OPNx0MuW78vwMQqFw1PvVyDasnOyWUeun+p6TMdm7\n6P3As8AXVPWliOUviMjvxtjHJLHdh5t5ZXsdi0qzuWDtOKMGE+DsFcXc//Qennv7KNdeWEXqFCa8\nM6efJ1+vpX8gzNXnLpq3rTg+r5fLN1ZwzsoSHv7DAZ568zDfeWgryypyueVKGTY5ogFVTZt4q5jc\nDPx0jHVDEa2bsOI8VX0C+D3wbRFZALThjK+a8EGhPV2Pbr6MB02EZKybTbsaho2NaWho41hdK61t\nTuvFuStL6ezuZ//xVqpKs+ns7mfPUeeGd3VV4bTPp6HbCeCSsW6SxWzXzeBnYSxnLy+ZUvkmygRQ\nnp/GkYYOpDJvWJKMQQ0NbQkJriZ7V7JRVT80IqgCQFU/HqcymRkSCoW554ldANxyxbJhg0ZnQsDv\n45L1C/5/e3ceH1d1Hv7/M9o12ldLsmRZku3H+wLGgMGAwQmBsBNIISWBpoQkJWmTlLRN05Cm+TZt\nkqahvyYhpCGBsCaA2SHsZjHe9+2xLVmWLdnaLGvfZ35/3CtpNNpmtMyMpPN+vealmTv3zpxzNffO\nnHvOeR6a27rYtP90QN/bmJyaWzt5b2c5ic5ILlo8uizvk0l8bCS3rZvLv/XMvzpZz7/+bitPvX0k\noAkPpwMRcWL1WD3rsew2e+j6SuAVEXnNfiofeADAnhN8H/AhsBf4bxMR0JguPBtVPTmNZmclMiPF\nyYq5Vv+BMyaCRbNTccZEkp4cS3xMJBFhYROS0sWYfIYbujcWyfHRLCpIJSI8jESv+V7RERN3Id/f\nHqtvisiPVPUMgIhkAPep6rfHv2jGRNuwu4KyqiZWL85iTm7SyBtMgLUrZvLapuO8tf0klyzLMcOc\njGG9/nEpre3dXHVJvk9RgKaKrFQnX7t5KXtLann8jcO8sfUEWw5WcudVCyZsnPhkJCLLgAeB5Vih\n0gHcqjrih0VVW4B0r2VPAk8Osu4+rDnCw65nGFOZZ/ABZ3Qks2b09aQXZA+d/mJxoTlnTSer5s+g\nqa2T2KgIth8e2HMUCBnJsb0pASLDw0eMQDgW/vZYfaKnUQWgqtXAVb5sKCKPiUiViOwd4vlIEXlU\nRI6JyA4Rme9n2Qw/NLV28tyGYmKiwrnlsqKglSMlIZqV8zMpr27mUNnZoJXDCH2dXS5e/KCY6Khw\n1p4zPYOuLSlM4wdfXMV1F82mqbWTn/9pN89uKKZ7iIhb09AvgW8Cm4Bk4MtYCX4NwxhntfVtvfcl\nL9lcGDUGFRbmINEZ1W/ofk+YdM8ofxMpIzmWVfNncMHCLDq7rUbVRI368LdhNdhVP197vR4Crh7m\n+TuAaFUtwIoY+ICfZTP8sP79EprburjuogKS4oMbVW3dubkAvLXtRFDLYYS2j/ef5kxDO5ctzxky\nD8Z0EBUZzg1rCvnnO1aSkRxj5b96ahf1Te0jbzz1xdpD1SNUtUFVH8IKvW4YxjgrrugLDuBLSHTD\n6DF/VjLnzc8M6Hxh7yGHe0tqJ+Z9/Fx/p4j8l4hkiUi2iPwM2OLLhnYo9uG6JK4DHrHvvwwsF5HA\nNGWnmbLKRt7bVU52mpN1K3ODXRwKcxIpyE5g19GafuE6DaOHy+Xmtc1lRIQ7pmQkwNHIz0rg/jvP\n45x5GRwqO8sPHtlGlTl+ei5BNovIYhGJwTSsDMMwQsKyonTm5SYTGRFOeFhYUHs5vfNojRd/G1Z/\nB2QBB4D9WOPR/3acyjITOAmgqm6gAivxojGOul0uHv2z4nbD7evmDZnYLZAcDgfrzs3D7YZ3d5aP\nvIEx7ewprqXyTAuXnZM3ZfJWjQdnTCR/c+NibrqkkLrGdn7yxE5q6qd14+oJEUnDSjb/PlCFRzAK\nwzDGh9q5iAAKc4IzR9uYfGKjI0hNHK8grqPTE2RlovgVvMKeX/W5CSqLt+D/4p+CXttURklFA+cv\nnMGigoEZ0oNl5fxMnnz7CB/uOcWNawqnbBhtY3Te22U1uK+7pDDIJQk9DoeDa1bPBuC590v4yZM7\n+Yfbzwn6l1cwqOrP7bvv2cGVolR1Wrc0DWMi1HkMPc5Mjg1iSQzDP/lZCZw60zzyiqPkdzZYEbkM\nKLS3dWBFXHpoHMpSjpVYcY+IOIBsrF6rYU2lhHATXZdjFfW8+NExUhOj+dvbziHBK/zkeBltPT5x\nfj7r3zvK0dONXLIi+EMUwXy+QkHVmRb2ltQi+SkUTLEro+P5P7nr+iVEx0Ty5BvKz/64m/+8dw3J\n06x3T0TeAR4GnrUbVKZRZRgTaLjof4YRqhbkp3KyaqRMWKPjV8NKRH6L1ag6AIw5DJWILAHaVfUw\n8CLwBeAVrPlWu1R1xCblVEkIN9EJ3Dq7XPz40W10dbv5/JXzaWtup615/Ce7j6Ueq+als/69o7y4\noZgFQQr/7inYSfXG02Suy/r3i3G74WI7b9VkrYe3ififrFuRQ31DG69uOs5/PLKFb9y6LCD56UKo\n0f4z4C7gv0XkeeB3qrpxpI1ERADPJPdpwPeAXwNPA/OxhqrfoqqVg2z/r8Bn7YcfAveo6sTF8zWM\nINl04DSRHlMIZqQ4g1gawxidpLgokiZo1Ja/PVb5qrp2NG8kIs8BFwDpdsLF+7HygNQA/wk8Cqy1\nn6sBbhvN+xiDe/GjY5ysbuLS5Tkhm/dmRqqThbNTOFBaR0VNMznpJnbJdNfV7eL93adwRkdw3vzM\nYBcn5DkcDm66tJCT1U3sKa7l9c1lXH1BfrCLFTCq+jLwsj3P6nbgf0QkQVVlhO0Ua8QEACJSCqzH\nSvy7V1WvFpGvAT8A7vHcVkSWArcCi7EuOL4NXAO8ME7VMoyQsPtoDQCd3Sa9g2EMxd+G1anRvpGq\n3jTC811YIdenrK5uFyUVDRw+cZbDJ89yoqoJZ3QESXFRzEiLJzs1lvMXZI57+PMdh6t5ddNx0pNi\nuHXtnHF97fF22fKZHCitY8OuCm5bZ4J5TXe7jtTQ0NzBupW50yoh8FiEORz81acX8P2Ht/DchhLm\n5SUzZ2bwe4ADzAW4sYar+9VlJyJrgEpVLRaR67AaaGBFrT2KV8PKfp8IIBboAKLwYRi7YUwmjS0d\ntHZMTN4fw5hK/G1YNYrIM8DrQKe9zK2qj45vsaae3UdreOKtw1Sf7Uuol5oYTWNLJ6dqW3qT4/7x\nnaMsKkjloiVZnCsZhIeNLYjDwdIzPPjCPqIiwvny9YuJjfZ7Wl1ALZ+bTlJcFB/tPcXNlxaaH9PT\nXE+UyMuWT8+EwKOV6IziS9cu4idP7eTXL+zn+3913rTI/WU3hL4ArMHqMfq6qn7k58vcDjxh3/eM\nVttgJ7KPVNWe7z9Uda+IPIE1T7gTeERVt46xKoYRUvaXnhmwbMXcjCCUxDBCm7+/sp1AE3CR13LT\nsBpC9dlWnnzrCLuO1hDmcHDJsmwWF6QxNzept2eqq9uFIzKC97aWsXHfafaW1LK3pJYZqU6uv2g2\nqxbMGJDYzBfHTjXwP8/tBeDem5dQmBP6k0wjwsO4eGk2r3x8nK2HqrhoSXawi2QEyekzLRw8Xofk\nJZthoaMwPz+Fa1fP5sWPSvnDn5UvX7842EUKhK8BvwfuUNUWfzcWkQjgRmDZEKsM6AETkVzgUmAW\n0A78WUSuUtXXhnuvEJqXFnLMvhlaMPZNa3sXiQl9kf9ioyPITo8jd0Zo/Z/M52ZoZt8Ejr/h1u+c\noHJMSXtLavnF+r10dLqQvGQ+98l55GYMzDIdER5GRlocV5ybyxXn5nKqtpk3t57ggz2neOilA7y0\nsZRrV8/mvAWZPvdglVQ08PM/7aajs5uv3rCYRbNDJ7T6SC5dlsOrHx/nvZ3lpmE1jW2wQ6xftsL0\nVo3WdRcVsO/YGbYcrOLSZWdYMInOA6Ohqp8Y40tciTWnqidARU+02v0ikgR0qGqH1zZXAftU9SyA\niLwGXAwM27CaKkFYxttkDrQz0YK1b7YcrOxNpurAwcK8GUBofYbN52ZoZt8MbSIanH6NMxORFBH5\nhR2IAhFZIiJ/Oe6lmgK2Harif57Zg9sNf33NAr59+4pBG1WDyU6L4/Ofms+PvnQBa5ZmU3mmlYde\nOsA/P7SZDbvK6ewaeuJoU2snj75+iP/36DaaWju581PzOVcm16T/9ORYlhSlUVzRwPHT5mQwHXV1\nu9i47zTxsZGcM88MNxmtsDAHn/vEPBzAE28doctMOh+J5zBAsKLV3mnfvxN4HkBEEkTkk/by48Aa\nEXGKSCRwOVbkXMOY9Fwud2+jCmDVgsn1e8IwAs3foYAPAR8By+3HxcCTwGMjbSgia4EHsSb2Pq6q\n3/V6Pst+nRlYQy2+r6rP+Fm+kPDhnlP87rWDREWG83efWYrMShnV66Qnx3LX1Qv49OrZvL65jA/3\nVPDI68oz7xUzPz+FhfkpzMlNpq2ji9r6Nk6faeHt7SdpbusiO83J5z4xj4WT9Ar12hUz2VNcy7s7\ny7nzqvnBLo4RYLuP1tDY0sknVuaZZNFjVJCdyCXLc9iwq4J3dpTzyfPyRt5oGhIRJ1aP1Vc8Fv8U\neEpEyrAaULfYy/OBB4AFqvqGiFwJ7KEvKqBn48wwJo2ubhduN0RGhFFT30pjS2e/5x0BSN9gGJOZ\nvw2rIlW9RUSuB1DVFjuZ77DsdX4D3AAcBD4SkVdU9WOP1b4NbFDVfxORImArMOkaVh/sqeB3rx4i\nLiaCb9y6fFzmNWUmx/L5K4VrV8/mza0n2HKoku1azXatHrBuTFQ4n718Dlecm0tE+OT9QbqkMI30\npBg2HTjNrWvn4IwJ7aAbxvj6YI8VgHTNUjMUdDzcdEkh2w5V8cKHJZy/cAZJcROTHHwys+dkpXst\nawCuHmTdfVjpQnoefwv41kSX0TAm2jatAiA3PZ6TNf0TqC4tTB9sE8MwPPj7a7XLsyFl5wpxD7N+\nj+VAnf1lhIg8BtwEeDasXEDPWLl4rLHtk8rR8noefV2Ji4ngH24/h9xM34b++SolIZpbL5/DLWuL\nqDrbysHSOkpPNxAXG0laYgxpiTEU5CSS6Jz8P5rCwhxcujyHZzeUsHHfKdatNFfZp4u6xnb2ltRS\nkJ0w7sfQdJXgjOLGSwp57I3DPPPeUb746YXBLtKEEJEo4G+BPFX9uojMw8q/+GaQi2YYk4p3o6ow\nO9Fc4DQMH/h7lLyANZwvVUTuAr4O/M6H7XpD1tpOAKu91vkRVjSlciCOQa4ShrKzTe38Yv1eXG43\nX75h8YT+IHQ4HMxIcdoZz6fuxP41S3N44cNjvLuznCvOzTVDEKaJj/aewu2Gi5fmBLsoU8ply2fy\n/q4KPtp7mivOzWV2VuhHCR2F/wWagfPtx9XA08CKoJXIMCaJbpeZg2kYY+Vvw+rfsXKEZADXAg+o\n6u992M67V2uw5EQ3A2+q6j+JyDnAn0Rkvme+kMGEQgjJzi4XP3lqF/VNHdx1zSIuOy9/VK8TCnUZ\nD+NVj4wMuGjpTDbsPMnphnaWzgl8EIOp8j+ByVEXt9vNx/sriYoM59NrioiLHZh7aTLUw1eBrsuX\nblzKd3+9kVc3n+D+v74goO8dIOep6goReRdAVevsXizDMEbQ3Dp0AuDJPLXAMALJ33DrbqwcIb/3\n833KgVyPx7n078EC+DzWEA5UdYeIdGFNED463AuHQgjJP7yhHCw9w6oFmVy8KHNUZZoq4TDHux6r\nF2WyYedJ1r97lOykmHF7XV9Mlf8JTJ66aFkdp2qbuXBRFi2lwP5ZAAAgAElEQVRNbbQ0tfV7frLU\nwxfBqEt2cjTzZyWz7WAlH+88yZzcpHF53RBq7Pa7EGcHpDBd3YbhgwPHByYB7hETNdj1cMMwvPnV\nsBKRXw2y2K2qXx1h0z1YwweXYgWv+BzwDRFZArSr6mGgDGv433YRWQCkYQ0ZDGl7imt5d0c5uRlx\n3HXVAjNcbZzNmZlEbkY8Ow9XU9fYTkpCdLCLZEwgE7RiYjkcDm5YU8h/PL6D9R+UcN9tU26E3Ici\n8s+AU0QuA/4Jawi7YRheul0u2jq6iYuJpLi8fsDzy+eks+toDQCREaZhZRi+8Hco4Hb6hvVFYzWE\nakbaSFVdInI3VpS/GOAxVd0oIj/BGgP/Y+A7wO/tvFhdwBdVtd3P8gVUS1sXj7x+iPAwB3dfu4ho\nc0Vn3DkcDi4/dyaPvq68s+MkN19aFOwiGROkpa2LbYeqyEyORWYlB7s4U9a8vGQWF6ayr+QMB0un\nXNLgf7JvkcDPsPJQ/b+RNhIRAd7yWJQGfA/4NdYcrflYoyxu8Uge7Ll9EfAwMBdoBC5V1dNjqolh\nTLADpXU0t3UyMz2e6vrWfs8lOqOIiYrgvPmZdHW7TdoLw/CRv0MB/8/zsd2D5VO+DlV9B5jntew+\nj/ulwGX+lCfYnn7nCHWN7dxwcQF5JnrZhFm9KIvnNpTw3s5yrrlwtmnATlGbD5ymo8vFxUuzTc/v\nBLvpkkL2lZzhuQ9K+E5+ypTZ3/bFuO/bN3+2U6A39KiIlALrgfuAvap6tYh8DfgBcM8gL/E08F+q\n+qQdLbdlFMU3jIBqbrNGzpZ7RQC8YGFW7/3wsDDM9CrD8N2YYmeqqltEpmVig33HavlgzynyMuO5\n+sLRBaswfBMVGc7l58zkxY9K+XDvKa44N3fkjYxJxe12s2FXBWEOBxebYYATbnZWIufMy2DH4Wr2\nltSytGhyn8ZF5EeDLHZjza9yq+p3/HitNUClqhaLyHXA7fZTj2DN+b3Ha/1VQJiqPgmgqrWjqIJh\nBFRr++CBKpZN8nOBYQSbv3OsfuLx0AEsAk6Na4kmgdb2Ln7/mjUE8IufXmCi5QTA5efk8uqmMt7Y\nWsbaFTMJC5saV9gNS+npRsqqmlgxN53keDOPLhBuuLiAHYereeHDUpYUpk32Xqt6+oape1fEl1yL\nnm6nbyRGb6oQVW0QkUgRifSKVjsPOCUiLwGFwGvAt1XVxK42Qtah43UDluWkxREbbXJVGcZY+HsE\nldN3FbATeBN4Y7wLFepe+PAYZxrauXb1bGbNCJloWFNaYlwUqxdn8f7uCnYcrmbl/MxgF8kYR+/v\nrgDg0uUmd1Wg5GbGc+68DLYfrmZ/6RkWF6QFu0ijpqr/MR6vIyIRwI3AsiFWcTCw4RYBrAHOwQrC\n9DxWlNvfD/deIRRJMeSYfTO08dg39U3tRMdG4X0J65xFk3sYtvncDM3sm8Dxd47VzyeqIJNFeU0z\nb28/SUZyDNesNkMAA+nKVXm8v7uCP28tMw2rKaSto4tNBypJTYye1D/uJ6NrVs9m++FqXv6odErs\nexGJB/4FWId1EfBN4Ieq2uzjS1yJNaeqJ0BFOdbcq/0ikgR0qGqH1zYngD2qetQuw4vA8pHeaKqk\nDRhvUymlwnhoaetkT4k1uvTaS+eOed+4XG62HBoQf4WIsDBqvOZaTSbmczM0s2+GNhENTn+HAv6G\nvh4rvO+r6peG2XYt8CAQBTyuqt8dZJ0vAPfb67ymqnf7U76J5na7eeLNw3S73Nx2xTwTfjTAstPi\nWFaUxu7iWo6W1zNn5vjk4DGCa8vBKto7urnyvDwzxDPA8rMSWFqUxp7iWrSsDpmVEuwijdVvgUPA\nF7G+R+4Gfgfc6uP2nsMAwYoqeCdWEIs7sXqjEJEE4EJVfQP4EMgSkWygEqtR99oY62EYgBW5r8eO\nQ1XkpcWO6fWOeoVVn5WZQGx0BMnxJo+2YYwHfycHdWENkdgH7Me6KteO9cXy0VAbiYgD+A1wMzAH\nWCciF3qtswzrSuPFqpoL/NDPsk24HYerOXi8jiWFaSybM/mv7k5GV66aBcCrHx8PckmM8fL+7goc\nDliz1AwDDIZrL5oNwIsflQa1HOMkUlXvV9VdqrrFvji3xJcN7WTCVwLPeiz+KbBIRMqAz2CFYAcr\nef0D0BuJ8O+Ad7HyNNZiNeYMY9Q2HTjNpgOn6XL1TdVrbOmgsm5sASfPNPYlXU+OiyYr1UlKQvSk\nHgJoGKHE3zlWS7Dyc7QBiMhDwFuqeu8I2y0H6lR1n73dY8BNwMce69wDPKCqFQCqGlK/nNs7u3nq\n7aOEhzm4bd1ccxIKEpmVzLzcJHYdraG4vJ4i02s1qZ2oaqKkooGlRWmkJcUEuzjTUlFOEotmp7C/\ntG4q9AS3iUiEqnYBiEgKVi/SiFS1BUj3WtaAla/Re919wAKPxy8DL4+h3Ibhk2OnGpiR4hz19s7o\nCFrau1g0O5UEp+mlMozx5m+PVQpWD1WPNqxEiiPpjaxkO2Ev8zQXKBCRrfbtSj/LNqFe31xGbUMb\nn1yVR1bq6E9qxtg4HA5uspMEP7uhGLfb34BfRih5d2c5AJcsM71VwXTN6tkAvLyxNKjlGAfxwA4R\n+bGI/BzYCZSJyP0i8r0RtjWMkNDVPXxAyZ5Q6W63m5KKBmq8kvsOJ8y+KGyi/xnGxPD3yPoIeFZE\nfo81t+ou4D0ftvP+9TvY5KRIoAi4EGu44LsiMldVh51NGYhIJ7X1rby2uYzUxGjuum7JhJ2QpkrU\nlomuR0ZGAuduP8n2Q1VUnG1j+byJC2QxVf4nEHp1aWzpYOO+02SmOll3YQHhPs6vCrV6jEWo1CUj\nI4GXN5Wxp7iW+rZu5uQlB7tIo7XDvrmxkvT+nqHDsBtGSNp5pGbAsqWF6ZRWWzFYjpysZ2lRGpsP\nWp2xVWchPSmWptZO9h2rJTUhhqKZiYSHDbx23mQnBfb1fGsYhn/8bSHcC3wFa2IwwFtYASlGUg54\nZnXNpX8PFli9WO/ZQzgOichxrIbW7uFeOBCRTh5+5SAdnd1cv24uTQ2tTETcnKkStSVQ9bjmgny2\nH6ri4Rf38d3Pr5yQoZlT5X8CoVmX1zYdp6Ozm8uW5XCm1rejKhTrMVqhVperVuWxv6SWR1/Zz9du\nXurXtqHSQFTV7we7DIYxFi6Xm27XwB4rZ0wE6cmxNDS20tLeOciWsO+YFT3wTGMbZw61sbQwHWdM\n38+8hua+gJZmOoNhTAx/w613AA+IyK975ln5aA+QKiJLsSb3fg74hogsxgpfexgr2tJngN+KSC4w\nCzjmT/kmQlllIx/tPUVuRjwXLckOdnEMW35WAivnZ7LtUBU7j9RwzryMYBfJ8ENXt4u3tp8kOjKc\nS5aZ4yoULMhPYc7MJHYeqaGssnFS5ugTkRjgs1ijHnq+39yq+p3glWqguoY2Nh04Pa7zXFrbu4iM\nCDMJ6ye5s019sy3yMuI5Ud3EvFyrB3lWVgIlJ84AUNfY3m+7Y6caBrzWnpIaLliYBVhpLcprfM06\nYBjGaPl1BhaRpSKyDysqICKySkT+a6Tt7Az0dwPPAMXA26q6EfgCcIO92nNAnYgUA38GvmpPHA4a\nt9vN0+8cxQ189vI5JhR0iLlxTQEOBzz3fsmgV/iM0LXjcDV1je1ctCQLZ0xksItjYF3Bvs6OEPjS\n5J1r9RxWYKRW4CxQb99Cyp6j1lCv/aVnxuXc1dbRxe7iGrZp1ZhfywiuwyfP9t6fmRHPBQuzSE20\nAvt4NsL1RF2/7QaLFhjm0Su162gN9c1WYyw9cWwh2w3DGJq/QwH/P+AO4Gf2423AH4BvjbShqr4D\nzPNadp/HfTfwVT/LM6H2lpzh4PE6FhemsqggNdjFMbxkp8WxZmk27+8+xRtbT3DV+SZh82Tx1jZr\nJPC6lXlBLonhaVFBKgXZiWzXak5WN5GbER/sIvmrSFUl2IXwx9ZDVeRlJpCVGjvonBhfVNX1BS+o\nOtvKicpGwsPCWFyYanqwQkBDSwcHSq2epgsWZuGygy6FDTMcb+Hssf/mcLndbDpwesDyxhbvHNeG\nYYwXf8+4caq6s+eB3RPVNb5FCg3dLhd/fPcoDgfcunZOsItjDOEzl80h0RnJ8x8cG3N+DyMwjp1q\n4Gi5NfnaRNgMLZ69VpM0QuABO1GvX8RywuPWIiJ/LyIJIvKqiJSIyPsiMmOY13CKyDER+YO/73+i\nqpGth6o4VTvyUK2Glg6a2zpxu625OCermqjw2K6kop7ObhdtnV1s0yraO7vp7Bpbr1hvTqURotUZ\ng+tpVAEcP93IriM1bDlYOWB/tnX0/Zxy+hgkKzku2u/yLJuTPvJKhmGMir8Nqw4Riet5YCf1nZKD\ndj/Yc4qKmmYuXpI9Ga/aThvxsZHc/ol5dHa5ePR1NeHXJ4E3t54A4BOmtyokLS1KI39GAlsPVk3G\nORn/DHwsIn8UkT/Yt0dH2kgteT03oApYD9wH7FXVQuBPwA+GeZn7sXIzjvokdLxy+GAmtfVtHCg9\nw96SWjYfrGTroSpO1gwf+GXnkWq2H/ZtiGBLWyfVZ4cO3W2GGvrPM2AEwKkzzXR0dQN9+/NsUzub\nDpxm19G+aIBD9TR6X4zKzez/+6QoJ2nYRllKfLSZ1mAYE8jfhtWPgLeBQhF5BHiHvkz0U0ZbRxfP\nf3CMqMgwbrykMNjFMUZw3vxMlhWlcfB4HR/uPRXs4hjDOH2mhc0HK5mZEcfC2SnBLo4xiJ5eKzfw\n/AclwS6Ov36Llaj3Zay5uj03n4nIGqBSVYuB64BH7KceAW4cYptFWEPdX2ACw7r7k6/I275jtVQN\n02gC2FNSS3FFfW+eJF81tnRwpqGN5rZOmloHj1g3HblcblpG2Jet7V0cKus/Xyo7NW6ItSF/RgIp\n8dFkp8aRkRxLXEwEFyzM6r1lJMeytCid1ITBE67LLHPeNYyJ5PMcKxFxAHuBzwOfshf/u6qqj9uv\nxQrNHgU8rqrfHWK9q7G+FNfZ87IC7vXNZTQ0d3D9xQUkx/vfzW4ElsPh4I4rhUP/t5mn3z7K0sI0\nksz/LSS98OEx3G644eICE+43hC2fm05hjjXX6tipBgqyE4NdJF8lq+q9Y3yN24En7Pu9ye1VtUFE\nIkUkUlV7Ww/2d+PPgC8Dq8b43jS3dbK3pJalhWn9Art0drmoa2ofZsvhNbV20tRaT3pizIg9Fh1d\nLmLtU6jnKICctMF/8O/3GOoGsFIyzdwuYMuhyt770ZHhtHd2D1hnd/HAnFXZaUMPkXY4HD41jubl\nJQ+YX2VG3xjGxPM3eMWvVPUq4LA/G9lfPL/BigB4EPhIRF5R1Y+91osF/hH4wM9yjZu6xnZe31xG\nUnwUn1o1K1jFMPyUmhjDZy4t4vE3D/PgC/v51l8sN1/sIeZkVRNbDlQya0a8CY8f4hwOBzdfWsRP\nntzJsxuK+fu/WBHsIvlqq4gsUNWDo9lYRCKweqWWDbGKg4E9UncCm1T1mIic7+t7zc5NYUlROi1t\nnZSeaqDaDkBxvLqFxIRYSqtbuPScvvSPG3acJDFh6GhuhTOTqG9qp7Z++EwohysamTsrmbSkWCIj\n+s6RjS0dva+flhpHih2Jrra+tXd5U4eLiro2IiLCyEiJJTPFSWdX94ByOeNjxnRxK1Tyoo1FRXVT\nv/1SkJNIW0c3p3wYXjszZ+gE3f7sm2susRpS7R3dxPg4Z2symwqfm4li9k3g+HykqapbRM6KSJKq\n+hu+djlQp6o9YdofwwqJ+7HXev8C/A9WAuKgXM5e/0EJHV0ubl9TSHRUeDCKYIzS2nNmcqisju1a\nzZNvHeGOKydVcLAp7/kPj+EGbrqk0PRWTQIL8lNYNDuF/aV1HCg9My5RygJgLrBDRHYBPS0Mt6pe\n7uP2V2LNqerpaigH8oD9IpKElXfRO6Ta+cDVIvJ5IA6IFZH/HannLD4yrDdBdEZ8FMVlZwasc+BI\nFRnJ1o/zhsa+YXz5MxJ652OFORzEx0YS7XCTkRCFq7OLjORYqupaKasafM7W1n1WoJ+kuGgkL5m2\nji72lNT2Pr//SBV1Te1IXgp1je393rvnfsmJoev2/vay3vxJ/gq1xNmjtd2rt6i1OZrUxBgSchKG\nnat27rzMIes/ln0z+ffo8KbK52YimH0ztIlocPp7CSMDOCQi7wM9IdjcqvpXI2zXO5zCdgJY7bmC\niCwAlqjqd0Tki4xhAvBonahq4qM9p5iZEcfFJhnwpBPmcPDFTy+g8kwr7+4sJy8znstWzAx2sQyg\n9HQDOw5XUzQzkSWFacEujuGjmy4tYn/pNp7dUMKC/JTJ0CD+pzFu7zkMEOBFrB6p++y/zwOISAJw\noaq+oapf7llZRD4LXDMOwxEBKK6oJzoynARn/1xv2WlxZKU6cbnd/UK0O+znALLSnEM2rHrUN7f3\nG67Wo2fIoXeuJGP0UhKsHryI8DAr5Lo9/2rfMatBu2BWCglxUcOGYDcMI/T51LASkYdU9UvAY0A8\nfRc/HPjWAPJeZ7CuoAeAr3k8DujZxe1289TbR3ADt1xmkgFPVjFREXz95iX84JFtPP7mYbLTnGay\nbghY//4xAG5aY3qrJpOC7ERWSgbbtJodh2s4V0J7CKeqvjfabUXEidVj9RWPxT8FnhKRMuA4cIu9\nPB/rO2vBIC814ndialIMzpj+X78rJXPQnowDx/v3ZPUENnA4HIQPcyyFORwszE/F5XbT0NxBR6eL\nmobRB7/wV31zB0lxUSOvOMWlJ8aSne4ccN4LC7N6Gkfbs2cYRmjytcfqKgBV/b2IHFPVAj/fpxzI\n9Xici0cPloiEA+cAr4sIwAxguYjcNtIX5Xh1423cU8HB43WsXDCDKy6YPS6v6a+pMgY22PXIyEjg\nO3et4l8e3Mj/PreX7/31BSwsGF0vSbDrMp6CVZfdR6qtyfhz0rnkvLEncTb/k8D64g1L2PGTd1n/\nQQlXXJBPZEToDpEWkWTgH7CGn/eERfNpKKCqtgDpXssagKsHWXcfgzSqVPVp4OmR3mtJUfqAoTm+\nzAmNDA8nP8v3z0yi3bDpCcLUeKRj0AAKvogIC6PL5Xseq/qm9jE1rLq6XewrOUNEuIPFk6yXu6Wt\nLzLinNykIJbEMIxAC9Rsxj1AqogsxQpe8TngGyKyGGvM+mE8vtBE5DXgJ75cfRyPcaMdnd08tH4v\n4WEOblpTEJSxqFNlDGyo1CMrMZovXrOA/3vpIP/y4EbuvWmJ31/OoVKX8RCsurR3dPPAUztwOOD6\ni2aPuQzmfxJ40Q5Yu3wmb+84yeOvHuDTF84esE4INRAfBrYCWVipQG7DurA3KSQ6o2ho8Z7C1Scp\nfmw9QCvmZtDZ5ULL6mhq8y8s+vK56cPODcpIju2XA6uitplZM3z7XLhcVidfz0iR1vauvmh5nbDl\nYCWrFgyZmznkHD8d+se1YRgTw9ewaREistDO1RFp3++9jbSxqrqAu4FngGLgbVXdCHwBK1JgUL2+\nuYzahjY+cV7egOR7xuR1wcIs7r1pCS43PPDMHrYdMsktA239ByVUn23jylWzJlPIbsPLjZcUkOCM\n5KWNpSNGnQuyQlX9EdCoqi+p6u1ATrAL5auFs1M5d17GkMPDzjaOPtx6j8iIMBYWpJLv1eiJjep/\nndUzNPeMFOeQPWoRYWFEhIVRkJ3I+aNs/Gw5VMmWQ5U0tXbidrsHhCB3ud2j7mkLhvphGseGYUxt\nvvZYRQIb7PsOj/s9Rhx4b+ekmue17L4h1r3Kx3KNWU19K69sOk5SXBTXrp4dqLc1AmT53HS+eesy\nHnh2D796YR/XVM3muotn95vwbUyM4op63tx2gsyUWG642N/Rw0YoccZEcstlc3j41YM8/c4Rvnrj\nkmAXaSg93TBujwi2k2qSZc9Qy5WSyf5jZ5g1I6E3iMTiwvGJzBjmcJCdZiWYPVHVRHaak5ioCNo7\nugkLc+BwWEMTT1Y3AVYOJuiLRpieFEtNfStFOUm9UQt7LJ+Tzq6jNSQ6fetd88yTte9YLXHxgye2\nLaloYEH+pPpXkmLyKRrGtONTw0pV00dea3J65r1iOrtcfObKImKnQZ6H6Wh+fgrfvm0Fv1y/l5c2\nlnKg9Ax3X7eIzOShc8IYY9PZ5eJ3rx7C7Ya7rppPVGTozssxfLN6SRYbdpezTavZX3qGRaEZfv2A\niKQBTwKbReQUUBHkMo1KRHgYy+ZYX70TFeAgIjysX0+yd4qRxQVpVNQ09yaszU6LIzEuCmd0BHNm\nDj53KMbu+Wpo6aCjs3vQY9/lsnqgYqMj6Hb1j/VxsHRg2HmwIhgOZcvBShKdUcwPsYZX0RD7yDCM\nqWvaX7Yvr2lG8pK5cLGJzDOVFWQn8q9/tYpVCzIprmjg+w9v4Z0dJ+nq9n0ytuG79R+UUFHTzNoV\nM01UxikizOHgLz8hOBzw+BuH6ewKvWNHVb+gqrWq+iDwl8C/A3cEuViTVnxsJPPykvtFtIuLifQ5\nsmdtQxsdnd0cPF5HzdlWNh04zaYDp9lyqJLdxTVsOnB62HPw0sJ0IsOthll64uAXwto7unG53Zxt\nbqduHIZKjlWHx5DFcBNd2DCmnWnfRfO9L6zE4XCY3BHTgDMmknuuW8SyonT+8Iby2BuHeXPbSW6+\npJBzJcOEAR8n7+0q5/XNZWQmx/KZy4qCXRxjHOVnJbB2xUze2VHO+g9KuHXtnGAXaVB2dMBc4Jg9\nx3ek9QV4y2NRGlbwi19jRfmbjxXJ9haP5ME92y4DfoWVSLgZ+K6qPjMe9ZiseiIIHq9s7E1kPFSP\n066jNYMun5kejzMmgkUFKew6WkNbZ9eg67V39TVk9ERdUMOXu9xudhyp7n1svlMMY/qZ9j1WkRHh\nPoW5NaYGh8PBhYuz+NE9F7L2nJlU17Xyy+f38W+PbOPjfadD8ir8ZLL7aA1/+LMSHxvJNz67zAyv\nnYI+c1kRmSmx/HlzGQePh0YCWRF5VERW2/eTsSLR/gh4V0TuHml7teT13IAqYD1WYuC9qloI/An4\nwSCbdwFfsbe7Fvi1iEzrSC2FOf5XP8Jr3mtqojU/qafXp6l18CiGnZ39z9knq5v6zdsKhN6euIMD\nky0bhjG9BLRFISJrRURF5JiI/HCQ5/9ORI6KSKmIvCkiuYO9jmGMVVJcFHd8Uvjh3eezUjI4frqR\n37x8gG/94iOeea84KF/Ok92xUw386oV9RIaH8be3LGVGiomwORXFREVw97ULcTgc/N/LB2j2M2z3\nBLkE+Ni+fzuwT1UXAKuAv/XnhURkDVCpqsXAdcAj9lOPADd6r6+q+1V1t33/CFCHVz6s6WY0cyoL\nshORvL5hwz0BMzzzprncbqrOtvYOH6ytb+NI+dl+r3OyuomSUw2jKfaoDDWUMTqE870ZhjFxAtaw\nEhEH8BvgZmAOsE5ELvRa7TBwrqrOBt7FynpvGBMmK9XJV29cwo++fCGfOn8WbrebVzcd53u/3cI9\n//E2f3r3KFpWR2fX5An1GwxaVsd//3E3nV0u7rl+EUU5ZtL2VFaUk8R1F8+mrrGdP/xZg10cgE5V\n7bkSchHwLICqHgX8Dc12O/CEfX8mdjJ7O1lwpIhEDrWhiFwCtKpqiZ/vOaWMZm6Ry+3ubUzB4AmT\ntxyspKSinm1axaYDpwc0qnpUn20d19EHre3WMESXy43L64Jb6RA5q1bMGzFYsmEYU1Agx+ksB+rs\njPWIyGPATfRdZURVX/VY/wMgYGHXjektMzmWW9fO4YaLC9hxpJodWs2+Y2d4bXMZr20uIyLcQUF2\nInNyk8jLiCcnPY7sNGe/q6nTkdvt5o2tJ/jTu8U4HHDnp+azYq75QTEdfPrCfPaW1LLlYEjkh2sT\nkSKsZMCXA9+H3gt6QzaEvIlIBFav1LIhVnHYt8G2nYV18fBWX94rhJIqT4hjVc3DPp+TEUdFdd86\nC+dmAnCqvo35hen99k9iQv2I75cUH0V9U1/+qJKqJrq73WSmOFlQ4H8ES7fbzbaDlbS0DZzbdek5\nfYNpDpyoJzGhf2CNxUVppCVNTNTZqf65GQuzb4Zm9k3gBLJh1Xvlz3YCWD3M+ncBL01oiQzDS1Rk\nOBcszOKChVkkJjvZsPU4B4/XceREPUfL6zlysu8L3uGAlIRoUhNjSE2IJiUhmvjYyN6bMyYSZ3QE\nsTEROKOtW9gUihLV3NbJo68rWw9VkRQXxVduWMy8vORgF8sIkPCwMO6+dhG/eG5vsIsC1nyqbUAr\n8LE9JA9gLbDPj9e5EmtOVc9kmXKsoBT7RSQJ6FDVAdlf7RDvLwL39gwLHEl19eA9HVNFQ2MrAAtm\npRAXa7VtzzS0UXKqgZT4aJJjIkjOS2K7VpMUF9W7Py5YnE11dWO//dPzWsORmQmkOiMHJBduaGwl\nPd63tnVXt4ttWkVhThJnG9s50zh4Mux9hyuZkeKkq9s1aNlcHV0T8v/NyEiY8p+b0TL7Zmhm3wxt\nIhqcgWxYeU9YGfJSvz3ZOB8YcdLxVGqFT5W6TJV6AHxydSGftJv/LW2dHDlxlrLTjZRVNnKispHK\nMy2UVDRw1DXyfCyHw4pMmOCMJDk+mpTEGJLjo0lPjiUzJZbMVCczUp2kJsZMSDSp8fq/NLV08ML7\nJbz4QTEtbV0sKkzj23esJDVx8MSe420qfb4me10yMhL45T9cEexioKpPiMhGIAvY4vHUUeCrfryU\n5zBAsBpLd2IFsbgTeB5ARBKAC1X1DRGJB14B/lNV3xxtHaaaOTlJVJ1tJckjSW5mipNMr7mX58rI\nPdyLC9LYd6x2yOd7IgHGRoeR6IyioWVA23dI7Z3dVJ5pITk+mgPHrRxaJRXD95AdO9VAeJiDDo/A\nGSslk25X/+GMhmFMP4FsWJVjhb/tkUv/HiwAROQ64B5graqOOLFlqrTCp8oVhalSDxi8LjnJMeQk\nx3DB/L4fA90uF/VNHZxt6qCptZOm1g6aWrtoaeuktTKDD+AAAA6GSURBVL2blrZOWtq7aG6zljW2\ndlJ1pnXAWP0eUZFhzEhxMiMllhmpTrLs24xUJ3ExEaNqdI31/9LV7eLIibPsOlrLh3sraG3vJtEZ\nya1r57BuZS7d7Z1UV098EIOp/vmarEKhgaiqpUCp17IyX7cXESdWj9VXPBb/FHhKRMqA48At9vJ8\n4AFgAdbQv3OAH4vIj+3nb1DV7f7XYupIT44lfZySsMfHRjI7K5HS0yMHpZibm8T2w9X9ltU1tpOS\nMPhUu512ePSK2uGHLnorr26mraPvJ0pEeBjTfGS4YRgEtmG1B0gVkaXAQeBzwDdEZDHW8IrD9sTf\n/wAuV9Wp8YvDmPLCw8Ks4YB+9Ni43G6aWzupb+rgTGMbtfVt1NS3UX22lcq6VirrWjhR1TRgu9jo\nCDKTY0lPjiHFHn6YEh9NgjOKuNgI4mIiccZEEBURTkS4w69GmNvtpq2jm+a2TuqbOzhd20JlXQvl\n1c0cPF7X+yMiwRnJrWsLWLtiJtFR5peEMTWoagte0fzsgBVXD7LuPqxGFar6MPBwIMo4nWWlOul2\nuWlo7qC+ub03V1ZOWly/9SIjwslJi+vXUNITVlqAJGcUkp/Sm7eyodn3ni1vrR19c6/yZwT/woJh\nGKEhYA0rVXXZQ/yeAWKAx1R1o4j8BKgGfgz8G5ANbLXyNVKiqpcGqoyGEShhDgcJzigSnFHkZsYP\neN7tdnO2qYPKMy2ctm9Vda1UnW2lora5N+nmcBwOehtYkRHhOBzWMusnhQNw0+Vy093tptvlpq2j\ni6EizGcmx3LxkjSWzklD8pKnfdAOwzACb2Z6HDPT4+jscg174WhmRhxVda10ufpHBqxv6eBYRQMF\n2YlsOeRfzqmE2Ci6ul39GlQ9MlMmJlCFYRiTT0Czd6rqO8A8r2X3edw3jSjDwEpk3NMjNT8/pd9z\nLrebxuYO6praqWts52xjO42tnTS3dtHc1klLWxedXd20d7no6Oym2+UGHHR0Wg2nvsaTg+jIMMKj\nHYSHhRETHY4zOoK4mAgSnFH9hiEmx0dNyLwvwzAMf0VGDJ8pJjwsjJXzMzl84uyAABTV9a1U148c\nDAOsuV2HjtextCitNzdXQ3NH71wsz/czDMOAADesDMMYuzCHg6T4aJLio5md5ds2U2k+j2EYhi/m\nzExiy6HBI/sNJiU+mozkWA6fPMuC/FTiYyNZOT+z3zqJcVH9HkeYRpVhGB5Mw8owDMMwjCnH1/QW\ny4rSiYwI601K3BNlcCixURG9QwKXFKWNrZCGYUwp5lKLYRiGYRhT0sL8VPIy4odsLJ07L4PY6Ije\nRpUvZmf1Basw4dUNw/BkeqwMwzAMw5iSEuOieofvrZo/g8q6FgDiYiIHDOvzVVJ8NOcvmGHmnRqG\nMUDAGlYishZ4EIgCHlfV73o9Hwn8FlgD1AG3q+qhQJXPMAzDmJ7ECkP7lseiNOB7wK+Bp4H5WHkX\nb1HVAeHkROQvgB9ijQL5qar+csILbfgtLMxBtld49tEyjSrDMAYTkKGAIuIAfgPcDMwB1onIhV6r\n3QFEq2oBcD9W8kXDMAzDmFBqyeu5AVXAeuA+YK+qFgJ/An7gva2IJGAlEl4DLAO+KSK5gSu9YRiG\nESoCNcdqOVCnqvtUtRt4DLjJa53rgEfs+y8Dy0VkfC4tGYZhGIYPRGQNUKmqxfT/XnoEuHGQTdYB\nG1X1lJ3Y/nng+oAU1jAMwwgpgWpYzcQaRtHjhL1s0HVU1Q1UADkBKZ1hGIZhWG4HnrDve34vNQCR\n9rB1TzlAucfjwb7fDMMwjGkgUHOs3F6PfQmj40ujz5GRkTDyWpPEVKnLVKkHmLqEoqlSD5hadZkK\nRCQCq1dq2RCrOOzbcKbdd9d4M/tmaGbfDM3sm6GZfRM4geqxKgc8x5zn0r8Hq2edPOidk5WN1Wtl\nGIZhGIFwJdacqp4AFZ7fS0lAh6p2eG3j/f2Wx8DvN8MwDGMaCFTDag+QKiJL7WEUnwOeF5HFIjLP\nXudF4Av2/euAXaraHKDyGYZhGIbnMECwvpfutO/fiTV/ChFJEJFP2svfBi4UkZkikog1v+rFgJTW\nMAzDCCkBaVipqgu4G3gGKAbeVtWNWA2pG+zVHgXaReQE8H3g64Eom2EYhmGIiBOrx+pZj8U/BRaJ\nSBnwGawQ7AD52JFr7YAV9wEfAnuB/1ZV02NlGIYxDTncbu/pT4ZhGIZhGIZhGIY/AjUU0DAMwzAM\nwzAMY8oyDSvDMAzDMAzDMIwxMg0rwzAMwzAMwzCMMQpUHiu/iIgAb3ksSsOaNPxr4GlgPlY421s8\nwuJ6bv8XwA+xGo4/VdVfTnihBzGWeojIMuBXWKF7m4HvquozgSj3YMb6P7FfwwnsBz5U1TsmtsRD\nG4fPVxHwMDAXaAQuVdXTE13uQcox1nr8K/BZ++GHwD2q2j2hhR7CEHW5H6v8/wIIcJ6q7hhi+5A4\n5u2yjLouoXTcj/V/Yr9GSBzzoUJE1gIPAlHA46r63SAXaUKIyGPAJ4FKVV1iL0sEnmKQ85KIfAP4\nGuACvq2qz9nLlwCPAYnAO8Ddquqyowv/FlgD1AG3q+qhAFZxVEQkD/gd1rHTjhXo5Bdm3/Sm2dkM\nZGDlivuTqt5n9k0fEQkDNgKdqrrG7BuLiFQDbfbDJlVdEMx9E5I9VmrJ67kBVcB6rMhLe1W1EPgT\n8APvbUUkASuS0xqsJI/fFJFc7/UCYSz1ALqAr9jbXQv82v6gBMUY69LjfuBjBiaMDqhxqMvTwIOq\nmgOsBuoDUW5vYzxOlgK3AouBhUARcE3ACu9liLo8B+zGCl+9cahtQ+mYh7HVhRA67sdYjx4hccyH\nAvuH42+Am4E5wDoRuTC4pZowDwFXey37ewY5L9kXqv4GWAJcCvxcRGLsbX4B/KOqFgDJ9F0IugOI\ntpffjx2hcRJwA9+3j6cLgX8UkQWYfYOquoFr7HILsFpErsTsG0/3ACX0nU/NvrF0eXxXLbCXBW3f\nhGTDypOIrMG66lWMld/qEfupR4AbB9lkHbBRVU+pFQb3eawfAUHlbz1Udb+q7rbvH8FqJacHqLjD\nGsX/BBFZBMwDXsC6GhUS/K2LiKwCwlT1SQBVrVXV1kCVdyij+J+4sXqsY4FIrCvoIZGQ265LlaoW\nq+oB+/M/nJA85sH/uoTqcT+K/0nIHvNBtByoU9V9avUMPwbcFOQyTQhVfR8467V4qPPSdcBzqtqs\nquXAFuAKEUkFRFVfs9f7HX3763qP13oZWC4iceNfk/GlqidV9UP7fjWgQA5m3wCgqlX23XD6fp+a\nfQOISCbWxdD/pe98avbN0IK2b0K+YUX/hI0zsTPaq2oDEGl30XnKAco9Hp+wtws2f+vRS0QuAVpV\ntWTCS+kbv+piX6n9GfDNQBbSR/7+X+YBp0TkJRHZLyI/tbvng82veqjqXnv9cqwG1WZV3Rq44g7r\nduBxP9YP1WMe/K9LrxA77v2qR4gf88HSe1zaQulzGgiDnZeiGPr4zab/xZ6T9O2vHI/Xctvr5Uxk\n4cebiMzDGk6+GbNveonIfqAG2KOqf8bsmx4/Bf4Z8Byub/aNJVxEDovIPhH5kr0saPsmFH4QDklE\nIrBamU8NsYqDka+EBr2OY6mHiMzCGj7ylxNTOv+Msi53AptU9dggzwXNKOsSgTXk7BvACqxhdJ+f\nqDL6YjT1sIfKXQrMAnKBlSJy1USW0xc+1MUXQT/mYWx1CaXjfpT1uJMQPOaDzHs4ZHhQShE6hvre\nG+r4He64Dolj3lcikow1pPxLqto0yCrTdt+o6iKsH7lzROSCQVaZdvvGnpvpUtWNDH8+nXb7xrZS\nVecBnwa+JSIXDbJOwPZNqO+4K7HGSPZMvC/HmtSNiCQBHara4bVNOdYPxR559L9KGAyjqQcikga8\nCNzbMzwoBIymLucDd4nIMeB/gBtE5H8DVeBhjKYuJ7CupB21n3sRa4hPMI2mHlcB+1T1rD2U8TXg\n4kAVeBjedfFFKB7zMLq6hOJxP5p6hOoxH0zen9NcQuNzGiiDnZfaGfr49b4q7Lm/PF/LwcCrzSHL\nns/xPPCA3SMDZt/0o6r1wJ+xfiibfWPNx1tnn0+fw7oQ+gJm3wCgqmX23+NY350rCeK+CfWGlefw\nJrB22J32/TuxTk6ISIKIfNJe/jZwoYjMtCd9X29vF0x+10NE4oFXgP9U1TcDVtKR+V0XVf2yqs6y\nJ/59DXheVe8NWImHNprP14dAlohk20MA1wF7A1LaoY2mHseBNSLitIcJXg4cCEhph+ddF0+9V5sm\nwTEPo6hLiB73ftcjhI/5YNoDpIrIUvuY+xz2sTlNDHpewpqzcKP9+cnD+lH0jqrWASoinx5kmxeB\nL9j3rwN2qWrzhJZ+HIhIOPBH4HVV/b3HU2bfiGSISL59PxnrPH4As29Q1X9X1Vz7fHojsE1Ve77n\n7rRXu5NpuG9EJNmef9YzD+0qrHNt0PZNyDasxArTeyXwrMfinwKLRKQM+AxWaGmAfOwoHfbk9fuw\nfgDvxQpnGrSrgqOtB9YkxXOAH4vICft2boCKPagx1MVb0COEjeHz1Q78HfAucBCoxZrkGBRjqMcb\nWKG092CFwz7K0D+eA2KwuojIbSJyAuvk94qI9EwsDdljHkZfF0LsuB9DPbwF/ZgPNlV1AXcDzwDF\nwNv20J4pR0SeA9637soJEbmLIc5LqnoU+CWwD9gAfENVe0In3wv8yP68nQWetJc/CrTby78PfD0g\nFRu7S7Gir/6Nx/F9PWbfgBWF7UUROQnsAt5VK0iU2Tf9Oeg7n5p9Y/UevW9/bjYBj6rquwRx3zjc\n7mn/fWcYhmEYhmEYhjEmIdtjZRiGYRiGYRiGMVmYhpVhGIZhGIZhGMYYmYaVYRiGYRiGYRjGGJmG\nlWEYhmEYhmEYxhiZhpVhGIZhGIZhGMYYmYaVYRiGYRiGYRjGGJmGlWEYhmEYhmEYxhj9//qqx31M\nkSCvAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x7f0600ab3b70>"
]
}
],
"prompt_number": 147
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"This did not really converge."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"sns.distplot(special.expit(trace2.get_values('from_first_logit')).mean(axis=0), bins=20, kde=False)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 151,
"text": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f06056982b0>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEDCAYAAAAsr19QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD/VJREFUeJzt3X+MbHdZx/H37N27vffubltop1JpRQLy2KQ/ADVYIiAI\nJRICSI0mGkuqaWoUjCZKCEok0aAJGFOihtQQQWuMSioiyk/BFmx6QZEUEZ9SaNrbEtqtbe/Ozt7d\nbe+Mf8zAltLunDnzY+c7+34lTXbb8z3z7LNzP/fMmWe+bXS7XSRJ5VnY7wIkSfUY4JJUKANckgpl\ngEtSoQxwSSqUAS5JhVocdEBENIH3Aj8CbAJXZuYXJ12YJGlvVa7A3wPckpnnA5cCd022JElSFY29\nPsgTEU8Dvgg8PTNPT60qSdJAg26hPBu4G3h/RDwPuBV4U2ZuTrwySdKeBt1CWQSeD/wZcDFwGnjz\npIuSJA026Ar8HuCbmXkLQETcCPzyXgu63W630WiMqTxJOhBqheaeAZ6Zd0TEAxFxSWZ+CbgC+NKe\nVTQarK216tQyV5rNVfvQZy922Ytd9mJXs7laa93AMULgWuCGiDgC3AZcXeuRJEljNTDAM/M4cNkU\napEkDcFPYkpSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAEuSYUy\nwCWpUAa4JBXKAJekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANc\nkgplgEtSoQxwSSqUAS5JhTLAJalQi1UOiog1YKv/7UZmXjS5kiRJVVQKcODRzLxwopVIkobiLRRJ\nKlTVK/BDEXE7sAO8OzOvn2BNklSETqfDxkZr5PM0m6u11lUN8B/OzLsj4hnAxyPiy5n577UeUZLm\nxMZGi08cv4Ojx5Zrn+PUZptnPeuCWmsb3W53qAUR8U7gnsy87kkOGe6EklSokydP8snP3cXyypm1\nz9HeWOfKV1zaqLN24BV4RJwNLGXm/RFxHvCTwJv2WrO2NvpLitI1m6v2oc9e7LIXu+ahF+vrLTba\n23S+PaQ3vM32du21VW6hnA/8Q0Ss0LsH/p7M/HTtR5QkjcXAAM/MrwA/OIVaJElDcIxQkgplgEtS\noQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAEuSYUywCWpUAa4JBXK\nAJekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoQxw\nSSqUAS5JhTLAJalQi1UOiogF4Bbgkcx80WRLkiRVUfUK/Frg60B3grVIkoYwMMAj4jzgZ4A/ARoT\nr0iSVEmVK/B3Ab8NnJ5wLZKkIex5DzwiXgp0MvOWiPjRqidtNldHLmwe2Idd9mKXvdhVei+Wljqs\nLD/I8sqR2udYYKf22kFvYl4OvDwi7gTOAJ4SER/MzNfttWhtrVW7oHnRbK7ahz57scte7JqHXqyv\nt9hob9Nhq/Y5NtvbtdfuGeCZ+Q7gHQAR8QLgXYPCW5I0HcPMgTdwCkWSZkalOXCAzLwVePEEa5Ek\nDcFPYkpSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAEuSYUywCWp\nUAa4JBXKAJekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgpl\ngEtSoQxwSSqUAS5JhTLAJalQi4MOiIgGcBxoAg3g7zPztyZdmCRpbwOvwDOzC7w6M58JBPDCiHjl\nxCuTJO2p0i2UzLy//+Wh/pruxCqSJFVS+R54RHwZeAC4LTM/PrmSJElVNLrd6hfTEXEWcCPw1sw8\n/iSHeXUu6UA4efIkn/zcXSyvnFn7HO2Nda58xaWNOmsHvon5WJl5MiI+Brya3hubT2htrVWnlrnS\nbK7ahz57scte7JqHXqyvt9hob9Nhq/Y5NtvbtdcOvIUSEc2IeEb/67OB1wL/U/sRJUljUeUK/Gzg\nAxFxDvAocENm/s1ky5IkDTIwwDPzq8BlU6hFkjQEP4kpSYUywCWpUAa4JBXKAJekQhngklQoA1yS\nCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoQxwSSqUAS5JhTLAJalQ\nBrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkq1OIkTvrZ4/9Fp3G49vpHdrZ58Qsu5fDh+ueQpHk3\nkQA/9cgCh1eeUnv91tb/0e12x1iRJM0fb6FIUqEMcEkq1MBbKBFxIfAXQADbwB9n5p9OujBJ0t6q\nXIF3gbdn5oXA5cBbIuKiyZYlSRpkYIBn5j2Z+dn+12tAAudPujBJ0t6GugceEc8BngMcn0w5kqSq\nKo8RRsTZwN8C12Rme69jV1ePcHj5SO2iGqeP0GyusrS0VPscs6DZXN3vEmaGvdhlL3aV3oulpQ4r\nyw+yvFI/7xbYqb22UoBHxBHgg8B1mfmxQce3Wlsc7m7VLqrd3mJtrVV0gDebq6yttfa7jJlgL3bZ\ni13z0Iv19RYb7W061M+7zfZ27bUDb6FExCHg74CPZub7aj+SJGmsqlyBvwR4NfC8iPjV/r97Y2b+\n4+TKkiQNMjDAM/NT+IEfSZo5BrMkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAEuSYUywCWpUAa4\nJBVqIv9TY0matE6nw8bG6JthrayssrBQ5rWsAS6pSBsbLT5x/A6OHluufY5Tm21e8YJnc+aZZ42x\nsukxwCUV6+ixZY4tl72n+CjKfN0gSTLAJalUBrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAEu\nSYUywCWpUAa4JBXKAJekQrmZlYrg1qHSdzPAVQS3DpW+mwGuYhz0rUOlx/O1pCQVauAVeETcAFwB\n3JeZl0y+JElSFVWuwK8HXjXpQiRJwxkY4Jl5M/DwFGqRJA3BNzGfxKhja0tLHdbXW46taeY4krmr\n0+nQaq3XXt9qrdPtdMdY0XAM8Ccx6tjayvKDrK096NiaZo4jmbu2Tm1y0xce4uynnlNr/YMP3Mex\n5TNZXj1zzJVVM5EAX109wuHlI7XXN04fodlcZWlpaYxVDWdpqUOz+VSWV0b7xZx77ipnneXoW7M5\nWg+WljqsLD/I8kr959UCOzPx+xi1F6Max3O7vXHGWHo5Si/G8Zw41V5idXWZc5vNWusb7LCwcJjV\nEZ+XdU0kwFutLQ53t2qvb7e3WFtr7WuAr6+32Ghv06Hez7G6coSN9jYPPNBiZ6fsl5mjajZXWVsb\n7SX7qL8PgM0Z+H2MoxejmpVejtqLcfwc7fYOCwunOeNovXOMuh56vaxrYPcj4kbg5t6XcSIirq79\naJKksRl4BZ6Zr59GIZKk4Rzs1/aSVDADXJIKNbdjhKPOuo5jvnPUGdNOpwMw8qztPMzrar50Oh1O\nnjzJ+vr+/hkt3dwG+KizruOY7xzHjOnCwmLt9TA/87qaLxsbLT5+6wk63foRtN8z2LNgbgMcRtt+\ndLO9MZYajhw9NlINCwuH3EJVc+nYsWU61B8VHtef0ZL5ulqSCmWAS1KhDHBJKpQBLkmFmsk3MTud\nDuvr6ywtHa59DkeMekYdZfzWOaD+OOPSUodOZ/RxSEnfaSYDfOvUJp/6j6+zMsJ4kCNGPaOOMsLo\n44wLjRO88OILHWWUxmwmAxzg6NHR/g/kjhjtGmWUEUYfZxxlu0xJT87XtJJUKANckgplgEtSoQxw\nSSqUAS5JhZrZKRTNj3HMos/CXP+oWxQDLC4+ysMPt0aaiZ+F7YFH/Z22Wut0u11ojLGoA8gA18Sd\nOtXmpi98c+RZ9P2e6x91i2KArc2H2do6XbsXs7I98Di2Sm6edx5nHD1jzJUdLAa4pmIcs+izYJQt\nigEa7EDj9FxsETzqVskanffAJalQBrgkFcoAl6RCGeCSVCjfxNSBMZbRtxkYZZyHkUyNhwGuA2Mc\no2/7Pco4ru2B9/vn0HgY4DpQ5mH0bV5GMjU674FLUqEGXoFHxEuB9wBLwF9n5u9MvCpJ0kB7XoFH\nRAP4c+BK4NnAyyPi8mkUJkna26BbKM8FHsrM/87M08ANwOsnX5YkaZBBAf504J7HfH+i/+8kSfts\n0D3wxw+LHqpy0kd3Nnnk5P31KgIeObVOt7HIocVKD/eEtk61WVhYZLNdb/vPUdcvsLPvNczKObY2\nN9naOl3+zzGOGkbsxSz0YRzn2DrVZnERTnfq7yc7Kz/HqDWc2mzXXjsowO8FLnjM9xfwnVfkT6Rx\n1c9eUbug+XLpfhcgaY4NCvDbgKdGxKXAV4CfB35j4lVJkgba8x54ZnaAa4APAF8D/jUzb5lGYZKk\nvTW6XfdEkKQS+UlMSSqUAS5JhTLAJalQtXYjHLQ/SkQcBt4LvAh4CPi5zPzfEWudSRV68evAG+n1\n+qvA1Zk5aBSzSFX3zYmIVwEfBl6emZ+aYolTU6UXEfEG4Hf7x3wkM6+ZbpXTUeHPyNPofcr7e4AG\n8PbM/MDUC52wiLgBuAK4LzMveYL/PnRuDn0FXnF/lF8AzsjMZ9J7gl437OOUoGIvbgd+KDO/H/g0\n8K6pFjklVffNiYijwFuAz0y3wump0ouIuAx4G/BjmXkB8PtTL3QKKj4v3gzc1A+11wLXT7fKqbke\neNUe/33o3KxzC6XK/iivAd7f//rDwHMjYrnGY826gb3IzH/JzJP9bz/D/G5FUHXfnLcB7wY26V1t\nzaMqvbgWuC4zvwGQmXdNucZpqdKLDrDS/3qF3gcI505m3gw8vMchQ+dmnQCvsj/Kt4/JzC7wDeB7\nazzWrBt2r5irgX+aaEX7Z2AvIuIi4JLHvDye1xnWKs+LHwCeGRGf7//zyqlVN11VevEHwE9ExL3A\nTfT+cjuIhs7NOgFeZ3+UeX2ztHIvIuIa4BnAH020ov1TpRfXAb/5mO/n9Qq8Si8OA88CLqf30vl9\nEbHyBMeVrkovrgQ+kZlPB14G/FX/fvBBNzA36wRrlf1R7gUuhG/fAzuf3t8m86bSXjER8Rp6VxWv\n67+MnEd79iIiDgHPBz4aEXcCLwFuiIgfn2aRU1LleXEC+FBmPtp/o+oueoE+b6r04ip6n/YmM78A\nPErvYuegGTo360yhPOH+KBFxMbCTmbcDHwLeAPwzvfs6X8zM+ltuza6BvYiIFwN/CLwsM+tvWTb7\nqjwvzv3WwRHxEeCdmflv+1HshFXpxQeBnwbeGxEXAN8H3LlfBU/Qk/XiEmC734u76b2595/922zn\n0PsLbu49rg9D5+bQV+B77I/yBuB1/cP+EtiOiBPA24FfG/ZxSlCxF79H72/Sz0fEiYi4aV+KnbCK\nvTgQKvbiRuChiPga8DHgVzJzfT/qnaQ9enEVu714K7174Nk/7pcyc3s/6p2kiLgRuLn3ZZyIiF+k\n14ef6h8ydG66F4okFWpe31yUpLlngEtSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCGeCSVKj/B1P6\ntV2i2jllAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x7f0605829978>"
]
}
],
"prompt_number": 151
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"(is_from_true_dist == (trace2.get_values('from_first_logit').mean(axis=0) > 0)).mean()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 150,
"text": [
"0.67000000000000004"
]
}
],
"prompt_number": 150
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"sns.distplot(trace2.get_values(\"from_first_logit\")[:, 0])"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 155,
"text": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f05fd578588>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEDCAYAAADQunSaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4XPd52PvvObOv2DcCXMDtkBRJUTu1WYtl2XFsxUtc\nx2695F47t4njpHW3PG3a5Emb9Lo390mdJrmpHNeb3F7HtizLm2Q5kihRIkWJ+4YDkABB7BisswEz\nmDmnfwyGBEEQMwBmx/t5Hj6CzpyZeTGY885vfsv7U0zTRAghRGVSix2AEEKI/JEkL4QQFUySvBBC\nVDBJ8kIIUcEkyQshRAWTJC+EEBXMutyNmqZtBL4OaEAM+Atd1/960Tm/C/wpEJw/9Ce6rn81D7EK\nIYRYoWWTPGACf6zr+mFN0xqAE5qmvazr+sVF53xZ1/U/y1uUQgghVmXZ7hpd1/t1XT88/3MA0IGW\nJU5V8hCbEEKINcq6T17TtJ3ATuCtJW7+oqZpPZqmPatpWlvOohNCCLEmWSV5TdOqge8Cn9d1PbLo\n5u8Bm4FtwDFSffhCCCFKgJKpdo2maU7gBeAbuq5/I8O5XqBP1/Wa5c4zTdNUFOnhEUKIFVpx4sw0\nu8YC/D3wwsIEr2naPiCm63qnpmk7gEu6rpvAZ4EzGaNUFAKB0EpjLbiGBl/Jx1kOMYLEmWsSZ26V\nU5wrlWl2zSPAB4A7NE37wvyxLwIPAgHgvwC/DXxc0zSD1MDs51YchRBCiLxYNsnruv4yS/fbP7fg\nnC8BX8pxXEIIIXJAVrwKIUQFkyQvhBAVTJK8EEJUMEnyQghRwSTJCyFEBZMkL4QQFUySvBBCVDBJ\n8kIIUcEkyQshRAWTJC+EEBVMkrwQQlSwTAXKhKhohmEQDl+vPmi3GwSDIbxeH6oqbSBR/iTJi3Ut\nHA7x0luXcLk9AHg9EwQCE7znvu34/VVFjk6ItZMkL9Y9l9uD25Oq0+3xOglHYkWOSIjcke+jQghR\nwSTJCyFEBZMkL4QQFUySvBBCVDBJ8kIIUcEkyQshRAWTJC+EEBVMkrwQQlQwSfJCCFHBJMkLIUQF\nkyQvhBAVTJK8EEJUMClQJkQWFpckTpOSxKLUSZIXIguLSxIDzEQjUpJYlDxJ8kJkaWFJYiHKhXzP\nFEKICiZJXgghKpgkeSGEqGCS5IUQooJJkhdCiAomSV4IISqYJHkhhKhgy86T1zRtI/B1QANiwF/o\nuv7Xi86xAV8DHgYmgU/qut6Rn3CFEEKsRKaWvAn8sa7rG4H7gT/QNG33onM+BTh0XW8H/gj4Su7D\nFEIIsRrLJnld1/t1XT88/3MA0IGWRac9BXxz/uefAAc0TfMgRJkyDINQKEgwOH3tXygUxDTMYocm\nxIplXdZA07SdwE7grUU3tQL9ALqum5qmDQIbgK5cBSlEIc3ORDl0YpLq2rprxybGRnB7/Hh8/iJG\nJsTKZZXkNU2rBr4LfF7X9UiG07MazG1oKI8aIOUQZznECKUZp91u4PVM4PE6rx3zeOz4fB7qGxqu\nHVOIo6o2fAvOU4lTX++jqqo4v1cpvp5LkTiLK2OS1zTNCTwHfEXX9ReXOGUA2Aic0TRNIdWdM5jp\ncQOBm8u2lpqGBl/Jx1kOMULpxhkMhghHYhjMAuDzOolE4qhqEodr9tp5Sx2LRmKMjYWIxws/Sa1U\nX8/FJM7cWs0H0bLvTk3TLMDfAy/ouv6NBcf3zXffADwPfGb+56eAU1m09oUQQhRAppb8I8AHgDs0\nTfvC/LEvAg8CY8CXgW8Bj2ma1jd/7BN5ilUIIcQKLZvkdV1/maVb+88tOCdBahqlEEKIEiMrXoVY\nQiJpcrZ7nOHxaLFDEWJNZGcoIRYZCyY4d3WWaNzAalF4//2bix2SEKsmLXkhFugbCXHsUpSZuMHm\nZh+JpMmhk4MkkrIQSpQnSfJCLHCqMwDAfTu9PHJgA7s31zAdiXPu6myGewpRmiTJCzEvFI1zdSRE\njcdCvd8GwJ1aA3V+B4OTc0RjySJHKMTKSZIXYl5n3xQAmxrs145ZVIXtbdUAjEzNFSUuIdZCkrwQ\nQDJpcKk/iNNuobn6xvkIGxu9AAxLkhdlSJK8EMCV4RCxuSR72muxqMoNt7mdVqrcKhOhBLE56bIR\n5UWSvBDAlaFU3ZI97XVL3t5UZcMEBgJSsUOUF0nyYt0zDJORyShVHjtVXseS5zTNd+H0jYYLGZoQ\nayZJXqx746E4iaRJS537lud4nSpuh8pAIEzSMAoYnRBrI0lerHujkzEAWupvvaGZoig0VdtIJE1G\nJmYKFZoQayZJXqx7I1MxFAWaalzLnlfnS3XZjE3LwihRPiTJi3VtJpZkMjRHfZUTu82y7LlV7lSS\nH5ckL8qIJHmxrl0eDGECLXWZ95532hScdgvjQUnyonxIkhfrmt4fBKB5mUHXNEVRqKtyEp1NMBtP\n5Ds0IXJCkrxY1zr7Q1hUhYZqZ+aTgTp/6rzx6Vg+wxIiZyTJi3UrFI0zMjlLnd+GRc3uUqirmk/y\n0mUjyoQkebFuXR5MddXU+e0Zzryuzp9aLCWDr6JcSJIX69blgWlgZUne5bDicsjgqygfkuTFunWp\nfxoFqPNln+QVRaHWnx58lWJlovRJkhfrUiJp0DMUpLnWhc26sssgPfg6GZbSw6L0SZIX61LfaJh4\nwqC9OfP8+MXSg69TkuRFGZAkL9alS/P98VuavSu+b60vNfg6HZEkL0qfJHmxLqUHXdtbVt6Sdzut\nWC0KoRlZECVKnyR5sS5dGpjG57ZR71+6fvxyFEWhymMnNJPAMMw8RCdE7kiSF+vORHCWiWCM7a1V\nKIqS+Q5L8HvsGAZMhuM5jk6I3JIkL9addH/89taqVT9GegepkUmZLy9KmyR5se6kk/y2tSR5T2pu\n/eiUJHlR2iTJi3Xn8kAQi6qwpdm36sfwzyd5acmLUidJXqwr8bkkV0dCbG72ZdwkZDl+tw2Qlrwo\nfZLkxbpyZThE0jDX1B8PYLGoeJwWRqUlL0qcJHmxruRi0DXN57ISmkkQmZVFUaJ0SZIX68ql/rUP\nuqb55vd8HR6PrvmxhMgXSfJi3TBNk0sD09T5ndT4Vr4IajGfK5XkhyTJixJmzXSCpmnPAE8CI7qu\n71vi9t8F/hQIzh/6E13Xv5rTKIXIgeHxCOGZOXa2eQkGUy36UCiIucpVq+mW/NBEJGcxCpFrGZM8\n8DTwX4Gv3+J2E/iyrut/lrOohMiSYRiEw6Elb/N6fagLtvU73z167T6Hzw4BMDE2gtvjx+Pzr/i5\n0y156a4RpSxjktd1/TVN07ZnOG11a8OFWKNwOMRLb13C5b6x0NhMNMJ77tuO33+97/3SYOrDoLWx\nGrcnVS44Ggmv+rkdNhW3wyLdNaKkZdOSz8YXNU37HHAS+D1d1/tz9LhCZORye3B7ll/YZJomnX1B\n7FaV2lUUJVuKoig0VDvpD0QxDBNVlbaOKD25GHj9HrAZ2AYc49bdOkIUzdB4lKnIHE01jlUXJVtK\nnd9O0jCZDMVy9phC5NKaW/K6ro+mf9Y07a+Af5PN/RoaVr+kvJDKIc5yiBHyE6fdbuD1TODxOm84\nrhKnvt5HVVXqOY9cTL1NNzV58C04dyZiR1VtNxzzeG4+ttR5KnE2Nlk50TVJPE+/33LW8989H8ol\nzpVaVZLXNG0fENN1vVPTtB3AJV3XTeCzwJlsHiMQWHqwrJQ0NPhKPs5yiBHyF2cwGCIciWFw48rT\naCTG2FiIeDz1ZfWtc6mB1iq3hVD4+rmRSBxVTeJwpY75vM6bji11Xvo53LZUeYOuKxO0VN34QZNP\n6/3vnmvlFOdKZTOF8lngIFCvaVof8EfAbiAA/Bfgt4GPa5pmADrwuRVHIUQezSUMOq5O0lzjxO1Y\nfb2apdTN9+8HpmZy+rhC5Eo2s2s+kuH2LwFfyllEQuTYpYFp4nMG2saVT5NcjmEYOC2pTUMGA8Fr\nc+/h5umbQhRLrmbXCFGyzvdMAKBt9DMRzN10x9mZKCc7JlAVuDIcvjb3fqnpm0IUiyR5UdFM0+TM\n5TGsFoVtG7w5TfKQmr7pc0Mklsg4jVOIYpDvk6Ki9Y6E6A9E2L+tHsca6scvx+u2EZ8ziM8l8/L4\nQqyFJHlR0V47nepCedftLXl7Dq8rNcMmNCMlh0XpkSQvKlZsLslbF4ap8TnY216Xt+fxze8SFY5K\nkhelR/rkRUm6VeGxlcxaOX15iplYkifu2pjXkgM+d2q/11A0nrfnEGK1JMkXyVJJzDAMgJuS2Hqc\njrdU4bGVzlo5enEMBXh4f/66agB86e4aacmLEiRJvkiWSmITYyOoqpXq2utdC+t5Ot7iwmOGYRAK\nBW8451b14APTMbqHwuzZUkN9tSuvcXrT3TXSJy9KkCT5IlqcxKKRMKpqkal4tzA7E+XQickbPgSX\nqgc/lzB4p3MKRYEPv2tr3uOyWlRcDou05EVJkiQvyorT5b7pg3Gx4/ookdkkT9zZzLYNhfkG5HXZ\nGZuewVjlLlNC5Mv66ugVFc00TS72TtLZN02V28r77slvX/xCPrcN04TIrLTmRWmRlryoCKFonKPn\nRxgaj2K3qdyj1WC1FK4N410w+JrnIQAhVkSSvChb8bkkvYE4gxNzTEYmAWit93D/3mZIFrYqZDrJ\nR2bmqHblZ2WtEKshSV6UnZlYgtOXxugeDJJIpvrAm+vcbG+tor3Fh6IoRCOFjenGGTaS5EXpkCQv\nysrwZJyzp68Qm0vicVrZ2mRhU72TDRuaixpXuiWfSvKF2zxEiEwkyYuyYJomHQOzdI/EUVWFe3Y1\nom2uZiIwXBILxdwOK4oic+VF6ZEkLwpqNeUKTNPknY4A3SNxvE6Vx+/aRLXPke9QV0RVFTxOmyR5\nUXIkyYuCWmm5AtM0Oa4HuNg7idepcr/mK7kEn+Z12RieiJKUufKihEiSFwW3eKXvci5cmeTClUmq\nPHbu3mrHYSt+18ytpPvlo7NSV16UjtK9YsS61xeY4bgewO2w8sTdbSWd4OH6DJtILFHkSIS4Tlry\nIm8W9r/b7QbBYOiWBcUW6+wP8rY+ic2q8u672/C4bMzc3JVfUryu1OUUkZa8KCGS5EXeLOx/93om\nCEdiSxYUW+xS/zR/97PLADx6xwZqSrQPfjGPdNeIEiRJXuRVuv/d43ViMLtkQbGFugeD/MX3TpNI\nGhzcXUtLnWfZ80tJuq58ZFa6a0TpkCQvSsaR88N84+cdJBIG/+Q97czMxood0oq4HFZURSESk5a8\nKB2S5EXRxRMGP3j9Kq+fDeByWPjCh/ezpcHG4bNDxQ5tRRRFweOySneNKCmS5EXRJJMGXf3TnOoa\nI54waK5188WP7qOlzkMwOF3s8FbF67IxFJ0jNieJXpQGSfKi4BJJk7Pd43T0TjITS2K1KHzgYCsf\nfGg7Nmt5F/dKz5WfDMVpqMtwshAFIEleFIxpmgyMx+kYjBGbM7FZVW5rr6W90cYTdzaXfYKH60l+\nPBgvciRCpEiSFwURn0vy8okBBgKzqArs21bHbVtqsNssRCMlPgF+BdILoiZC5TVoLCqXJHmRd9HZ\nBD87epWxqRnqfRb2b/HQ1lpf7LDyIt2Sn5CWvCgRkuRFXsXiSV45c5XwzBw72qrY1mBgtZR/t8yt\nXEvy0pIXJaK0i4GIspY0TI52TBKemeNOrZGDtzWhKkqxw8orp92CqsJ4SFryojRIkhd58/yRfgLT\ncTY2ejm4txmlwhM8zM+Vd1iZCEpLXpQGSfIiL052Bjh0ehSfy8pD+1vWRYJP8zgtRGNJZqQapSgB\nkuRFzs3EEjzzUicWVeH+PTXYrOvrbeZ2psYcxqZnixyJEJLkRR48e6ibyVCM99zVjH9+SuF64nGm\n5jOMTc8UORIhsphdo2naM8CTwIiu6/uWuN0GfA14GJgEPqnrekeuAxXl4fLgNC+f6Kelzs0TdzZz\n9MJIsUMqOI9jviU/JS15UXzZTKF8GvivwNdvcfunAIeu6+2apn0Q+Arw3hzFJ8pIImnwzZ/rmMCn\n36thtazPL4rSXXOdYRg31SEyDAPgpo3bl9vMXaxexiSv6/prmqZtX+aUp0h9EAD8BPg7TdM8uq5H\nchGgKB8vvd1HfyDMw/tb0DbVlG2RsbXyXEvy0l0TCt28cfvE2AiqaqW69npxn+U2cxdrk4vFUK1A\nP4Cu66amaYPABqArB48tysTo1Aw/OtyD323jY48t1yaofHarit2qSkt+3uKN26ORMKpqyXozd7E2\n+VjxKt+31hnTNPn2izrxhMFn37/r2qrP9UpRFOr8dsamZzBNsySnjy7cf3ch6TKpPLlI8gPARuCM\npmkK0AIMZrpTQ0N5fIrnK0673cDrmcDjdV47NhOxo6o2fAuOqcSpr/dRVXXrOIr9Wr56op/zPRPs\n21bDw7c3oCipPlebzcDjtuOd/318XmfWv2O2r89Sx9b6mB5Pds+z3HM313kYmhjH7XXidduzfCVX\nZi1/9+npaX5xtA/3gm6UaDTCU4/uWfa9tprn8XocOXmf51uxr6N8WVWS1zRtHxDTdb0TeB74DPBT\nUv3zp7Lpjw8ESr/yYEODL29xBoMhwpEYBte/0kcicVQ1icN1/Vg0EmNsLEQ8vnTrKp8xZtPaC8/M\n8fQPz2CzKtS7Evzo1eu9dOlNu03Fgc/rJBSezfp3zPb1WerYWh7T53Vm/TzLPbfXmXrejstjbG7O\nffJY6989GAxhmFYMrn8AGeby77XVsNvJyfs83/J5HeXSaj6IsplC+SxwEKjXNK0P+CNgNzAGfBn4\nFvDY/G1jwCdWHIUoSeHwzYNmiwfIvvfKJULROT54fysOq3lT3+t6VetzAKnB13wkeSGylc3smo9k\nuD1BahqlqECLB80WunBlgtfPDNHW4OXR/U0cuTBc4OhKV50/1UIOyFx5UWRSargEJJIGx/UAQ4Ew\nM3GTxpo4j93VWtIVG6Ozc3ztpxexqAq/+f5dWCxmsUMqKemW/LjMsBFFJsPoJeBi7yT61SnCswaK\nAgNjES5cmSx2WMt65qVOJkMxPvjAFtpb/MUOp+TUzrfkZa68KDZpyRdZLJ7kXPcEdpvKI3s8KKi8\ndjHMqa4x2ho82EuwMX+ia4Kj50dob/Hzqw9sXvPjGYZBKBS84VgoFMQ0yvfbgdthxeWwEpCWvCgy\nSfJFdq5ngrmEwV1aAzZLDFVVOXhbE6+eHOSNM8M8sr+m2CHeIBiZ4/kjwzhsFj73gd1YcjCnenYm\nyqETkzesgEzPzPH4yvdbQmO1i8HxCIZpFrXrbalZUsX6EDVNE9Ms3w/vciRJvohmYkk6eidxO61o\nm6qZGk8V89rU5KO9xUfPUIjhidJpCcYTSd68OEE8YfDbH9pLS50n852y5HS5K25mTmONi96RENPh\nODXzffTFsNQsqUJ/iAamZrg8MM2VoRCmaVLjtbIlakPbWF2Si8UqiST5Iro8FCFpmNy+re6mYl63\ntdfSMxSiZzhapOhuZJomb5wZJjyT5LEDTdyzq7HYIZW8xhoXAKOT0aImeVi6tEAhGKbJmZ4gnf2p\n53M5LGCajE7PMTo9yuBYlIf3txQklvVKknwRDU3MoqoKW5YYuKz1O6nzOxiaiDEdieMvcq/Fue4J\n+kbDNFTZ+cDB1uIGUyYaqtNJfgZtU2l1uxXCXMLg6R9fpLM/jN9t4949TTTXuZkIDBNLKFwYmKN/\nNMzPj/by4G3r7/UpFJldUySToTjTkQTNta5b7py0vS214OhYx3ghQ7vJ4FiEU11juJ1W7tlZRTQS\nIhicvuFfuQ+U5kNjOslPrb8ZNoZp8vSPz3P0/Ch1fjvvO7iZDfWea2MTLrvKu+9qS3VThuO8rU9i\nSF99XkhLvkguXE2V4W1t8N7ynPYWP293jPJWxzgfebQ4ha4iswlePz2Ooig8cmADxKc4dOLqDYOk\nUBkDpbmW7q4JrMMk/5M3r3BcD7BrcxW7W9047ZabzlFVhXt3NxKZmaM/EOGVUyN8+JHqIkRb2aQl\nXyQXelNJvq3h1oOXdpuFtnoXY9MxOvumChXaNXMJg6MXJ4nNJbl3d+O17of0IOnCf05X7gZhK0W1\nz4HVojI6uT6SfHqDkDdO9/Lc6z3U+Ox89smNqMu0TRRF4YF9zTjtKj99a4CeoeCtTxarIkm+COYS\nSbr6Q/hcVnwZKhRuaXIDcOT86rbRS194i/+ld+e5FdM0+f5rV5kMz7Gt1c+OjbKZw0qpikJDtbMk\nk3zSMBmajPPqyQGeP9zDqa4xIrOJNT1mOBziR6918s1fdGNRFe7aXsXhE93EYsvPEHPardyzswbD\ngG++0CHdNjkm3TVF0HF1injCYEuTK+O5DVV2fC4rJzoD/JMnd654S71siowt5dDpQd7qGKfGa+O+\nPU1lN82tVBZYNVa7GBqPEp6ZK5k6+/G5JG90RAjPzm/Dp8CZy+OcuQzRmTk+9HD7DX/vbGvMJ5IG\np3pnSSRNHtzXzIamKmYiJjMzyYz3bapxcNeOWo53TfD2xVHu29O0+l9Q3ECSfBGcuZQaSG2udWY4\nM/V19vZtNRw+F6Dj6iR72+sy3mex5YqMLeXy4DTf+UUnHqeFg7trynKv1lJZYNWwoF++FJK8YZi8\nemqQ8KxBa62dO3a14HPbuToS4mTnCIfOTdIzOsvdO6pRVWVF2/L97K1BJkNzbN3gZ1vryr/5/cq9\nGzh1eZIfvtbNXVpDWb7vSpG8ikVwoXcCh02l3p/dZhJ3bE9NL3unYzRvMaW7dQaGx/irH5zBME1+\n/cEm3EsMmJWLxWMHxRg3aKpJdbeVQpeNaZq8dWGE4fEojVVWDrS7qfU7sVlVtrVWcf9OD9UeC1dH\nZziqT+Nwem74Brick50BXj41gtdlWXUrvL7KwaMHWhmdmuG10xn3HRJZkiRfYNHZOYbGo2xq9KAu\nNyK1QHuzlyqvneN6gERy+b701QqHQ7x4tIuv/LCD6cgct2320Tc4krE/VSzv+lz54i9qGxyL0tU/\nTY3PwYEtrpu64Bw2lft3+mit9zA4FuXQqUGMLLq3+kfDPP2TC9itKgd31d5ySvBy0t1rj+6vxW5V\nef5wNxOTkxnHjkRmkuQLrGcoVUNkc1P2rUpVVbhbayQym6CjN3/VKTuHEoxNx9nU5OUOrUVmzOTA\ntVWvRZ5GaZomp7oCADy0vxmrZekGhsWi8OgdG2ipc9MfiPCWPrlswyIUjfOXPzhDLJ7kk49vodq7\nui6pVPfaVU5fHmNLk4tgNMG3XuhYcmcysTKS5Ause36K2EqSPHCtjMCxi/npsjlyIcDloSjVXjsP\n7mspu4HWUlVf5URRIFDk7prB8VnGgzG2NPuo8S0/FmSxqDx6RytNNS4Gxmb56x91EozEbzpvaDzC\nn377OGPTs3zwgS0c2L62Vavp7rW925tQFOgdm5NiZjkgSb7AegZXl+S3t1VR43NwvDNAfC7zbIWV\n6Oyb4vuv9WG3Kjx2Z+uqvm6LpVktKnV+Z1Fb8oZpcr43hALcvj27gXubVeXdd7exscFFz3CE//jN\nt3n15ADhmTkmQzFeOz3If/rWcUYnZ3j/wc382sPtOYvX67KxqcnHdCRB14C05NdKZtcUkGmadA9O\nU+d34Hev7Gutqijcf1szPzvay6lLY9y7OzdTzCaCs/zND89imiYHd9dlnLcvVq6h2sXF3tSiMoet\n8APZZy5PEYwm2LbBT5U3+0JpVovKvVo1+9pr+Pnbg3zrRZ1v/0In3bi2WlQ+/4E93L+3Oecx79lS\nQ+9wiEOnR7l7z8acP/56Ikm+gManZwlG57h7lRUc79+bSvJvnhvOSZKPzSX5bz84SzA6x0cf3ohC\nbr8hiJSmWjcXeycZmYiyqanwm3q/fi7Vxbdv28qn3yqKwpN3t/D43Vs4dnGUE50B3E4rezbXcPuO\n+muzh3KtodpFrc/G+d5pLl0dobH6ehdTtvP2RYok+QJK98dvXeV2ea31HrY0+zjXPcF0OLaiVtli\nScPkb587R+9IiIf3t/DQ3gbeOCcbcedDS10qEQ6NFz7JD41HuDwYprHajt+z+m9ptX4n77tvE++7\nb1MOo1vepjorE6E5vv/aFfa3p+bdr2TevkiRj8MC6p7vj9+6YfWLcR7c14Jhmhy9sLoyB5DqNvru\nq72cvjzObe21fOq9mgy05tH1JB8p+HOn55u3N5ffTKmmais2i8LV0VkcLi9ujy/refviOknyBdQ9\nGERVFDY3r741d+/uRiyqwhtnV9/qPnclxLGOcdpbfHzhw3tlZWGebZjfQWtovLBz5ecSBm+cHcbj\ntLKhLvPq6mzdqh5SrstGWFSFtjo7s/Ek/aPlv1NYsUh3TYEkkga9IyHaGjw4bBZiq5xs4XPbuX17\nPSc6A1zsnaShYWUfGBeuTKD3h2mocvD7H7sdp13eArm2uG6OxTSxW1UGC9ySP9kVIDwzx2O3N2HJ\ncuFdNpaqhwT5KRuxscFBz2iMS/3Ta2ocrWdyhRdIfyDMXMJYU1dN2q/ev5kTnQGee72bh+/KfuZB\nz2CQdzoCOO0q//SDO/DLTJq8WKpujsuuMDIRxTDMrFc6r9Xr8101B/fU09Wf20V0S9VDyseWgn6X\nhfoqJwNjESIzc0in4srJ9/QCSffHt+cgybe3+DmwvZ6u/mlOdQayus+V4RCHzw5hs6o8tLeOOn9x\n9xytdIvr5lR57SSSJmPThZkvPx2Jc6F3kq0b/DTV5K6rphjSZa4vDUwXOZLyJEm+QHquDbrmZlbA\nrz2UWnzynRc7Mq4K7AvM8PrpQaxqasu1ak/xqyGuNz5X6kvzYIH65d/pGMU0ydl6imLa0uzHalG4\nPBCUFbCrIEm+QLqHgrgclmszLdZqc7OPu3Y2oPdO8vqZoSXPMU2TV0+P8FbHJFaLyhP3tF2rpSIK\ny+9OJfl8z7BJD4oeOTeIAuxqdZb9/rs2q8qmJh/hmTnGgjeXVxDLkyRfAOnKk1ua/dc2Ms6Fjz66\nDZ/bxjdf6ODYxRunVMbmkvyPn13kuTf6cdhU3nNP27WKiKLwfNeSfH5b8uFwiB+/3kn3UJg6v51z\nPeO88k5LK+PvAAAU4UlEQVTm3ZlK3bbWVDdn70jxSzaXGxl4LYB05clcDLou1Fzr5k9+6wH+7f93\nmKefv0D3YJAtzT6GxqO8Ml9nZGODm33tPuqrJMEXk9dpRVULM1d+LJJqSGxtq8bt8eVlQLTQmmvd\neJxW+sdmiOW4dlOlk5Z8AXQPpgaMVrvSdTnbN1bzz//RARx2lV+83cfTP77Aj9+8gmmafOCBLXzx\nwxpuR/lu/FEpVFWh3u9kaCya937lvsAMCrC5CCUU8kVRFLZu8JNImpztLvym9uVMWvIFkIuVrsvZ\n3lrFn//Og1wdCdE3GsZhs3Dv7iYcdgvBoMxIKBVNNU5Gp6YIRuJrKkmxnPFgjInQHC11blyOyrq8\nt7VWcbZ7gmP6OI/fs7XY4ZSNynoXlCDTNOkeClLjtaMYswSDqb7RXA+GuRxWtE01aJvWVtNb5E9T\njZOzPal++Xwl+VOXU/Pht1TgwiG/x06d30ZXf4iJ4Cy1/vKeGlookuTzbGx6llB0jpYaG4fPXp8F\nU4xNpdMWr8iE3H/oiJs1z89XHxiLsGtzfj6MT3ZNoCgUpdplIWxudDMenObNc8N84IEtxQ6nLEiS\nz7N0V01DteuGFYLFHAxbakVmMT901ovW+tT02d6R/GyEMTIRpX9shuYaB44y3oB9ORsbXJztCfLG\nuWF+9f7NUlgvCzLwmmc98+WFa32ltQBp8YpM2c81/xprnNitKr3D+Uny6Wm0GxsqdyaVzaqyt72a\nkYnotQaUWF7GlrymaY8BfwvYge/ouv6Hi27/XeBPgfQr/ie6rn8114GWq1TlSVa9wbGoHBZVYWOj\nlyvDIeYSSWzW3La2j3WMYlGVnFecLLWuvXt31XHy0iRvnB1iW6vUlc9k2SSvaZoCfBX4EHAReEPT\ntJ/qun5kwWkm8GVd1/8sf2GWp3TlyZY6l5TzFUBqpfLlwSD9gQjtOZxSOxAIMxCIsLe9Kqd79JZi\n157W5qfaa+fYxVE+8cSOnH9YVppM74YDwKSu6+d0XU8CzwAfWeI86RhbQrry5OZG6QoRKem561dy\n3GVz7GJqi787t9fm9HGh9Lr2VDW133E0luBk11hRYykHmZJ8K9C/4P/75o8t9kVN03o0TXtW07S2\nnEVX5tJ9hpubCnNRLLWZQ7G/WosbpWui57Jf3jRNjnWMYreq3LZlfXRfPLCvBWBNm+esF5n65Bdn\nh6W+F30P+DtgDvjXwNeB92R64pVudlEsa4lzcCJVZ+PArkYu9ozh8V7vK52J2FFVG74Mx1Ti1Nf7\nqKq6dRzpGKenp/nF0T7cCzZzGAuM4PFWZXyetRzL9lyf15nz515LPLc65vHk/rnTf8fNXh82q8rA\neGTN10D6/pf7pxiZiPLg7RtobanmYt/0qt5r+XnNweNx5ux50q/jtqoqdmys5nzPOBaHLSdz5ssl\nJ61UpiQ/ACxsmbdxY8seXddH0z9rmvZXwL/J5okDgfzMMMilhgbfmuK80D2Oy2HBRpJwJIbB9SJR\nkUgcVU3icC1/LBqJMTYWIh6//qXLMAzC4VRc9fU+xsZSP4dCQZJJCwbXNwMxTCuRyGzG51nLsWzO\n9XmdhMKzOX/u1cZzq2M+rzMvz73w79jW4OHKYJDBoelV958vfG++eKQHgANbaxkbC636vZaP3zt1\nPHfvv4Wv4327G+nqm+Knr11e8wbja73WC2U1H0SZ3mFngFpN0/ZrmmYD/jHwnKZpezVN2wmgadqO\n+QFagM/O32fdi8zOMTyR+8qTcH37tcNnh/jlsV4Onx3i8Nmhiqg2uB5sbvaTNEwGx9ZerMw0Td6+\nOIrDbmHf1rrMd6gg9+5uwmpReOPskNSZX8aySV7XdQP4PPB94DLwD7quvwl8htSMG4DfBvo1Teub\nP/a5/IVbPtLz4/NVrya9/ZrH6y+ZATGRnc1NXgCuDK9+nnd6/OXspSHGpmfZu7mK2ZnwuhqD8bps\n3L69noGxSN4WmFWCjPPkdV1/Gdi56Ni/WvDzl4Av5T608pbvomSifG1pnq+NvobB11Ao9W2uczgB\ngMMGh88OFX16Y74tnrd/57YqjusBXj0xwGffX5m/81pJWYM8uZbkW/xgSBeKuK61wYPdptLVv7YK\noQ6nm77AKHabSntbHRZVrYja8ctZPG/fNE1cdoUj54f59ce243XJosPFZIVOHhimyaX+aRqrXWuu\nNphuuci0yMphtajs3FjNwFiEyVBs1Y8zPBljNp6kvcWPRV0/l/LCefser58dbT7mkiaHTg0UO7SS\ntH7eGQU0GIgQjSWu7TK/FqmWy9Vrg6sywFoZ9mxOLVq62Dux6sfoHU1tJbh9nS/tb29y47CpvHxi\ngETSKHY4JUeSfB509qd2rtnRVp2Txyu1FYdi7fZsSZUavnBlclX3D0XnGBqfpdprp9afn9r05cJm\nVbl3Vx2ToRgnOgPFDqfkSJLPg3Rf686NuUnyovK0NXrxu22cvzKxqul/R8+PYpip3ZKk3C48vK8R\ngBfeuirTKReRJJ9jpmnS2TeF322jqaZyS76KlVk8thIOBdne6mU6HGdwPLrix3vt9DAK5LTIWTlr\nrHZy965GrgyHOHVJ6tksJLNrcmw8OMtkKMZdOxukhSWuWaqaYyKeGle50DNBa332XXCXB6bpGQzR\nUuvA7ZRLOO3XHmrneMcoP3yth9u31+d8EWK5kpZ8jnX1pbpqdrSt78EwcbPFYyttjakl6heurGzw\n9Rdv9wGwo9Wb8xjLWWu9h4O3NdEfCHNcl775NEnyOXZt0FX640UGbqeVhmoHHVeniMWTWd1nbHqG\n43qATU0eGqrsme+wzjz1UDuqovDc690y02aeJPkc6+qfxmGzsKlJWlkiszu31xKbS/LW/NZ9mfzD\n8X4M0+R9BzdKd+ASmmrcPHx7C0PjUV6a/8az3kmSz6GpcIzBsQjbW9fX4hSxevfvSfUdv3yi/5az\nQtJ1akbHJjh0agCfy8qeNocsiLuFjz6yDZ/bxo8O9zA6NVPscIpOMlEOne9J9a3e1r6+qgGK1av2\n2jmwo56rI2G6h5YuWJauOvr1Fy4xGzfY1Ojil0e7ZEHcLXhdNj7x7h3EEwbfflFf91MqJcnn0Nnu\ncQC2NtmlDIHI2mN3pDZbe/XErZflJ3DQNRDG47Ry+85mXG53ocIrS/ftaWJvey3neyZ47fRgscMp\nKknyOWIYJud7Jqj22jjT2S9lCETWdm+poanGxVsXRwlG4zfdbpomJy9PY5hwz+5G2RQ+C4qi8On3\naXicVr7zUhdX13EpYnm35EjPcJDIbILdm6pwe7xShkBkTVUU3n1XG4mkwVefP3/TrJBjHeOMTsXY\nUO9hY6MM6Ger1ufgk49vIZE0+G8/OM1wYJypqUmmpiZv2gvZMCp3Jo6spMiRc92p/vhdG/2EotJq\nFyvz+J1tnO+Z4PTlcf7nL7v41JM7URSFl97u4/9/pRerReHe3Y0yo2YFwuEQgyMBdm300tEX5i+f\n7WBX0xxWi+2GRWkz0QifqPdRqW1eSfI5cq57HFVR2Nnm53inJHmxMqqq8FtP3cZ/fuYEr54coKt/\nCrvVQs9QEL/byr1aDX6PzItfKZfbw927vQRn+hkci2K32Ni32YXbU5mbdi+lMj+6Ciw8M0f3UJDt\nrX5cDkuxwxFlyuWw8vu/vp+tG/xMBGfpGQqysdHL739kF9Ve2QxjtVRV4V0HNlDttXN1bI6ekdXX\n8C9H0pLPgdOXxjBN2LdNpk6KtamrcvKHn74bgKRhoCrKDdvdiZst3hIwbeGsNrvVwrvvauMnb/Zw\noX+GxoYQm5rWR2teknwOHL2QWq14z65GYK64wYiKIQvqsrNU8Tfgpv1uPS4bd29zc7Qzwuunh3jv\nfVbqqyq/Uqy8i9ZoOhzjwpUJtm7w01gjc5eFKIbFxd9uNautym3hzq0eDMPk5eMDhGcqv1EmSX6N\njnWMYppwcE9TsUMRQmShqdrO3bsbmY0nefl4P3OJyp0+CZLk1+zo+RFUReGe3ZLkhSgXuzfXsHtz\nDVPhOEcuTlR0xUpJ8mswMhmlZyjIni01VMn0NiHKyl27Gmhr9DI6FefrP+us2Bo3kuTX4Mi5YSBV\nJ0MIUV5UReHh/S3UeG0cOjnMz472FjukvJAkv0rxuSSvnBzA7bBy586GYocjhFgFm1Xl4O5qanw2\nfnCom1eP91RcqQOZQrlKb5wdIhSd40C7h1Pnu64dT8yGgfUx/1aISqAkY9y+2c7hiwme+Yce+gMh\nXJY53nPfdvz+8t/GU1ryq5A0DF44dhWLCju2NBNT/df+hWPZbeMmhCgdTXV+HjmwAdOAIxcnweIs\ndkg5I0l+FY7rAQJTs2xvceFyyJchsTrplZrrqSJiKWtt8HKX1sBMLMmbFyaIV8jUSslQK5Q0DH7y\nZi+KAns3yeInsXpLrdSciUYqppugHO3eUsNkOMblgSDffaWX3/lIddlX/pSW/Aq99HY//YEwD+xt\nxu+Wz0ixNotXarrcsvdAMSmKwsHbmqjz2zjeNVERM24kya/A6NQMz73ejc9t4+OP7yh2OEKIPLCo\nKvfvrqXaa+PZQ9280zFa7JDWRJJ8lkzT5Nsv6sQTBp949w68Lin9KkSlctotfO5XtuOwW/jvz5/n\nVNdYsUNaNUnyWXr2tW7O90ywd2utLH4SYh1oa3Dzzz52OxaLwt88d5az3ePFDmlVJMln4RfHrvLT\nI7001bj43K/uKfuBGFG6lppxs7AuuiisnRur+b2P7gcUvvK9M7xyor/YIa1YxpFDTdMeA/4WsAPf\n0XX9DxfdbgO+BjwMTAKf1HW9Iw+xFlzSMPnpkSv84FA31V47/+LjB2QLNpFXS824WVwXXRTWni21\n/MvfOMBfPXuWb/+ik75AhH/02Dac9vKYeLFsS17TNAX4KvBRYDvwhKZp9y867VOAQ9f1duCPgK/k\nI9BCG5+e5T/89zf5waFuqrx2vvTxA9RXV/4GA6L4Fs+4WaouuiisnRur+Q+fuZu2Bg+vnhzg3331\nLd7pGC2LomaZPooOAJO6rp8D0DTtGeAjwJEF5zwFPD3/80+Av9M0zaPreiTXweabYZj0DAV5+UQ/\nxy6OkjRM7thRz2d/ZRc+t7TghVjP6qtd/LtP381Pj/Ty86O9/M1z52ipc/PoHa3cs6uRaq+j2CEu\nKVOSbwUWdkL1AQ/c6hxd101N0waBDUAXJSIYiROfS5I0TBJJg6RhMhtPEpmdYzoSJzA5w9B4lM6+\nKaKxBAAtdW5+40mNvZvKfzGEECI3HDYLH3nXVu6/rYkfv3GFd/RR/tcvu/hfv+yiqcbF1g1+mmrc\n1FU5cTusOO0WnPP/tVlVVEXB47LhsFkKFnOmJL/4u0g2kZXUYO6rJwf41ot6Vuc2VDu5S2vg7l2N\n7G2vpbHRTyAQuuX5ZiJGNHrjHFojPkssceOXmNmZCKpqJRoJ5fyYSpxoJJb351nu2EriLJV4bnVM\nJV60517RsWiU2dlkcZ57Jb/3EnGW4nvAaoWkcb0xNxNdviOipc7Dbz11G78R3cHRc8Nc6J2ks2+K\nI+dHlr0fgMdp5c+/8GDBEn2mJD8AtC34/zZubNmnz9kInJnvw28BBjM8rtLQUJhKjR97chcfe3LX\nqu+/XJwffeqRVT+uKGX7ix2AKBMNwLbNdRnPK6ZMre4zQK2mafvnZ9H8Y+A5TdP2apq2c/6c54HP\nzP/8FHCqHPvjhRCiEi2b5HVdN4DPA98HLgP/oOv6m6SS+ofmT/sWENM0rQ/4Y+D38hatEEKIFVHK\nYQqQEEKI1SmpQVIhhBC5JUleCCEqmCR5IYSoYHkrvpCp5s2C895PaqXsE7quv5yveG4lmzg1TfsM\nqZINduDnuq5/vrBRZlVDqBl4BmgCFOCPdV3/foFjfAZ4EhjRdX3fEreXRJ2jLOL8Z8Dvkro+uoDf\n1HW94JWpMsW54LxiX0MZ4yyRayjT370UrqGNwNcBDYgBf6Hr+l8vOmdF11FeWvJZ1rxB0zQX8AfA\n6/mII5Ns4tQ07Xbg3wMP6breBvynUowT+NfAofk3769xvdREIT0NvH+Z20ulzlGmODuBu3Rd3wK8\nAvx5IYJaQqY4i34NzVs2zlK4huZlej1L4RoySX24bATuB/5A07Tdi85Z0XWUr+6aazVvdF1Pkvp0\n/MgS5/174C+BKKlPzkLLJs7/C/iKruuDALquF2M/sGziNADv/M9eUovUCkrX9deAqWVOeQr45vzP\nPwEOaJpW8OpbmeLUdf1nuq5Pz//v66RKdxRcFq8nFP8ayibOUriGsomzFK6hfl3XD8//HAB0UgtM\nF1rRdZSvJL9UzZsbLpT5T6d9C74OFWMuZ8Y4gR1Au6Zpb8//e2/Borsumzj/M/BuTdMGgEOkLqxS\nc0OdI1IrozcUNaLMfhP4cbGDWEqJXEPZKIVrKBsldQ3NLzjdCby16KYVXUf5SvLZ1Lz5CvAvF/x/\nMVoh2cRpA7aR+ur0KeAbmqZ5lzgvn7KJ86PAS7qutwKPA9+e77srZSU98K9p2ueBzcD/W+xYbqEU\nrqFslMI1lI2SuYY0TasGvgt8PosKAsteR/m6yJateaNpmgW4E3hB07Qe4BHgGU3THs1TPLeSTW2e\nPuB5XdcT84MbvaTesIWUTZyfJrUyGV3XTwAJUgmqlKTrHKXHGbKpc1QUmqY9Raol96H5LrKSUkLX\nUDZK4RrKRklcQ5qmOYHnSHVxvbjEKSu6jvI1u+ZazRvgIqmaN/9c07S9QFzX9U6gPn2ypmk/B/4f\nXddfzVM8a4nzOeDXga9pmtYGbAJ6SiTOfUBsPs6rpAaVjs9/ja8jdXEV1aIY03WOfkqJ1TlaGKem\nae8C/m/gcV3Xb12GtAgWvZ6lcA0taVGcpXANLanUrqH5D++/B17Qdf0bt4hzRddRXlryWda8Kbos\n43wWmNQ07TLwIvA7uq4HSyTOTy+I89+S6k/U58/7P3VdjxUyTk3TngVeS/2o9Wma9n/Mx/jh+VNK\nos7RMnGmX8v/SKp19Pb87YdKLM4PL3/PwsoizqJfQ1nGWfRriNQ3sg8AX5iPsU/TtA+xhutIatcI\nIUQFK+mBLyGEEGsjSV4IISqYJHkhhKhgkuSFEKKCSZIXQogKJkleCCEqmCR5IYSoYJLkhRCigv1v\nHE02YZ4TKSUAAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x7f0605829470>"
]
}
],
"prompt_number": 155
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Try a different sampler (emcee)"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"start"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 25,
"text": [
"{'dist1_scale': 1.0429859229210188,\n",
" 'dist2_a': 70,\n",
" 'dist2_scale': 0.12943885786196582,\n",
" 'from_first_logit': array([ 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, 1,\n",
" 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1,\n",
" -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1,\n",
" -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1,\n",
" -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1,\n",
" -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1]),\n",
" 'dist1_loc': 7.8375411746890151}"
]
}
],
"prompt_number": 25
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def logp(array):\n",
" values = {\n",
" \"from_first_logit\": array[4:],\n",
" \"dist1_loc\": array[0],\n",
" \"dist1_scale\": array[1],\n",
" \"dist2_a\" : array[2],\n",
" \"dist2_scale\": array[3],\n",
" }\n",
" return model.logp(values)\n",
"\n",
"ndims = num_samples + 4\n",
"nwalkers = 2 * ndims\n",
"\n",
"array = np.r_[start['dist1_loc'], start['dist1_scale'], start['dist2_a'], start['dist2_scale'], start['from_first_logit']]\n",
"p0 = emcee.utils.sample_ball(array, [1, .5, 10, .05] + [1] * num_samples, size=nwalkers)\n",
"sampler = emcee.EnsembleSampler(2 * ndims, ndims, logp, threads=4)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 30
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%%time\n",
"out = sampler.run_mcmc(p0, 5000)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"CPU times: user 58 s, sys: 4.83 s, total: 1min 2s\n",
"Wall time: 26min 55s\n"
]
}
],
"prompt_number": 31
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"What percentage of peptides can we reconstruct?"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"(is_from_true_dist == (sampler.flatchain.mean(axis=0)[4:] > 0)).mean()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 43,
"text": [
"0.98999999999999999"
]
}
],
"prompt_number": 43
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Plots of the posteriors"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# posterior of from_first_logit for the first peptide.\n",
"# transformed to a probability from logit space.\n",
"for data in sampler.flatchain.T[[5]]:\n",
" sns.distplot(special.expit(data))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEDCAYAAAAhsS8XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG5FJREFUeJzt3XtwXNdh3/Hvfe0uXgRAEqQlkpIsyz5SYiWync7YHbtu\n2ozbalI1dqJMk45jOx21aWKn6YyTcTtp7HE706bWjOPMZOook9qqXUWxHFcjO7Ikq6JelmwpkiyK\nMnn4MJ/gCwTx2AV29+7de/vHLkgQxGOxWGB3L36fGQyA3YvdH0DeHw7OvfeskyQJIiKSHm67A4iI\nSGup2EVEUkbFLiKSMip2EZGUUbGLiKSMil1EJGX85e40xuwBvgIYoAx80Vr7Z8aYe4FPALP1Te+x\n1j62rklFRKQhznLnsRtjdgM3WWufN8aMAK8CHwJ+E3jNWvvAxsQUEZFGLTtit9aeBk7XPx4zxljg\n+vrdzjpnExGRJiw7Yp/PGPMO4EngNuBzwK8BIfAs8HvW2sl1yigiIqvQ0MFTY8wQ8NfU5tJngC8C\nNwK3AgXgC+uWUEREVmXFEbsxJgc8BnzVWvvVRe5/J/A1a+27lnucJEkSx9HsjYjIKjRVmiudFeMB\n3wAem1/qxhhjrbXGGBf4KLBvxXSOw9hYvpmMbTcyMtC12UH5203526ub84+MDDT1dcsWO/BB4BeB\ndxljfqd+26eAXzfGvB+oAi8Dv9XUs4uISMutdFbMUyw+D//w+sQREZG10pWnIiIpo2IXEUkZFbuI\nSMqo2EVEUkbFLiKSMip2EZGUUbGLiKSMil1EJGVU7CIiKaNiFxFJGRW7iEjKqNhFRFJGxS4ikjIq\ndhGRlFGxi4ikjIpdRCRlVOwikkpxHDM9PUUcx+2OsuFU7CKSSoVCnkeefp18vjtf73QtVOwiklq5\nXE+7I7SFil1EJGVU7CIiKaNiFxFJGRW7iEjKqNhFRFJGxS4ikjIqdhGRlFGxi4ikjIpdRCRlVOwi\nIimjYhcRSRkVu4hIyqjYRURSRsUuIpIyKnYRkZRRsYuIpIyKXUQkZfzl7jTG7AG+AhigDHzRWvtn\nxpgtwIPArcBp4G5r7fn1DisiIitbacSeAJ+z1u4B3gd8xhhzG/Bp4A1r7c3AQ8Dn1zemiIg0atli\nt9aettY+X/94DLDA9cBdwP31ze4HPryeIUVEpHENz7EbY94BvB34IbCL2hQM1tppIDDGBOuSUERE\nVmXZOfY5xpgh4K+Bf2OtLRhjFm7i1N+WNTIysOqAnaKbs4Pyt5vyb7xMJqavNwt0Z/61WLHYjTE5\n4GHgS9bax+s3jwJ7gDeNMYNAaK0NV3qssbH8WrK2zcjIQNdmB+VvN+Vvj+npPDOzZaC7u6cZy07F\nGGM84BvAY9bar8676xHg4/WPP06t+EVEpAOsNGL/IPCLwLuMMb9Tv+2TwL3Ag8aYk8AJ4O71iygi\nIquxbLFba59i6VH9na2PIyIia6UrT0VEUkbFLiKSMip2EZGUUbGLiKSMil1EJGVU7CIiKaNiFxFJ\nGRW7iEjKqNhFRFJGxS4ikjIqdhGRlFGxi4ikjIpdRCRlVOwiIimjYhcRSRkVu4hIyqjYRURSRsUu\nIpIyKnYRkZRRsYuIpIyKXUQkZVTsIiIpo2IXEUkZFbuISMqo2EVEUkbFLiKSMip2EZGUUbGLiKSM\nil1EJGVU7CIiKaNiFxFJGRW7iEjKqNhFRFJGxS4ikjIqdhGRlPFX2sAY83XgQ8B5a+3t9dvuBT4B\nzNY3u8da+9i6pRQRkYatWOzAfcCfAF+Zd1sCfMpa+8C6pBIRkaatOBVjrX0WmFzkLqf1cUREZK3W\nMsf+x8aYnxhjvmqMGWpZIhERWZNmi/2LwI3ArUAB+ELLEomIyJo0Msd+DWvtmfqHVWPMl4GvNfJ1\nIyMDzTxdR+jm7KD87ab8Gy+TienrzQLdmX8tmip2Y4yx1lpjjAt8FNjXyNeNjeWbebq2GxkZ6Nrs\noPztpvztMT2dZ2a2DHR39zSjkdMdvwW8F9hujDkFfBb4p8aY9wNV4GXgt5p6dhERabkVi91a+5FF\nbv5f65BFRERaQFeeioikjIpdRCRlVOwiIimjYhcRSRkVu4hIyqjYRURSRsUuIpIyKnYRkZRRsYuI\npIyKXUQkZVTsIiIpo2IXEUkZFbuISMqo2EVEUkbFLiKSMip2EZGUUbGLiKSMil1EJGVU7CIiKaNi\nFxFJGRW7iEjKqNhFRFJGxS4ikjIqdhGRlFGxi4ikjIpdRFInjmPy+WmSOGl3lLZQsYtI6hQKeR59\nbj/lsNzuKG2hYheRVMrlcu2O0DYqdhGRlFGxi4ikjIpdRCRlVOwiIimjYhcRSRkVu4hIyqjYRURS\nRsUuIpIy/kobGGO+DnwIOG+tvb1+2xbgQeBW4DRwt7X2/HoGFRGRxjQyYr8PuHPBbZ8G3rDW3gw8\nBHy+1cFERKQ5Kxa7tfZZYHLBzXcB99c/vh/4cItziYhIk5qdY99FbQoGa+00EBhjgpalEhGRprXq\n4KlTfxMRkTZb8eDpEkaBPcCbxphBILTWhit90cjIQJNP137dnB2Uv92Uf2NlMjG9PVlcr1Zx3ZZ/\nrZot9keAjwO/X3//cCNfNDaWb/Lp2mtkZKBrs4Pyt5vyb7zp6TyzxTKOWwW6u3ua0cjpjt8C3gts\nN8acAv4IuBd40BhzEjgB3N3Us4uISMutWOzW2o8scdfCUyBFRKQD6MpTEZGUUbGLiKSMil1EJGVU\n7CIiKaNiFxFJGRW7iKRKHMfk89MkcdLuKG2jYheRVCkU8jz63H7K4YoXw6eWil1EUieXy7U7Qlup\n2EVEUkbFLiKSMip2EZGUUbGLSGpUoiov/vgirxxPePV0QFTdnGfGNLtsr4hIx3n4uWN894cn6585\nzIabs9g1YheR1Dh+rrbu+q6h2udh1MYwbaRiF5HUODs+w/BAhv762Y6VanvztIuKXURSYbZUYbIQ\nsnM4R+DVbqts0jl2FbuIpMKZ8VkA3jK/2DUVIyLSvc5enAHgLcM9ZDRiFxHpfmfGa8W+czhHUD/f\nT3PsIiJd7MzF2lRMX1ChNmBPCDdpses8dhFJhbPjM2zp9dn70gHAwXcDKpGmYkREulI5rHJxqsTO\n4Z7LKzsGnqZiRES61tlL9QOnW68s1+u7CZUqxMnmG7Wr2EWk652tz6/vHJ5X7PUzY2ZLm++cRxW7\niHS90YtzZ8T0XL4tcGsj9fxspS2Z2knFLiJd79jZaQAGs9Hl1zqdG7FvxmLXWTEi0tWqccxPzkzz\nluHc5TNiQCN2EZGudfrCDOVKlV3bMmQz2cu3z43YCyp2EZHucmR0CoDJiXHKYXj5do3YRUS61NF6\nsW8fDK66fTPPsavYRaSrHT49SW/WJeddffvlEXtRxS4i0jUm8mXGp8tk3QphJbzqPo3YRUS60Nw0\nzHC/d819nlM7PyY/o2IXEekaB09OALAle+19jgOBvzmnYnQeu4h0pThJeMVewHMTst7i5R14mooR\nEekah09NMjVTYaTfwXUW3ybwHGZLEVE13thwbbamEbsxZgwo1T8tWGtvW3skEZGVvfjGKABDuaVH\n5Jl6w82UIgb7MhsRqyOsdSomstbuaUkSEZEGRdUqrx0Zx3dhsGfpZXkDzwESCsXKpip2TcWISNfZ\nf+Qc+WKVwWxlyWkYAL/ecLOlzTXPvtYRu2eMOQSEwJ9aa+9rQSYRkWW9duQSAMM9FZarsblz2Wc2\n2Zrsay32n7PWnjTG3Ag8YYx501r7/aU2HhkZWOPTtU83Zwflbzflb52wUuXVwxNkvIQdgx69PUtP\nsfQlAVDGC/yO+h7W25qK3Vp7sv7+hDHmEeDngCWLfWwsv5ana5uRkYGuzQ7K327K31ovHTjPTCni\nuoGIcjkkSZaei4mrtSH7ubF8R30PjWr2l1HTc+zGmCFjzI76xzuAfwbsa/bxREQa8ezrZwAY6Vt5\n3nyzvjzeWkbs1wH/1xjTT22O/cvW2r2tiSUicq2LU0UOHJ9gIBvjJSFw7VIC8wX1I6szOnjaGGvt\nAeDWFmYREVnWc6+fJQF2Dbuw9FmOl23WEbtOdxSRrlAOq+x97TQ9GZeR/sa+JlCxi4h0ruffOEuh\nGLGtJySKwpW/APDc2mJgm20qRsUuIh2vGsc8/tJJfM/hhm2NzyA7jkNfzteIXUSk07x88AIXp0ps\n641I4sZG63N6c75G7CIinaQcRnxz7xFcB27atvxZMIvp6wk0YhcR6SSPvniUS/mQ7b1lXFY3Wgfo\ny/mEUUwl2jxL96rYRaRjTc2EPPF3Zwk8uHHrMqt9LaMvV5uT30wLganYRaQjxXHMA08coFyJuWn7\nlXPSV6u3XuybaSEwFbuIdKS/+/EoL9txdg76XLel+ce5MmJXsYuItM1sKeTBvccA2BpMUKmsfm59\nTl9PAGyuc9lV7CLSUZIk4WuPHWByJuL6wSpD/dk1PZ5G7CIibfb0a6P88OA4fZmYPYPVNT9eX8/c\nHLtG7CIiG27/T8Z54MnD9GZczEgFtwUNtRlH7Gt9BSURkabFcUyhkKe/f4C9r53hr548jOPA9X1T\nOAnA2qZhAPpyc3PsKnYRkXVXKOT5myd/xEy8hVePTNCX8/mXH9jB/oMFomprLiiam4rZTOexq9hF\npG32H5vkpZ/ElKMJ+jMxNw1c4kf7x4njBNdr8sT1Bfo24XnsKnYR2XCFYoW/evIQL755HseBXQNF\n9mz1cJwcAKXibMueqyfn46ARu4jIuoiThOf3neWbTx+hUIzoy8Tcsr1Kb6Y1o/PFuI5DT9ZnpqwR\nu4jImsw/MOo4Dm8cvchDe48wOl4k8BxuGKpw/WCC09wSMKvSu8nWZFexi8i6KBTyPPL069xx2y08\n+vI5Dp6cBBIGgyLX9ZUYHmrw9e1aoC8XcPbSzIY9X7up2EWk5eI45sz5Sxw8C0/9+CAAQ7kqN2yN\n8aohrhdsaJ7enE9YiYmqMb6X/st3VOwi0lJhJeLhp3/ME6+OEScOO4d8tmVmGOytzbmUihufaf6Z\nMYN9mY0PsMFU7CKyavPnz9365aGVqMpLBy7wnReOcX6ihO/CTVsjhoIpsrmetuYdqJf5VKGsYhcR\nWUyhkOfhvT/i3T/1dkYnKhw8Ps7h0Tyz5WrtytFBuH5LhcADaG+pA+wYqmUYmyxyw86BNqdZfyp2\nEWlYHMccPTXGM6+f54e2ytMHDl6+L3BjdvaFjPSGDPTl2pjyWjuGa8V+YaIN80BtoGIXkRUlScKB\n45f49vNHsKO1s0uyPgznyvQHVYb7fbI+lEulll0x2ko7hnsBOD/RugufOpmKXUQWFccxk1NT7Dt+\nib956ginLhQAGMjGjPQU2TEY4DgO3VAjO4ZyOGjELiKbWKFY4fEfHOV7r5whjMBxYChbZudAxNb+\nANjY0xXXKvA9hrdkOa9iF5HNIo5j8vlpLuYT9r56ipcPXaISxXgu7BqMGM7MErhxR06zNGrncC8H\nTkwQVqpkgu79PhqhYhfZhGoXEI1zZrzIeCHm0MkxDp3KU6yvkxW4MbsHylw37DHYn2FmNtfShbna\nYcdwDwdOTDA2WWTXyMZd9doOKvYGTExMMjtbpre3t91RRJoSVavYY+c4dDrP0bMFRi8WmZq5erVD\n1wGzK0eQlOgPIhwnXaPa+WfGqNiFF149RM73+Jmfeke7o4isKKpWOXnmImOTJcYLCcfP5Tlw/BIz\n5SuvH9qfc9naBz1+lYxTJudF9GQcnHiKTLb9552vhx1Dc2fGpH+eXcXeAD8IcEjaHUMEuHLVZzbX\ny+jFWY6evshEIWZ0bJqxyTIXp8tE1av/vwZuzEhfwmBPwmAuhmpxXoH7lIohjuORyaSz1AF2zo3Y\nJ1XsIrIOFl6SH8cJk4USFy5OUApj+vr7yPg+rpNQKhVx/Sz5YsToWIFDJy5w9EyBUgXiBeMN10nI\n+VUGcw49PmScEl51hoH+HrLZea8f6qe3wJcyUi/285e6+1hBI1TsIutsphhy+MR5wthnaibk0nSJ\n0fOXODo6RTabpVCKyc9Wrinp5bhOcnkaZaDHI+dFDPRmCDwWrG8eUCpmNmTN806XDTyGB7Kb4lz2\npovdGPPzwJeBDPB/rLV/2LJUHWqxhY8kXeb/G8cJXMqXuTRVYmyqyNmxKcJKlSRJwHHIZLI4jkMS\nJ4RhiO/7zBTLlCpVimHCpekSU4WQUmXpF2V2CiUCL6HHj8l4MZnAw3OgWq2Q4BBVIlw/wHUSAjch\n61UZ7AvI+rUCLxUruF5MJpNd8jnkih1DPRw6NUklign89O7DTRW7McYB/gL4JeAA8H1jzN9aa19s\nZbhOkCQJZ8fLHD5d4Kk38oxemOKnbx7hbbu3sn3A5W17thP4a//DJ45jpqenCKOYbcNDeF18vvBq\nJUly1ZzwwtFlVI2pxrVydKjdWY0TwqhKWIkphxGXpqZJnIDJ6RlifCamC5TCmGrsMjVTpBLFJEnt\nuRIcspkAhyoZ36W/t4dKJQTX59LULEdHJwCPfLG6piMrnhOT8RKGeyDwwKNC4MVk3ITeXIY4miXj\nu1dPkTB3gLNWOlcXt3P5dmnO7h392FOTvLD/LB+8Y1e746ybZhvpDmDCWrsfwBjzdeAjQGqKPUkS\nXj86zre/f4xjZ/NX3ffMvgs8s+8CAL7nsHuknxt29NObhe1D/Qz2Z+nv8cl6Ebt2bl2y+GdKFY6d\nmeLg8TGOnZ3m6JkCYdXBdaC/x2fPSC83X9fPO2/ZyVuvG1zzCwQkSUIligmjWhlOTk+TyfRQTSCK\nEsIoIl+YwfOzlEolBgf6yGV9As8hqpQYHtxCNuPjuQ6u69TeOw6OQ/3S8ppKFFMKI4phlVI5YrZU\nYWKqQOL4TEzPMFOGCxMFJgshk/ky08XqNQf72skhIfAq9GXqo+j6W282wHchLJdwPBcnuZI5yGSp\nhGWy2Syem1DMj9Pb108mk6WvN8PMbEitlOf+DRNK8ca8LJxcced7b+SF/Wf5xt6j/Owt2xnqT+df\nOs0W+y7g9LzPTwF/f+1x2me2VGFqJqRQrHDo1CSv2DGOn8vjADeMBESFc2wfCMhkc+RnQ2YrHqU4\nQ6GUcPJ8nuPn8os+ruPAYG/AUH9AJnDxXJdSWGV6psJ4PrxqW99N2JJLqFZjiqWYN09EvHlimm//\n4Aye67Cl16cv5xP4Lp7r4Hm1Yo3jpD6qTYjihGo1oVp/X6nGVGMoV9a3PF0HXNchSWqj6cYk+E5M\n4Mb0ZGrj0aW+Mo6TBdNfSe05ndp7hwQ3qdLTk4E4JJsJ8FxIojK5XAbXgbBUxPU8MpkMYbmEG+SI\nE4dyuUwQZKlGJarhLP19vQtG0XOFXEtXSqq4HgumPxLIZi5vk7R5/XFZ3PBAll/5h7fwtcctD3zv\nEL/94dvbHWldNFvsC/e/rp43mMiX+cyfv0glunou9D1mhF/6wM0cPrSPF14LCTyfJCrSn4H+TBUI\nKfmzhJWIxOvF8bMUy1Wi2CWKXWInoBRBYTZiciYE5oZnCZ6T0OdH9PgVtvSAXy2Q8TyyuStrcIRV\nh0LoUwh9/GwfFyeLTBZcEpx5jzVfgjN3b73sHAd8FwJiMn6CS0ISV3HdhEwQkMRRffva1wWBRxxV\natMjcYzjBiSJg+P6VKKYuP68tQKPwXFwHBeS2rPjgOsneE5MElfwXAg8l0zgklQrZDM+TrVEX49P\n4CaUS7O4bkAmu/TaIw5VyuV42W1KxbnHmbvopv4+A8S1g2VJNEsSByRutbZOeFzEA4IMwCwEUIpi\nKuUyDkvPi4flIq4bQNLYNr4bE5bLa36cVmRpZpu5/BvxXK3eZrFjYR+843p+8OY5Xj10MbXLCzhJ\nsvpRnDHmDuAvrLV/r/757wK7rbV/0OJ8IiKySs2O2PcBW40xP0Pt4Om/Av5Dy1KJiEjTmjoaZ62N\ngXuAbwJHgf9nrX2hlcFERKQ5TU3FiIhI59JJsSIiKaNiFxFJGRW7iEjKrMsiYMaYLcCDwK3ULmS6\n21p7fsE2Pwv8T2APMAP8obX2m+uRp1ErrX9jjAmAvwQ+AEwAv26tPbjhQZfQQP7fAz5J7d/9MPAJ\na+3pax6oTRpdf8gYcyfwHeAXrLVPbWDEZTWS3xjzMeCz9W2+a629Z2NTLq6B/ztvAb4O7KR2EcXn\n2r2/zqlf+f4h4Ly19porjrpgv10p/6r32/UasX8aeMNaezPwEPD5RbaJgH9nrd0D/HPgz+u/ENpi\n3vo3vwzcAvyCMeZ9Czb7KJC11r6V2s75pY1NubQG8x8C3mOtvQnYC9y7oSGX0WB+jDE9wGeA5zY2\n4fIayV8fzPxn4P3W2t3Af93woIto8Gf/B8Az9eL5F8B9G5tyWfcBdy5zf8fut3Ur5V/1frtexX4X\ncH/94/uBDy/cwFr7prX29frHh6n9Jt2+TnkacXn9G2ttldro5CMLtpn/fX0HuMMY07eBGZezYn5r\n7aPW2qn6p89RWxqiUzTy84daMf4pMMvil9+2SyP5/y3wJWvtGQBr7YkNzriURrLHwNzryfUDoxuY\nb1nW2meByWU26eT9dsX8zey361Xsl9eSsdZOA0H9z6FFGWP+AVC01v5knfI0YrH1bxb+AOd/Xwlw\nBrh+Q9KtrJH8830C+Pa6JlqdFfMbY24Dbp83BdBJ5+o28vN/O/BWY8zL9bd/smHpltdI9v8G/GNj\nzCjwDLVfUt2ik/fb1Wpov13LeuwPA9sWueuzi9y21OImGGNuoPZn4K82m6VFmln/ppMOPjec3xhz\nD3AjtYvMOkUj+b8EfGre5500Ym8kfwC8DXgftSmPvcaYt1trC+sdbgWNZP9l4HvW2v9ojHk38JAx\n5lZrbWWRbTtdJ+23DVvNfruWg6cfZfEda5ban2l7gDeNMYNAaK0NF25ojNkGPAJ8cm5apo1Ggd3z\nPt/N1aOYuW32APvq85LXUfvt3wkayY8x5i5qo62fr//Z3SmWzW+M8YB3A48ZY6B2EO8OY8yvWWuf\n3sCcS2nk538KeNpaGwEHjTEnqBV9N/zf/w3g3wNYa181xkTUSubIhiRcm07ebxuy2v226WK31i6+\nTm0txCPAx4Hfr79/uH77APA+a+0Txph+4G+BP7bWfq/ZHC206Po3xph3UvvFdIjaL6GPUct9F/Aj\na+1MuwIvsGL++pTXfwf+0XL/fm3SyM//8jEYY8x3gS90SKlDY/kfBn4F+EtjzG7gBuBYuwLPs1T2\n24FyPftJagf4XqlPiW2j9ouqIy3I3sn77aLm529mv12vP0nuBX7aGHOS2n/kP6rffiNXjkj/KrUR\n2P8wxpyqv71nnfKsaJn1bz5G7ZWiAP43UDbGnAI+B/xuG6IuqsH8/4XaaOXl+s/7mbaEXUSD+TtW\ng/m/BUwYY44CjwO/XT8G1VbLZP8NrmT/T9Tm2G19u39trb12LeI2MMZ8C3i29qE5ZYz5TWrZ507a\n6Nj9FpbN3/R+q7ViRERSpisPIoiIyNJU7CIiKaNiFxFJGRW7iEjKqNhFRFJGxS4ikjIqdhGRlFGx\ni4ikzP8HkcCrvXL2dRYAAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x7f1c08b63b38>"
]
}
],
"prompt_number": 60
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# posterior for the location parameter of the 'good' distribution\n",
"# true value is 7\n",
"sns.distplot(sampler.flatchain.T[0])"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 46,
"text": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f1c78176780>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEDCAYAAAA/eB+kAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtwZGd55/Hv6W7NaC6aGV/k6wzEJsyLiU1MQsJtHZbd\nAJWEOIYUuThFTBLYxAkkVU6AzWUDywZXTKjKUuWkKIyXwMImxInjcqA2ZAnZJWAwcYEzNobH2B5s\njcYzo7lI6pb6ds55949zunXry+mZlvpI8/tUTanVfbr1WJJ//eo573nfwHuPiIhsPYVRFyAiIutD\nAS8iskUp4EVEtigFvIjIFqWAFxHZohTwIiJbVCnLQc65AvAA0DSzG1Y99nbg/cB8etf7zOyuoVYp\nIiIDyxTwwK8CTwH7OzzmgTvM7PahVSUiIuesb4vGOXcJ8DPAnUDQ5bBu94uIyIhk6cF/EPh9IOpx\nzDucc4edc/c65zqN8kVEZIP1DHjn3KuB2MweoPso/R7gucDzgK8BHxtqhSIiclaCXmvROOd+D/h1\noAlsBy4APmdmN3U5fjcwZWYX9Pqi3nsfBOrqiIgMaKDg7BnwyznnXgp80MxucM5dB9TN7HHn3POB\nJ8zMpzNq3mRmr+rzcn5mpjxInetucnIC1ZRNHutSTdmopuzyWNfk5MRAAT/IPPiAZMYMwC8CrVH8\nrcAR59xUet9bBylARETWR9ZpkpjZV4EfSW+/c9n9twG3Db80ERE5F7qSVURki1LAi4hsUQp4EZEt\nSgEvIrJFKeBFRLYoBbyIyBalgBcR2aIU8CIiW5QCXkRki1LAi4hsUQp4EZEtSgEvfc3PzzE/Pzfq\nMkRkQAp4EZEtSgEvmZTL8xrFi2wyCnjJpFwuUy7Pj7oMERlA5vXg5fxWqVRGXYKIDChTwDvnCsAD\nQNPMblj12BhwN3ADcAa42cy+PexCZXTK5XlOnDg+6jJEZEBZWzS/CjzF0pZ9y70Z2G5mVwHvAT40\npNpEROQc9A1459wlwM8Ad9J5R+8bgY+ntz8DXO+c2zW0CmWk4jimXC6TdXN2EcmPLCP4DwK/D0Rd\nHr8SOAJgZh44ClwxlOpk5J59dprP/t9vUK1WR12KiAyoZw/eOfdqIDazB5xzL8v4mpnaPpOTExlf\nbuOoprWq1d2Mby/RaCxQKsXtekZdVyeqKRvVlF1e68qq30nWlwM/6pw7DGwHLnDO3WdmNy07Zho4\nABxyzgXA5SSj+J5mZspnWfL6mJycUE0dnD5dYbHaZKxZY25ukZmZci7qWk01ZaOasstjXYO+4fQc\nbZvZ7Wa2Pz2B+gbgITO7yTl3nXPuYHrY/cAt6e0bgYfNbGHAukVEZMgGmQcfsDSL5heBGeADwCeA\nVzvnpoCTwM8PtULJhVqtxsKC3rdFNpPMAW9mXwV+JL39zmX3hyRTJUVEJEd0Jav0Va9V8WFt1GWI\nyIC0Fo30NLvQZLp5BeV6gcXFxVGXIyIDUMBLT4ePVan7Hcz5C6lWFfAim4kCXnoqLyQXODX8DqrV\nKnEcj7giEclKAS89hVEycSos7OaJ400qlXzNCxaR7nSSVXpqBXxcmqAUbB9xNSIyCI3gpadWwBMU\nqDZibfohsoko4KWnufLSxU1RMD7CSkRkUAp46Slcdk41VMCLbCoKeOmp3mi2b4d+2wgrEZFBKeCl\npzBO9njxPiYu7BhxNSIyCAW89BSlLZqoNkdcGCeKtbOTyGahgJeeonQEHy6egiDg1HxjxBWJSFYK\neOkp8uDjiHDxJAAn5hTwIpuFAl56imLAR0S1WQCeOnJ6tAWJSGYKeOkpioMk4KtnAI3gRTaTvksV\npPusPghMkuzqdM/yDT/SY94OvB9oXeb4PjO7a8i1ygiEMfg4pFFL1qCpNfs8QURyo+8I3sw88Pp0\nX1YHvMI597pVh3ngDjM7kP5TuG8RURrwkPTi63UlvMhmkalFY2Yn0pvF9Dmd5soFwypK8iPyAT6O\nkk98ROT1YxbZLDL34J1z3yTZVPuQmf1jh0Pe4Zw77Jy71zm3f2gVysjEsSf2AT5KRu3eR2gavMjm\nMcim29/nnNsL3Ouce6mZPbjs4XuAjwJN4F3Ax4DX9Hq9ycmJsyh3fammlWr1pDWDjyiVAgIfQ1AY\neV3dqKZsVFN2ea0rq4HWgzezOefc54DXk5x4bd3fauHgnLsTeHe/15qZydfGEZOTE6pplfnFZMZM\nHDUJQ08cRzTT1cf0vepPNWWTx5ogn3UN+obTt0XjnJt0zj03vb0P+CngMefctc65g+n9z09n2wC8\nBTg0UBWSS81mEuatk6zEEbF68CKbRpYe/D7gfufcEeBh4J/N7C+BW4Cb0mNuBY4456bS+966HsXK\nxjo9Owcsm0XjFfAim0nfFo2ZfQf4/g73v3PZ7duA24ZbmoxaI23HxNGyETwFvNeZVpHNQFeySlez\nHUbwAGEUd32OiOSHAl66eubIUQDCRo0oiiAN+EZTAS+yGSjgpauFxRqwNIJvtWoaYTSymkQkOwW8\ndBWlrfalgE8ueGpqBC+yKSjgpav2dn2tK1nTJQs0ghfZHBTw0lW1ll7o1F5sLPl4+sx81+eISH4o\n4KWremNlsLdG8K2rWUUk3xTw0lVr5UgfLa1JAwp4kc1CAS9dta5a1QheZHNSwEtX0ZqATz7Wm+HI\nahKR7BTw0lV7BJ/OoonC5KRrubI4sppEJDsFvHQV++TXo9Wa8erBi2wqCnjpqrXYmI9XzoNvRlps\nTGQzUMBLV60WTWuJglbAhxrBi2wKCnjpqr00cNqaoRXwGsGLbAoKeOkq9sHSbk4szaJparlgkU2h\n54Yf6TZ8DwKTQADcs3yjj/SYMeBu4AbgDHCzmX17fcqVjRRTgOUB3z7JqhG8yGbQcwRvZh54vZld\nBTjgFc6516067M3A9vSY9wAfWpdKZcN1G8Frww+RzaFvi8bMTqQ3i+nxq4dvNwIfT29/BrjeObdr\naBXKyMS+sCrgNYIX2Uwy9eCdc98ETgKHzOwfVz18JXAE2iP+o8AVwyxSRmPtCL41TVIjeJHNoO+m\n2wBm9n3Oub3Avc65l5rZgz0Oz/SmMTk5keWwDaWalnjvkx68jyiWipRKRYJCa5qk1/cqI9WUTR5r\ngvzWlVWmgAcwsznn3OeA15OceG2ZBg4Ah9KTspeTjOJ7mpkpD1jq+pqcnFBNy4RRjCcgjppEYQQU\nwC/NotH3qj/VlE0ea4J81jXoG07P0bZzbtI599z09j7gp4DHnHPXOucOpofdD9yS3r4ReNjMFgaq\nQnKntbF2qy0DtOfBqwcvsjn0a6fsA+53zh0BHgb+2cz+kiTQb0qP+QRQd85NAe8FfnOdapUN1NqW\nr7VMQXK7daGTevAim0HPFo2ZfQf4/g73v3PZ7ZBkqqRsIe3dnKLlSwN78DG1erPzk0QkV3Qlq3Q0\nO5f0HuNo1drvPtZSBSKbhAJeOlpaSXL15h4KeJHNQgEvHTW7BLyPo3Z/XkTyTQEvHXUdwftIs2hE\nNgkFvHTUHsGv6sF7HxPGCniRzUABLx11a9EQx0Tq0IhsCgp46ajVoonX9OBDwtgnG4GISK4p4KWj\n1fuxtvkICIjUphHJPQW8dFRZqAKrliog6cHDUgtHRPJLAS8dNdO57qtH8D5qpo8r4EXyTgEvHbXW\nm1k7gm8tGayAF8k7Bbx01Jrrvnqa5NKKkgp4kbxTwEtHzS4nWdWDF9k8FPDS0VIPftWkd23bJ7Jp\nKOClo6WAX9miiaJG8rhG8CK513fLPufcAeBjgAPqwJ+a2Z+tOubtwPuB+fSu95nZXUOuVTZQ1Ap4\n32UEr4AXyb0se7J64L1m9iXn3CTwdefcF8zsW6uOucPMbl+XKmXD1Rtp773LLBoFvEj+9W3RmNkR\nM/tSensGMJKNtVcLhlybjFAjjNonVJeLwrRFox68SO4N1INPN9o+CDzY4eF3OOcOO+fudc7tH0p1\nMjJRTLoswUq+3aLRimMieZc54J1z+4BPA28zs4VVD98DPBd4HvA1kp69bGJJwHcYpacBP3VkemML\nEpGBZenB45wbB+4DPmRmn1v9uJmdWHbsncC7+73m5OTEAGVuDNW0JPbJBtulUkAUFCmVinjvKRSS\nk6/btm/L3fcrb/WAasoqjzVBfuvKKsssmiLw18A/mNlfLLv/OqBuZo87554PPGFmHngLcKjf687M\nlM+25nUxOTmhmpZphh4fR4ShJ44ioID3nrCZnHydr9Rz9f3Szy8b1ZRdHusa9A0nywj+VcDrgRc7\n534jve8dwCuBGeADwK3AzzrnYpKTsG8dqArJnSjyHXvwrfsibbwtknt9A97MvkDnXv19y465Dbht\niHXJiEWejrNoWidZtW2fSP7pSlbpKPb0nEUTagQvknsKeFnDe0/sA4g7jOBbLRpNgxfJPQW8rBF2\nW6aApeWDq7X6htYkIoNTwMsarc0+Os2DD8Mk2BtNXegkkncKeFmjvQxBp1k0sVo0IpuFAl7WaG3H\n13kWTdKiqTfDNY+JSL4o4GWNdotm9WYfLF+LRkN4kbxTwMsarc0+Oq5Fg8f7OJllIyK5poCXNZZa\nNF1OpPoYTYMXyT8FvKzRaxZNcn+kEbzIJqCAlzVaAR82G50PUMCLbAoKeFmjdQJ19YbbbT7udJGr\niOSMAl7W6DkPnqQ3H2kEL5J7CnhZo71UQYdpkukDatGIbAIKeFmj7yyaOEKrBYvknwJe1mj2uNAJ\nII5DPAGRGvEiudZzww/n3AGSDbQdUAf+1Mz+bNUxY8DdwA3AGeBmM/v2+pQrG6E1i6bTUgXJA0tX\nsxa3aYwgklf9/u/0wHvN7ADwcuA/O+euWXXMm4HtZnYV8B7gQ8MvUzZSq0XTbQTf6s3XG1qPRiTP\nega8mR0xsy+lt2dI9lu9fNVhNwIfT29/BrjeObdr2IXKxmlGvXvwPko23p6dy9eGxCKyUua/r51z\nB4GDwIOrHroSOAJgZh44ClwxrAJl47W34+sxTRKW9epFJJcyBbxzbh/waeBtZrYwjNeU/Gr34Luc\nRI3D5ApXrSgpkm89T7ICOOfGgfuAD5nZ5zocMg0cAA455wKSFs7Rfq87OTkxYKnrTzUlSmPJr0Uh\n8JRKAVFQpFQq4r0nCIrtHrwnytX3LE+1tKimbPJYE+S3rqz6zaIpAn8N/IOZ/cWy+68D6mb2OHA/\ncAvwWZJ+/MMZRvnMzOSrfzs5OaGaUqdOzwMQhU3C0BNHEVBIAz4Cn5xcPXVmITffM/38slFN2eWx\nrkHfcPqN4F8FvB54sXPuN9L73gG8EjgJ3AF8Ani1c24qve/nB6pAcqe92FjUeZZMawQfas1gkVzr\nGfBm9gU699TvW3ZMSDJVUraIfksVtBYhUw9eJN90QlTWaGacB9/UCF4k1xTwska9kcxzD8Nu68En\nI3i1aETyTQEva4TpSmJdL3RSD15kU1DAyxrtJQj69eB1oZNIringZY0o9t0XGgOiZh2AZqgRvEie\nKeBljSjy3TfcBrx68CKbggJe1ghjuq5DA8tbNAp4kTxTwMsazTDqvl0fy06yah68SK4p4GWNKKZ3\ni0YjeJFNQQEva8R9Ar41u6Za7zJPXkRyQQEvaySzaPr34MPuh4hIDijgZY3Ik+kkq2bRiOSbAl5W\n8N4Txd0XGkuPAh+3r3gVkXxSwMsKUdx7Jck2H2sEL5JzCnhZob2SZI8WTUIBL5J3CnhZYWk/Vo3g\nRTa7LHuyfhJ4LXDczK7r8PjbgfcD8+ld7zOzu4ZapWyYfpt9tPlYs2hEcq5vwAMfAf478LEuj3vg\nDjO7fWhVycg009TuNU0Skpk0Wk1SJN/6tmjM7IvAbJ/DguGUI6PWvjo17hPePkYrFYjk27B68O9w\nzh12zt3rnNs/pNeUEWitL9NvBI+P8H6pZy8i+ZOlRdPPPcBHgSbwLpJWzmv6PWlycmIIX3q4VBOc\nWky26ysEMaVSMZkXHxTbt4OgiPchhcDjgb37drJzfGxDa+xGP79sVFN2ea0rq3MOeDM70brtnLsT\neHeW583MlM/1Sw/V5OSEagJOnqwAEIUhYRjhvSeOIqCQBnxEsQhxFBIAzx6bZ8+ubRtaYyf6+WWj\nmrLLY12DvuGcVYvGOXedc+5gevv5zrlWD/4twKGzeU3Jh/aJ016LjQFxlIz0G5pKI5JbWaZJ3gu8\nDLjYOTcFvAe4BpgBPgDcCvyscy4GDHjr+pUr6y0Ms0+ThGUXRolI7vQNeDN7Y5/HbwNuG1pFMlLt\nk6Z9TrLGUZMi0Ggq4EXySleyygrN9pWsvYM7CpO14DWCF8kvBbysEGZdiyZt4agHL5JfCnhZoTWC\nD9OTqN201oSvN8J1r0lEzo4CXlZoj+D7tGjitEVTriyud0kicpYU8LJCuwffby2a9HGtRyOSXwp4\nWaG9BHCfaZKtFo1OsorklwJeVggzjuBbbwAKeJH8UsDLCpWFpKfeGqF3E4Z1YNnqkyKSOwp4WaFW\nT06e+r6zaDSCF8k7BbysUK2lAd+3RaMevEjeKeBlhSjOthZNewSvWTQiuaWAlxVaA/Iw7NODb9YA\njeBF8kwBLytEGTfdXpomqZOsInmlgJcVFqvJ7Jh+a9GoRSOSfwp4WSFtwfcdwYeNKqAWjUieKeBl\nhSgG72Ogd+tF0yRF8i/Ljk6fBF4LHDez6zo8PgbcDdwAnAFuNrNvD7tQ2RjNKAKfpa/uwcfUtJqk\nSG5lGcF/BPjxHo+/GdhuZleRbOf3oWEUJqMRx0HfdWiWHa0evEiO9Q14M/siMNvjkBuBj6e3PwNc\n75zbNYTaZARin+EipxYft/dwFZH8GUYP/krgCICZeeAocMUQXldGIPK0N9TuJ/Cx1qIRybG+Pfiz\nkOlNY3JyYh2+9LlRTeAJgJhSKSAIinjviYIipVJyO7kvpFgqAjFhFOfm+5aXOpZTTdnksSbIb11Z\nDSPgp4EDwCHnXABcTjKK72lmpjyELz08k5MTqgmIomSGTBh6giDCe08cRUAhDfiIYhGiMMLHEc3Q\n5+L7pp9fNqopuzzWNegbzlm1aJxz1znnDqaf3g/ckt6+EXjYzBbO5nVl9AZp0fg4JIw8PtOsGxHZ\naFmmSd4LvAy42Dk3RTJT5hrgJHAH8Ang1eljJ4GfX79yZT1575OTrH3Wgl96QownWaCsVAzWtTYR\nGVzfgDezN/Z5PCSZKimbXKMZA0HmgPdRkyB9Xqmoa+ZE8kb/V0rbQi3Z5MNHjUzHx1FrwbGs8+ZF\nZCMp4KWtUk0DPt2Or5/WfPmGlisQySUFvLQt1pIRuY+yBXycjvQV8CL5pICXtlaLJko38+irveCY\nWjQieaSAl7aFdAQfN6uZjm+3aJoawYvkkQJe2o4enwGWtuPrJ6xrTXiRPFPAS1u1ngR1POBJ1rly\nvq72E5GEAl7aFutJYMdhthF8a778fFkXLovkkQJe2iqLyci91Xrpx0c6ySqSZwp4aatU05OsGadJ\nhunJ2Nlyxlk3IrKhFPDSVm96fNTMvNhYVJsHYHZBI3iRPFLAS1s99Pg42zIFAGF9DoDZBe3LKpJH\n67Hhh2xS1Uac+QQrJIuNETU4VdZKkiJ5pBG8ABBGMWEcZF6Hpi2qUql5olhz4UXyRgEvwPJ1aLK3\naACCqErs4dT8gG8MIrLuFPACLF8qeLCgjhvJRU4nziwOvSYROTeZevDOuVcDHwa2AZ8ysz9Y9fjb\ngfcD8+ld7zOzu4ZZqKyvpXVoBgv4sDbH2F6YOVOFq9ajMhE5W1m27AuAu4CbgG8BX3bOfdbMvrLs\nMA/cYWa3r0+Zst4W0rXgw4wLjbU0q3OMASdmB3ueiKy/LC2a64EzZvaomUXAJ4FO2/hpKsUm1mrR\nZF1JsqXVojl+Wi0akbzJEvBXAkeWfT6V3rfaO5xzh51z9zrn9g+lOtkwC62rWAecRTN7chp8xPHT\nWo9GJG+y9OD9qs+LHY65B/go0ATeBXwMeE2vF52cnMhS34Y6n2vyheS9PvANSqUi3nuCIPkYBcVV\n94UUS0v3FXydk/MlLr54N0Ewuj/kzuef3yBUU3Z5rSurLAE/DSwfke9n5YgeMzvRuu2cuxN4d78X\nnZnJ1xKzk5MT53VNJ05VAKhXFwjDKA3z5GMcRUChfV+xCFG4dJ9vLNAs7OQbjxzmwOWTG1Lvauf7\nzy8r1ZRdHusa9A0nS4vmEHChc+5Fzrkx4BeA+5xz1zrnDgI4556fnowFeEv6HNlE5spJ7z2sD95L\njxvJm8PJOc2FF8mTvgFvZjHwNuBvgCeBfzKzB4BbSGbWANwKHHHOTaX3vXV9ypX1Mr+QLFEwyFIF\nLY3F04ACXiRvMs2DN7MvAAdX3ffOZbdvA24bbmmykaqNGO/jZBOPwthAz21WZ9kOnNTVrCK5oitZ\nBYBqPYIBlyloaS6cAeDZkxVirUkjkhsKeAFgsR7CAEsFL9eozhL4kMenZqlU8nVSSuR8poAXYu+p\nNfzAC421eO+hfopGXKTW0OYfInmhgBdq9Si52OEsR/BRFLI4NwMEHJnRFa0ieaGAl/YyBVHj7NaT\nicIm9fJxAJ45oStaRfJCAS/tgA/PMuABavPPAvDMCY3gRfJCAS9UFpPWTDzgWvDLRfUygQ95+rhO\nsorkhQJeOHEqWcY/rJ9beyWqnuJMJaS8eHa9fBEZLgW88NTRWQDCxVPn9DrV2aMAPPrE0XOuSUTO\nnQJemD5VA+8JF0+e0+s0KsmJ1ienZ4dRloicIwX8eS6KY46eqkNYodk8t9ZKdS450fr0Mc2kEcmD\nTGvRyNb17MlFmpHH18+c82vFzUV8WGX6NOnSwtrkS2SUNII/zx1+NjnBGlXPrf/e0iwfo9aEz331\niaG8noicPQX8ee67x5JpjeHCufXfW04/9S/4uMm9/zLFs6fUqjnfzc/PMT8/t2HPk5UU8Oe5w8/O\nU8BTr5zof3AGUWOBhakHCGP48787RDPU6pLnm1Y4z8/PUS7Pr3gsjmOmp6eYmnp6RYDPz88xPT3F\n9PRU+/5yeb5nyK9+E+j3+fmobw/eOfdq4MPANuBTZvYHqx4fA+4GbgDOADeb2bfXoVYZsmYYM3Wi\nwo5ijZlzPMG63Oz0o+y48CqmeQ5/+umv81tvejHbt3Xaylc2oziOqVTK7N49QSHdy7cVpHv27GVu\nbpaFhQUuu+zy9nOWh/Z9n3+I//hSx969+9qvVy7PE4Yh1WqVMAxZWFigUqlw+eUxe/bsXfH6rdcr\nl+eZmNizIsTL5fn0X/KX6a5du3j8cWPnzp3s33+g/fzzRc+AT7fhu4tkl6ZvAV92zn3WzL6y7LA3\nA9vN7Crn3E8CHwJet14Fy/AcmakQxZ7Z01M0m82hvvbxxz7H5At/gm9Pwfs+9mV+5cdfwHOvuIiF\nhcqKYJDRWB2Yne6fn5/j6NFp4jimUChw2WWXs2/fBVQqZe77wjf44RdcwiWXXEqpVCKOYxYWKhw9\nOs3x48f4l288zRWTEzxn/xVcetEElUqFHRMX8ejjUzw1A6e/PEMhnuLSfWO88oev4/5/eowrL97N\nN+wY27ZtY36xRtGH/PsfjLly/3MA2n8NtGqePnqUZ44bDT/OhXt2Eoc1yrWY0xVPZWGBPTvH2LN7\nnH/79hGuvGQP/6G4gwMw0O9ft+/TZtFvBH89cMbMHgVwzn0SeCOwPOBvBD6S3v4M8FHn3C4zUwM2\np2qNkIVqkwcPHU4+nz9GFA13md+wUeXEN/+eSfcanuVq/uhTj1IqeCbGA974qufx8uueg/cx08dP\nM3nRPnZsH2wXKemsVyCdPHWKY8e+S7MZUCgUODHX4PDRJ7jygjHc8w4wXy7z7Kkae/dMMDGxhzj2\nfHOqykOPz1Epz/K6l8zxg9d9L996cpqnpmf5+mNTXD65l2NznlKpiA9KjG8fZ36hTqVxgKemCjBV\nA6pAABxJP+7lzEwEjPHkKXjgyUeAMexEHbggPXwXBPCZb9T46pNf4uClAXvGPRfu3c2ZaoFHnzrJ\nsXloRgWgkf5bblv6sQ5McuIo/Nt93+XSXcYv/8QLed5V39Pxe9f6q2CzBvpq/QL+SpKfSssU8Ipu\nx5iZd84dBa4AvjOsIoep0YxodOgLb19oUKkOdxR7rgapqRnGVKpNFmtNdmwvsXvHGOXFJkdPLjC/\nWGcsCCkEcOjwHI9+d44w8u3nVk49sz7/AT7m9Hc+z/jFjm0TV7B9z6WE8R7u/t9P8ldfeIp66Akj\nCALP/ovGec6lE+zeOY6PQ8ZKAbt37iSOm0zs2sm2UoEorLN79y4KQUC1usjOnTsppiOxE+UGs7OL\nFIIAAhgrFti+rUghgHozphFGFIKAQhAQBFAoBBQLS59HsSeKPGEcE0aeKIoJY4+PPdvGimwfKxLH\nMfPlCuPj4/i4yd49u2mGnmo9pFGvcsHeCYJCgVojpNGMOT5fp1yuUUy/VrFYoFQICApB8vqRp1AI\n2FYqEADNKKbRjFhYXGDnjp0EwdIo0/uYM3NlTi94vvP0cQhrXHdwP5ddcgGLtZDFWpNqtZq0Nmox\nZyoN4qjJi773Mi6+cC//51+f5uEnz1Ag4tI9BepRgVOVpd+BXf9vhsUGeJKpreOlb1IIYhabrYjY\nx70PVbn3oUfSz/dAYQ/zrclXYfqxGoMfoxAvEldPE/uAbeM7aISeqLFAVJ/H184QVU9Ta0Rs23M5\nhUIp2VPAR5R8nb1jZWYb4xTGdjJ+wdWc4nIemG99L1rTeQOCcIFC7Rjl2RmKYzspjI0TRHUIy9Sr\ni+wcL7LQHKNQCBjfsYfiRQd5tjLO+z/9JBfvfoqDB/ZxzdWXMTEOs4see/oUtVqdiR0z7NheZPv4\nNioLdS65cIL9l4Ysls+wa9dO9u7ZS6EQUAhIfqcK6b/0d2n59GDvl77HK/7X6PK/zFixwI7tw5u9\n3u+VVteRpZGa27+9z5Tr/O5HvkKjeX6f+Auac1TnjuMpENbmqFdOUiyV8HFEHHuCOMLHEUGh2PE+\nvCeO4/Z9vZ4ThQ2azz6Cn36YOPZsn7iE3ZddSzT5fKJ6hbA2x9j4Hp6JL2bqpPZ0HcTXnnqq7zEP\nPXl46ZMnnzc/AAAF3klEQVRmhab3HJ2bwMchzflpmpVjjO2+jHj3JRDVGGvMUKnFxBc8h0JxO9WT\nxtwzX2P77osYv+j5FMd2UKJOs3qGyvxpwvoipSCivnCGYsHj44hGo05QKLJt23aazTpRGBIEwYrf\njW3jO4ijJo3FUxSCiFq1QbFUolAoUC9WWYh2EIVNxo9/B4IChZ2XMbZjL9t27CGsnqFy8kmqczMU\nSyVKY9uIwmb7a3of06jXONFsMrZ9HB9HlLaNwxNfYWL/i9l3ydWcrFzIyW/N8sC3slx1fRp4+qx/\nToMoBAG/83PX84LnXjCU1+sX8NPA/mWf72fliL51zAHgUNqzvxzotxhJMDk5MUidQzE5OcHf/vFP\nbvjXFREZhX6j7UPAhc65F6WzZX4BuM85d61z7mB6zP3ALentG4GH1X8XERm9ngFvZjHwNuBvgCeB\nfzKzB0gC/ab0sE8AdefcFPBe4DfXrVoREcks6HYSQERENrfcnhAVEZFzo4AXEdmiFPAiIlvUhq8H\n75wrAA8ATTO7YaO/fifOuRmgln5aMbNrRlkPgHNukmSNnx8CFoGfNrOHR1iPAz6/7K6LgD80sw+O\nqCQAnHO/xtKJfQPebGaVEZaEc+63gF8jGUB91Mz+ZER1fBJ4LXDczK5L79sD/BXwApIpz28ys+Mj\nrulm4A8AB/yQmX19o+rpUdMfAz+XHvIQ8MtmNt/lJTaqpt8D3kpyOfB305oOd30RRjOC/1XgKbpf\nzDUKoZkdSP+NPNxTHwYeMLPLgRexUVdadGGJ1vfoAHAC+LtR1uScuwB4H/AyM3shMA/8yohrupbk\nDeeHgGuBNzjnXjiicj4C/Piq+34HeMTMrgbuIfn+jbqmh4GfIhn4jUKnmh4ErjGz7wFOAb+Xg5o+\namZXm9lVwL3A7f1eZEMD3jl3CfAzwJ2Atvvpwjl3GfBK4E8AzGzBzM59y6Uhcc7dAJwwsydHXEqQ\n/tvpnCsCO0guvBula4B/NbOKmTWBLwI/PYpCzOyLwOpLNW8EPp7e/jjwhlHXZGaPmdnIljbpUtPf\nmVk1/fRLJEuyjLqm5Wt6byPDIHmjR/AfBH4fGO7KVueu6Jx73Dn3qHPuP426GOB7gWeAjzvnvumc\nu9s5t3PURS1zM/CpURdhZqeB3wWeIAn2kpn9zWir4hHg5c65SefcbpI/s/f3ec5GWr521Dwwll7E\nKB2kV+ffAvz9qGsBcM79N+fcMeDXgXf1O37DAj5dVz5OL5TK2+j9JWZ2EPgJ4Ledc68ccT0l4AeA\nPyf5Mz8iww9zIzjnSiSjvr/KQS27gF8i6SdfCTSdc7eOsqZ0L4T/CvwD8FmS/m2eFz9q/RUknf0R\ncNTM/nrUhQCY2X8xs8tIsuF3+h2/kSP4lwM/6pw7TNI/eolz7r4N/Ppdmdkz6cenSZZeeMloK+II\ncMzMHjAzT/L9un7ENbW8jqSHu2En5np4Bcly1kfMLALuA/7diGvCzP6Hmf2gmb2KZL1aG3VNy7TW\njsI5txdomNnwdnvZQpxzv0GSBb886lo6+CQZWn8bFvBmdruZ7U9PELwBeMjMbur3vPXmnNuXnhto\nnSP4MZI1eEbGzJ4ATjrnrkvvei3Jn/55cDPwv0ZdRGoK+AHn3MXpn9KvAx4bcU04565KP76YZP+E\n/znaila4H3hLevstJG+KeZKLvyaccz8H/CLwRjML+x2/EZxzL0l/zyGpre/v+kiWKnDOvQz4gJn9\nyIZ/8bW1XEMyG2Q3ya4BHzazD4y2KnDOvZTkTPo4yRvOL+Vg+t9OknMDV2/klLFenHO/DdxK0gZ5\nmOT7NNLF7pxznwe+j+Qk2W+Z2T+OqI57gZcBFwPHgT8E/pakvXYtycysN5nZsRHW9B6SacB/kt43\nB3zDzH5sxDW9B9jJ0vTpL5rZL4y4plcBryFp2T4C3Jp2HbrSWjQiIluUrmQVEdmiFPAiIluUAl5E\nZItSwIuIbFEKeBGRLUoBLyKyRSngRUS2KAW8iMgW9f8BNBY0zBvRbaYAAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x7f1c79d8c2b0>"
]
}
],
"prompt_number": 46
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# posterior for the scale parameter of the 'good' distribution\n",
"# true value is 1\n",
"sns.distplot(sampler.flatchain.T[1], label='dist1_scale')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 48,
"text": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f1c7a4da2b0>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEDCAYAAAAsr19QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmM5Old3/H371dnz3TP6d57WZu199m1vTYhKJslgDEi\nQMwCDiQRChAgAkUREAklKESJEoQUpChIyBFEyAhxyIjDCJxVRLwmYHux196svdi73uPZa2Z2eqZ7\n+pjuuut3PvnjV1XTM31Vd9e59XlJq63p/nXVd57p/tTTz+85POccIiIyffxxFyAiIkejABcRmVIK\ncBGRKaUAFxGZUgpwEZEppQAXEZlS+X4uMsasAe3OH+vW2oeGV5KIiPSjrwAHYmvtvUOtREREDkVD\nKCIiU8rrZyWmMWYV2AJC4H9Yaz867MJERGR//fbAv8la+wDwvcC/Ncb8gyHWJCIifeirB76dMea/\nA0vW2o/s9nnnnPM8bxC1iYjMiiOF5oE3MY0xZ4CitXbVGHMb8I+An9uzCs9jba12lFpGZnFxYeJr\nBNU5aKpzsKahzmmoEbI6j6KfWSh3An9ujJknGwP/TWvtp4/0aiIiMjAHBri19iXgwRHUIiIih6Bp\nhCIiU0oBLiIypRTgIiJTSgEuIjKlFOAiIlNKAS4iMqUU4CIiU0oBLiIypRTgIiJTSgEuIjKlFOAi\nIlNKAS4iMqUU4NK3arVCtVoZdxki0qEAFxGZUgpwEZEp1c+BDjKjqtUKtVqVhYVTnDp1etzliMgt\n1AOXfdVqNWq16rjLEJFdKMClL2maUqtVSdN03KWISIcCXPpSr9f4i7/5Go1GfdyliEiHxsBlT7Va\nlWo1Gz45eXKecrk85opEZDv1wGVfrVaTTz/zhnreIhNIAS4HyheLLC8v0261x12KiGyjIRTZ06XV\nFn/1Mpwrtvnsl14Fz6dWq427LBHpUA9c9vTim3WWNmGpWqJYmgOgXq9rOb3IhFCAy57aYTZl8Hqr\nQC3M49KURqOuqYQiE0IBLntqh0nv8ZuVEmsbazz57EXd0BSZEApw2VWaplQb2U3LU4UmYVqg5Z2n\nUCyNuTIR6VKAy67q9Rprmw1wKafcKh4pDf82Wq22bmSKTAgFuOzJkcMjIeelnMlXcV6Benpq3GWJ\nSIcCXPaUOA8vjQE4k6/iuYRKepoodmOuTERAAS77SPGB7EZmHDQoxauk5PnqxeZ4CxMRQAEue0gS\nh8PHc1mAB0GbfPsKABdWg3GWJiIdWokpu2p1phB6LiEIWoRRiOcc4Ag1hCIyEdQDl121ewEe9z7m\nAR6OKFGAi0wCBbjsansPfDufVD1wkQmhAJddXd/qHqN2c4B7OM1CEZkQfY2BG2N84CkgstZ+63BL\nkknQ3Qdl+xAKgEeqIRSRCdFvD/xfAW8A+smdEUHUDfCEMGgTR1mQ+152E9M5fSuIjNuBAW6MuQ34\nZ8Cvk93HkhmwPcC388g+HsXakVBk3Prpgf8q8B+5dTBU3tJuDKHsvIkJ0I707SAybvuOgRtjPgik\n1tqnjDF/v98nXVxcOHZhwzYNNcIY68zlACjkoVTI4ZHD8/KQA2I4OV9m8fzJ8dd5SKpzsKahzmmo\n8agOuon5KPCdxpgLQAk4a4z5hLX2w/t90draZO9Wt7i4MPE1wnjrrFSzrWTjKCBIE8IgwfchTbOe\n9/K1KrnOwQ5qz8FSnYMzDTXC0d9k9g1wa+2vAL8CYIx5BPjVg8Jb3hrae4yB+5372EGoIRSRcTvM\nPHAPzUKZGXsFuKcxcJGJ0fdeKNbaLwLfNsRaZIIEYQrOASnZwHem2wMP1QMXGTutxJRdtaMUn2TH\nvNFuD3yzOvnjiiJvdQpw2VUQpb2w3s7rzCbVGLjI+CnAZVftMMHfZep/EocA1BqtUZckIrdQgMsO\naZotl9+9B559LNRKTJGxU4DLDq2ws+/JLj3wGwGuCUki46YAlx1a7SzAvf0CPFIPXGTcFOCyQzPo\n9sD3HkLRZlYi46cAlx2a7QjYfQilG+qNdjjSmkRkJwW47LBZyeZ4p0m043M3euAaAxcZNwW47NA9\nD3O3Hni2m4IONhaZBApw2eHa6nVg95uYUdDGw2kWisgEUIDLDkHnBmUSB7t+3ifVEIrIBFCAyw5B\nlIXzrTsRdnk4Qg2hiIydAlxukqYp9WbW8947wNUDF5kECnC5Sb1e4+LyJrD7GDgALibSyfQiY6cA\nl528bJt4z8W7f5oUhxbziIybAlx2SPG2Heawk0uzYNepPCLjpQCXHVLn42UxvivPdfZD0Z7gImOl\nAJcdugG+l+7YuHrgIuOlAJcdsiGUmDjaYwy80wMPFOAiY6UAlx2yHvje4dztnetYNZHxUoDLTeIk\nxeH1etm707mYIpNAAS43CToHNezbA9cQishEUIDLTdqdXvVeqzDhxhCKbmKKjJcCXG7SHRbZdxZK\nJ9w1jVBkvBTgcpN2dwhFPXCRiacAl5v0hlD6GQNXD1xkrBTgcpPujcm+ZqGoBy4yVgpwuUkQ9jEL\nRfPARSaCAlxu0o76mIXS6Z3Xm+2R1CQiu1OAy03a/cxC6Q6haDtZkbFSgMtNgj5moXRPpg8jBbjI\nOCnA5SZ9zUIB8j6EuokpMlYKcLlJf7NQIO+7Xm9dRMZDAS43afcxCwWyHrgCXGS88gddYIzxgKeB\nRbLfnj9urf2FYRcm49FshZ1HB/fAWxpCERmrA3vg1loHPGatfQdggG82xnz30CuTsQjidN/j1Lo8\nFxJEqRbziIxRX0Mo1trVzsNc52vc0CqSsQqiFP+A3rdzjpzLeuqVRrjvtSIyPH2PgRtjXgDWgees\ntZ8aXkkyTv0EeBQG1OoNAKp1BbjIuPQd4Nba9wB3Au80xjwyvJJknMIoxfcOvjmZ87Khk826VmOK\njMuBNzG3s9ZWjDFPAI+R3djc1eLiwnHrGrppqBFGW2eSpESJ42QOSqUcHjk8L0+huPNx2BlCaQbh\nyOs8DtU5WNNQ5zTUeFT9zEJZBE5Yay8ZY84APwD8+n5fs7ZWG1B5w7G4uDDxNcLo62y0IwBcmhAE\nCWGQ4PuQOm/H47TQhiIsr2b1qT0HR3UOzjTUCEd/k+mnB34G+FNjzHkgBj5mrf3DI72aTLR2kA2L\n9DOE4rks7DcqzaHWJCJ7OzDArbWvAu8fQS0yZq0wBjjwJiaAn2YBvlkLhlqTiOxNKzGlp5+dCG9I\n8EhptDUPXGRcFODS0+70wOn0rvfjATkSGoGW04uMiwJcerpj4P31wLOphI0gJU21rktkHBTg0tMd\nA0+S/hbn5EhwDpZW1odZlojsQQEuPVvVbHVl/z3wLPArWo0pMhYKcOkJ+jjMYTsXZ6swt2oKcJFx\nUIBLT/dA4zQ++CYmgE/WA9/ShlYiY6EAl54g7Oc8zBu6Aa4hFJHxUIBLTz/nYW6X6/bA61rMIzIO\nCnDp6fc8zC71wEXGSwEuPd0zLvvtgXsuBBybuokpMhYKcOlphwk5zx14nFpXHIb4LmFjSxtaiYyD\nAlx62lFCPne4r8l5CbVWPJyCRGRfCnDpCcKUgn+4ZfHZ4cauN4dcREZHAS497TDB9xLcIc6s7t7I\nfOWNS6SpNrYSGSUFuACQOkcYp7RabZKo/yERv3Oww/99+jXq9ck/+UTkrUQBLsCNZfS+d7ghlDjI\n9k+JUn0riYyafuoEuLGIJ+1zJ8IuL82u1xC4yOgpwAW4cZhDv4t4urpnY0YKcJGRU4ALAK2gG+CH\nS2Iv7QZ4v7PHRWRQFOACwGYluwGZpoeb0+27bAhFPXCR0VOAC7B9H5RDJrGLAacxcJExUIALsG0f\nlMMOoZAdraYeuMjoKcAFuDGNkMP2wMmW0x9i6riIDIgCXACo1rMNqQ49hELWA0+cRxhrJabIKCnA\nBbgxhEKfW8lul/Oyr6k1+zuKTUQGQwEuAL3e85F64N0A166EIiOlABcAwiPexIQbR6vV1QMXGSkF\nuAAQRJ09UI7VA1eAi4ySAlyAbUMoxxgDX99sDLQmEdmfAlwAaLY7vecjzkIB2Ky2BlmSiBxAAS4A\nhLHDI+37PMztuj3wRqBphCKjpAAXoLMb4RF639DtgTsagZZjioySAlyAbDMqj6P1oD0Pcp6jqR64\nyEgpwAWAKHH4RwxwgLyX0GgnOhdTZIQU4IJzjig+eg8cgDQkiGGrUhlcYSKyr/xBFxhj7gV+BzBA\nAPyatfY3hl2YjE4UpziOtoinq7uYp9aMOXd2QIWJyL766YE74JestfcCjwK/aIx5aLhlySh1z8M8\nTg/c7wa4FvOIjMyBAW6tXbLWfq7zeA2wwJ3DLkxGp3ce5hEDPGi3cEkAZD1wERmNQ42BG2MeAB4A\nnh5OOTION3rgRxtCCYI2dE6zv7y8OrC6RGR/fQe4MeYM8MfAT1trtWb6LWQQQyjd0+nrbc1CERmV\nA29iAhhjysAngI9Ya5846PrFxYXj1jV001AjjKbONzeywxwKOciXcnhenkIxh0d/jwHKhZg6ECb+\nRLftJNe2neocnGmo8aj6mYWSA/4E+KS19nf7edK1tdoxyxquxcWFia8RRlfnxUvZsEcSRyRBgu9D\n6jzCPh+Xy3mSoA1zsF4JJrZt9e8+WNNQ5zTUCEd/k+mnB/4B4DHg7xhjfqbzsZ+11v6vI72iTJze\nifRk0wmPIttHJaXW0nJ6kVE5MMCttX+NFvy8pbW6s1BccuQAB8gTU23lBlOUiBxIwSzUGm0AXHL0\nOdxh0Ia0TRC53rREERkuBbj0jlPjOEvpAd9lUwk3a8ExKxKRfijA5VgHGm+X60wlvF5VgIuMggJc\naDSzwD3WZlaA3wvw9rFrEpGDKcCFMM5uXR63B94dQrmuIRSRkVCAy40AP24PnKwHvllTD1xkFBTg\nQpg4sk0njzOJUGPgIqOmABfCODuN5ygHGm/nkVLKawhFZFQU4ELUOZF+EObLvm5iioyIAlwI43Rg\nAT6XT2mHCa1Ai3lEhk0BLr0hlEEo+ppKKDIqCvAZFycpSXr8GShdeTSVUGRUFOAzrnuYw6B64OV8\n9nzqgYsMnwJ8xgUDOI2ny7kUP80Oh9B+KCLDpwCfcd2dA116/NPkozDk4tIGACvr1WM/n4jsTwE+\n49qdwxxcMphZI57Let4rG/WBPJ+I7K2vMzHlrasdHO9E+lt5OHwXsdU47rIgETmIeuAzrjtf+7gb\nWW2XI6LWdiSpTqgXGSYF+IxrdgN8QD1wgBwhzulGpsiwKcBnXLM9+B44cQuA9S1NJRQZJgX4jGsN\nowfeuZG5VmkN7DlFZCcF+Iyr1LJ524PsgXcPdtioqAcuMkwK8Bl3Y9OpwW0+5Xd74BpCERkqBfiM\nq7eysHXh4G44emkIOFY2agN7ThHZSQE+49phd6rf4IZQ4rCN7yLWNQYuMlQK8BnXjlI8lxz7NJ5b\n5b2YWislijUXXGRYFOAzrtWOBzoDpSuP9gUXGTYF+IwL4nSwc8A7cp19wd9c3hj4c4tIRgE+w5xz\nBJEbag98QyfUiwyNAnyGhXFK6gZ3mMN23bng6wpwkaFRgM+woSyj70jDBgBXVyuk2tRKZCgU4DNs\nGMvou3wiwPHmtTr1uuaDiwyDAnyGdQPcH0KAR0GbnAsJ0hzOuYE/v4gowGfaMPYC3y5PmyT12KyH\nQ3l+kVmnAJ9hw9gLfLuCy+aAX15tDuX5RWadAnyGDXMIBaBAtpT+taVN3cgUGYIDA9wY8zFjzKox\n5vlRFCSj0+2BJ/Fwpvp1A/xZe43l5StDeQ2RWdZPD/yjwIeGXYiM3rDHwOOgSc4FtOI81Wp1KK8h\nMssODHBr7ZPA1ghqkRFrtTsn0rvB7QV+qwItUnw2G8N5kxCZZRoDn2HDvokJN25krmxFQ3sNkVmV\nH8aTLi4uDONpB2oaaoTh1tm9rVgq+jg/T6GYwyOH5x3uMUCptNfna8AdbLUmo80noYZ+qM7BmYYa\nj2ooAb62Ntkr7xYXFya+Rhh+neubdQDCoI1LHKnzCIME3+dQj8vlPMEen3fUYc5xcaU59jbXv/tg\nTUOd01AjHP1NRkMoM6wVJOR9hzfElZIeKQUirm3FpKlWZIoMUj/TCP8MeDJ7aC4bY35y+GXJKDTb\nES6NiOPhjYGHQZsCLaLEcW1TC3pEBunAIRRr7Q+OohAZvSBK8b3h94rzrg3eaa6s1bnz/Mmhv57I\nrNAQyozKDnNIh7IX+I7XirOtZS8tbw79tURmiQJ8RgVRMrTDHG6V70wlvLJWo1qtDP31RGaFAnxG\ndQ9z8L3hB7jvQjwc6xXtSigySArwGdVdRk86vFWYXVHQpphLWatG2htcZIAU4DOqFWQzT4a1E+Gt\nyrmUIEqpNrUiU2RQFOAzqruMPk1GE6g5snHwa5vtkbyeyCxQgM+oYZ6HuRuvMxNl5XprJK8nMgsU\n4DNq2Ic53CpqZlMIr0zBsmaRaaEAn1Gj2Ilwu1xnKqFmoogMjgJ8Rq1dzw5Y8N1oxsA9UvJewlpV\nNzFFBkUBPqM2KtlYtIuGc5zabvy0RbUZ35jCKCLHogCfUdVmDDg8RtcjzpO9Wbx+eXVkrynyVqYA\nn1HVZkyOBG+ULxplM1EuXtWeKCKDoACfQalzVJsxnhvd8AlAPs0CfGldc8FFBkEBPoPqzYjUQW5E\nNzC7cq6F7zkuXmuQpsPfg0XkrU4BPoM2a52edzraKX0ejoVCwGol4uKblxXiIsekAJ9Bm/UswH03\n2gB3znHCbwAef/7ZV6jXtahH5DgU4DOo2wMf1RzwrigMqGxuANCMCyN9bZG3IgX4DLoR4KNfFVn2\ns9euNLWtrMhxKcBn0GYtmwXijSHA46BBnpBKKyXV3uAix6IAn0Hrm9l0PheOZ2fAkheQpB7Xrms6\nochxKMBnUKUR4ZPgjeA8zN2U/Cy4L6zUx/L6Im8VCvAZtFkL8EY8hXA7L8oONn71imahiByHAnzG\ntMOYIHbkRrgHyq3yBBT8hK9d3GJ9Q8vqRY5KAT5jxjkDpcsDTvp1otjxpZeuUq1WxlaLyDRTgM+Y\nrW6Aj7EHHgZtcuEaAF+y62OrQ2TaKcBnzPXOFMLcGMfAAdKgQoGQSxsJrWA0pwKJvNUowGfMynp2\nEk+ajHcKXxS0KVMhSeGZl5bHWovItFKAz5hKIxs6ScPmmCuBE2RvJs++tqmNrUSOQAE+Y7bq2dDJ\nOG9iduVcwNlyxMXVkOdfVS9c5LAU4DOk3gqxl6vkicCN/1zKeq1KWrkAwJ9//jJxklCtVtQbF+mT\nAnyGfPbZS0SJo5Ssj/YotX3MFSLOzsW8udrkU194mcc/89Wp3mY2TdO+3oSq1YqmT8qxKcBnhHOO\np15YBxxld33c5fSEQZu56Cq+B098eY1WEFOrVcdd1pEtL1/h4598eiBvQltbm1y5cpmtrc19w77f\nN41b6U1k+inAZ8TrV6ssX2+xkG/hosnaRCoJKtw3v0WtlfKli47La8er76iBdtTnrlYrXLlyuReG\npfLcnl/fb2hWqxVWVpb55OdfotHYf8+Yer22728ue71mrVad6jdLgfy4C5DR+MzfLgFQjteYtFnX\njVqVVsvy0Nvfw0vrJ/ntT13mtZWQD7xvkdPzJebnF/D9/vsa9XqNP/6Lp/jQt76Xu+++91C1pGlK\nvV5jfn6hF4inTp2+6bkf/8xX+f5vfz+QhWCaptRqtV6ot5oNrl690vvabuA3GvXeNcvLy8zPz/Pg\ngzf+bt2QLRbTXrCWynOkaUqlskWappw6dRrf93vXnjp1unOt16v/K8+/SK5Q5v3vfmev7otX1jm1\nuUkhn+OOO+7i6a9d5vWLV3j04bsO1T4yWQ4McGPMB4HfBIrAH1hr/9PQq5KBWt5o8PSL1/DTNu36\nMoXC5J2GU8gXOJ0u8TZOUPPu5q+/co0nn7vG6bmERx88y5mFObbaOZqtNu97+wLve+j+fZ+vXC7f\n9OcsBCukKXu+GVSrFWq1Kp/+8oVeQG+3tbXJysoyYRjzheeXeG25xdpWiyiKqNYD/Hyec6fmqNRz\nXPvcCu+9P+FD3/JuABqNOp/49Ne4967beXO1wcsXNyB/gve/lvJND5yj5Cr4nkd57iRrlTovv77G\nykaDC6shrfAyV1bWue3cCX70sUeo1aosXblKlD9DK6ny8htXqNQC1isB/+eLl/jLZ1fB8/nRVo5v\n+8a386efeYPPvbjJySKcKbUoz1/h9eVsGulTr17g27+hzQ990JDP+b2/Z6NR58477+77jXP7G8r2\nNu++GR7mDVj657l9NtU3xnjAq8CHgZeAzwM/b639wj7P6dbWJvsm1OLiApNeIwymztQ5fuX3n+GN\n5TonWq+Qj66TLxQIgza+nxvI43K5RLsdHPv5cI7UpXi5PPe+4yEubJ2kFed2/Xvd+7YS73/XHZyd\ni3jg685z9x2Lvc9durLGRx9/nnZS4OH7TvLwvXluO3+aZ15e5jsfeWjPkKnXa1y9eoUvvbLB933g\nYQA8z+td/+Irb/D7T1jWm0VS199t4FIeFk8V2GymNNq3/u7j4JC3k++/a54TRXjpzRpxuvvX5rwU\n3/eIEo973lZiaT2gnE8IYg/XGTW9fT4mbFWpu9NEaY5HHjzPT33fe8nlcly4eIlPfeElHvu29/RC\nvPvmddttt5PP55mfX+D220+ztlajWq1wfXMLl5vjvrsXqW8blnn8M1/lg3/3HSwsnLqp3Udlin7W\njzSv4KAe+DcAm9barwEYYz4G/CCwX4DLBHnii6/zxnKdUrqFH6yBv3sgToJ8sUgYtPGcY+n1F0jD\ngDOn76DNSTy/QMFrEwYRSel2Lq8vcHn9Uucrr/K2UwXmiuDnCiytNUlS8LyQJ1+I+NwLKSeKKyyc\nKBG5S/zDR97FudNzOOe4cGWNP/rLF3FegWaQ0goSmmHKZ19+lmLe4x23lbjvzrO8slTjjeU6jhI5\nIsrRKif8Fu98W8xG+wRBq4GfL9FuVQljOLFwnkL5FJdrJ1m67ijnYubzKV93Dk7mmqxdrxGFTU7N\nn+BCZZ6FhdM4oNmOuGexxLVr67zjthKtJMfG+gaNyMebu53Xr2bj4b6LWMi1eOjuEnHrOheuFyif\nPEutusVcssodZ+d4oXIPS+twthwRrDzD2bkF0vLtxO0tmpUNCsUiC+SIz7yHp1/eYK70EknqeOqF\nNVya56U/+hrvvn+VraZjbbNBtd5mrnyNMIw4czLPfXef4/xCiTdXtrBXWkQJlIs+d50rcX6hwOmT\nBa5cj3nm5VUefldxLAH+VndQgN8NLG3782XgmwddRLUZkqbZbwK9tyHP2/b4pv/R+53BbX/scNn/\nduV5WW/KA4pzAbVmiHPZ7Izu1znnsmO+XOfaztf43o0/b792+9c4BznfI5/zSZ0jjlMckM/55HyP\nME6IE0fe9ygUciRJShinOOcoFXLkfI9mENMOE4p5jzQOiD2P5dXsB3aulMP3PKrNkGY75mS5wMKJ\nAtVGwOWVTcpzc7zt9BxBGPOVV69xea1FrRmwvNEi76fMR0sEx/+nGpl8sUjqUtL2Fvl0o9dbT8M2\nxXiDsvOJ8wu44mkSf57N2jzrzgdC/LTNfLJKIV4nyN9BULiNepinHiYsP7vOp55d59xCkUozIk66\n3zAhHo5iLsVzKafLPluNlBeXHC8uZYuMijQphKsUk+t4OMKgzfOVmLm5ecKgzekz5ykVSzQb16Fc\n5M5TDSrtOqXSCaJWA/BZ2ggJw4BiqUy+UKC2tcnp+XkePFWh3W6z4S3wjXed4XPX1ilHHvX2Cea8\nBmncpBhWoFbHL8wxV3Qk7ZjXX/G497wPjZjG5mvgUgI/x6V6hTLrFE/fS6F2jQiHT0I+WiZu1fE6\nb+Rh0CBeeYb8ub/HZ766CsB8CYIwoRqV+OLL2dBI3ktwziNOHGHqs1KFleqN2UzlXMxcMaYV+byx\nkvLGyo3TnuxKhcefqfC++1f4lofvoJRLOH/2FOARJymFvE+5mKfRiri6XqdSb/B1d5zjtrMncM4R\nJdl9A8/z8Ln5ZxPA9+jlxfaPA5QaIfXWzo3b5ucmbxjxKA4K8FvjcODdt7/68hJ/8JevDPppBcAl\nkEb4lZdpUsElDi8Xg3PEUTSwx3HOG+jz3fp4t7oLuSKueQ0vWGUuV6TeqFIulynmioRhQJLz8HNF\n0vqrzM8t4ed8ojAhyJ8nLt7ORqWM70L8qEku2aSU1PBdRBgFlAolmlHAyUKJ1D9BmpvjG79+jtcu\nb1CpbNHOeRRyxU4tHnEYEkcR169f6318c3ONa8ttiuUyaRgRhgFe5+sAojgA5wjDgKgS8vTmBlEY\nUCyXWbuaIwhiVpZjTsyd7H1tHIakYYBL2tQarvd8z79WpVgub6spa580bBBct6SdjzfSyk3X3GhP\nj1L1eeL8XRTSLaL1FXznKBVOEEUpxXwMSQwOwiRmfu4kQRjiF8rE3hxeGuO5Bvm5MnNhjB/HzC0s\ncvu5k1yr+Xi5AhTP8tzrGzz3+kaf37yXDr7kGL730fv4oQ/sfx9lGhwU4FeAe7b9+R5u7pHvxltc\nXOi7gB/+nof44e95qO/rRUQkc1CAPwecM8a8j+wm5o8APz/0qkRE5ED7zu2x1qbATwN/CrwO/JW1\n9qlRFCYiIvvbdxqhiIhMLs2uFxGZUgpwEZEppQAXEZlSx9rMyhhzCvgj4EGy6YX/1Fp77ZZr5oEt\noHvkykvW2u86zuseor5993ExxhSA3wa+FdgE/rm19uVR1HbIOn8W+K9Ad43yL1trf2vENX4M+C7g\nmrX24V0+PylteVCdY2/LTh33Ar8DGCAAfs1a+xu3XDPWNu2zxrG3Z2fLj6eBRbL1fh+31v7CLdeM\n/fuzzzoP1Z7H7YH/O+B5a+3XAx8HfnmP6y5Ya+/t/Deq8PaA3wJ+CHgn8J3GmEdvuezHgJK19h3A\nfwE+MoratuuzTgf8t21tOPLAAT4KfGifz4+9LTsOqnMS2rJbxy9Za+8FHgV+0Rhz64KIcbdpPzWO\nvT2ttQ54rNNOBvhmY8x333LZuNuy3zoP1Z7HDfDvB36v8/j3gH98zOcbpN4+LtbaBOju47Ld9vr/\nN/ANxpjccWqDAAADCElEQVSTI6wR+qsTDrvr0YBZa58k+01qL5PQlv3UCWNuSwBr7ZK19nOdx2uA\nBe685bKxtmmfNcJktOdq52GOLNdunV43Kd+fB9UJh2jP4wZ4b68Ua20VKHR+VbnVPcaY14wxXzbG\nfPiYr3no2joudz626zWdd8erwKg3SO6nToCfM8ZcMMb8mTHmnl0+P26T0Jb9mqi2NMY8ADxA9uv1\ndhPTpvvUCBPSnsaYF4B14Dlr7adu+fQkteV+dcIh2vPAADfGfMIY8ze7/Pcdu1zusfPdowm8y1r7\nTuAngf9pjHn7Qa87AEfZx2UcN3X7qfPjwH3A/cD/IxuXnHSTeoN8otrSGHMG+GPgp621jQMuH0ub\nHlDjxLSntfY9ZL8hvNMY88gBl4/t+/OAOg/Vnv3cxPwxdu/SN8n2SrkXeMEYcxoIrbXhLcWm3Hjn\ne84Y83ng/cDFPl77OPrZx6Vb/3Odseg7yd6ZR+nAOrf92oUx5teBfz+a0g5lEtryQJPUlsaYMvAJ\n4CPW2id2uWTsbXpQjZPUngDW2oox5gngMW7+bWHsbbndXnUetj0PfBey1tastdVd/ouBx4Gf6Fz6\nE2T/0BhjFowx39V5fEdntgrGmPvJtqN9oe+/6dH19nHpDOv8CPAJY8x7O78O0qn/xzuPvx/4Sh+9\noJHXaYx5V+ebDrJ2fm7ENe7KGPPwhLXlrrbXOSltaYzJAX8CfNJa+7vbPj4xbdpPjZPQnsaYRWPM\nfZ3HZ4AfAF6ctJ/1fuo8bHse99eIXwXeY4x5E/gnwH/ufPw+btzlfTfwt8aYJeAvgP9grX3tmK97\noH32cflxshOGAH4fCIwxl4FfAv7NsOs6Yp3/Gljq1Plh4KdGXacx5s+AJ7OH5rIx5l8C/4IbN67H\n3pYH1DkxbdnxAbLe18906rzcuT80SW26X42T1J5ngMc7GfMV4NPW2j9kwn7W+6zzUO2pvVBERKbU\npN5oEhGRAyjARUSmlAJcRGRKKcBFRKaUAlxEZEopwEVEppQCXERkSinARUSm1P8H+86nKiztbGYA\nAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x7f1c79fa1c18>"
]
}
],
"prompt_number": 48
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# posterior of the shape parameter a of the 'bad' distribution\n",
"# true value is 60\n",
"sns.distplot(sampler.flatchain.T[2])"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 55,
"text": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f1c08c39be0>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEDCAYAAADTIbj3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlwnOd92PHv++6NxU2AJECQFEWKjw6KomxLtpQothTZ\nVhOblu3aTaVxbKdxm6apW7dxZjLVxG6nk2ljJ6nTxFHsyIlUyYktxZaow1IkkpItUSdJiPfDCyRx\nnwvsLvbe9+0f7y4FgrixxF6/zwyHu+8+++5vgcX72+c2bNtGCCFEdTKLHYAQQojikSQghBBVTJKA\nEEJUMUkCQghRxSQJCCFEFZMkIIQQVcw9XwGl1J3Ag4AXeExr/cC0xz3AQ8AdQAi4T2t9IvfYZuAH\nwDVABPiw1nqgoO9ACCHEks1ZE1BKGcD3gc8CW4C7lVK3TSv2BcCntd4EfAP4zpTHfgQ8qLVuB24H\nJgoVuBBCiOWbryawAwhprY8AKKUeBT4DvD6lzE7ge7nbzwB/q5QKAjcAptb6HwC01qOFDFwIIcTy\nzZcE1gE9U+5343yjn7GM1tpWSvXljm0F+pVSTwNXAz8D/kBrbRUicCGEEMs3X8fw9DUlXAs8p42T\nYO4AvgbcDFwP/OZiAxRCCHHlzFcT6AU6ptzv4NKaQb7MeuBQrg+hDejDqTUc0lqfBlBK7cJpXpqV\nbdu2YRgLj14IIQTAki+c8yWBQ0CzUmo7cBy4H/iaUmobkNJanwR2AV8EnsXpH+jUWk8qpV4F1iql\n2oBB4G6cJqHZ34VhMDwcWep7WTGtrXUSZwFJnIVTDjGCxFlora11S37unM1Bufb7rwBPAGeA3Vrr\nfTgX/XtzxR4BkkqpbuCbwFdzz00C/xnYi5NARoG/W3KkQgghCs4osaWk7XLJuhJn4UichVMOMYLE\nWWitrXVLbg6SGcNCCFHFJAkIIUQVkyQghBBVTJKAEEJUMUkCQghRxSQJCCFEFZMkIIQQVUySgBBC\nVDFJAkIIUcUkCQghRBWTJCCEEFVMkoAQQlQxSQJCCFHFJAkIIUQVkyQghBBVTJKAEEJUMUkCQghR\nxSQJCCFEFZMkIIQQVUySgBBCVDFJAqIgLMsiHJ7AsqxihyKEWARJAqIgotEIu15+l2g0UuxQhBCL\n4C52AKK8WZZFNBrBsiz8/kCxwxFCLJLUBMSy5GsAk5PRYocihFgCSQJi2aQGIET5kiQghBBVTJKA\nEEJUMUkCQghRxRY0OkgpdSfwIOAFHtNaPzDtcQ/wEHAHEALu01qfUErVAuNAf67oca31xwoVvBBC\niOWZNwkopQzg+8C9wHHgNaXUs1rr16cU+wLg01pvUkp9EvgO8PHcY11a62sKHLcQQogCWEhz0A4g\npLU+orXOAo8Cn5lWZifwcO72M8AOpVSwcGEKIYS4EhaSBNYBPVPud+eOzVhGa20DfUB77rEOpdRp\npdR+pdS9y4xXCCFEAS0kCdjT7rsWcd4YcI3WegvwZeC7SqmrFh6eEEKIK2khHcO9QMeU+x1cWjPI\nl1kPHMr1IbQBfVpri/dqCIeUUq8BNwHnZnux1ta6BQdfTBKnw+u1CNb4aG6uzf0fxDQt6urqMM2F\nDz6Tn2fhlEOMIHGWioUkgUNAs1JqO07H8P3A15RS24CU1voksAv4IvAsTv9Ap9Z6Uim1FohprcNK\nqc3A7cAfzvViw8OlvwBZa2udxJkTDkeYjCUZHY0QnUxw/nw/e/d3sfMjN1Ff31AycRZCOcRZDjGC\nxFloy0lU835Vy32b/wrwBHAG2K213odz0c+38T8CJJVS3cA3ga/mjl8HHFRK9QDPAX+otT695GhF\nSRoYT/Otf+riYFcCkGUkhCgnC5onoLXeA2ydduzrU25ncIaJTn/eXmDzMmMUJSqZSvP3z5+k86xz\n8Y/E4fxQvMhRCSEWQ2YMiyV7+tUzdJ6NEPRabGyIAbDn3dEiRyWEWAzZT0DMKr9XQG3t5Z28iVSG\nl98dxG3CDWszuEw3kYzB2YE4rXXSHCREuZCagJjVXLuF7T3YSyyZpaMZXLlP0aZW58ap/hS2PX1k\nsRCiFEkSEHOaqZM3lc7y/JsX8HlM1k0ZANRQY3JNew1j0Sx9o7P3Dch+xEKUDkkCYtFeebePSCxN\nS00KK5u65LGbN9cDcOjs+KzPl/2IhSgdkgTEguS/vQ+HYjz587N43QYbV13epXRNew2mAYe7Zk8C\nIMNIhSgV0jEsFiQajfDU3k4uTASIp7JsXpXGti5t97csi3QyxqpaF32jcYbH47Q2ysVeiFImNQGx\nYH0TLs70RblufZCOZs9ljycTcXa/qWmude4fPDWywhEKIRZLkoCYk2VZRCJhXj08xMm+FLUBF0HG\nSKVTM5b3+gK01BkYwMGTwysbrBBi0SQJiDnF45N89ynNE7/oxuM2uO/DbdQF/XM+x+c22LgmyMme\ncfoGR2UUkBAlTJKAmFP3GPSHTVY3erld1bC+dWFt/NuvbsS24dHnD8soICFKmCQBMatkOkv3GLhN\n+O2PdVDjW/jHZceWJkwTLozZZLO2zA0QokRJEhAzsiyLPft7SGdh/SqTgM+V6x+IXDYqaCbNdT5u\nu66VWNLmLT1y2dyAfF+DZVmSIIQoIkkCYkZjoQl2dw7jMmw6mp2PSTIRY/ebmmRq5k7h6T72gbWY\nBjz/dj/pjHXJ3IBkIsbzrx0nGo0QicjkMSGKRZKAuIxlWew90E3GMlhbb+FxGRcf8/oWPu6/Iejl\nqtVeJibTvLi/n6xlX6wB2JaNb0pSkMljQhSHTBYTl4lGI7x8aAjTMGirzy6qGWi6q9d46R/P8s/7\nBzANODOkMVITNAdtgu7L5xoIIVaW1ATEZSYTGeJpkzqfjcf13iSwhTYDTeV1G/ynTyvu2rGGoN/k\ndF+MUyMe9nd7GA5nL/YLCCGKQ5KAuExXfxSAOv97F+fFNANNZVkWQU+aT3yonTuuC/LVnRtZ3wRZ\nC3R/lud+cZxIRPoChCgWSQLiMmdySaDet/w9AfIdwJOTzjlbG7xsWWPQVm+RyhoMx73Lfg0hxNJJ\nEhCXOdsfxQBqC5AEgEs6gPPaG7K4TJtzIxbxZLYgryOEWDxJAuISyXSW7uFJav3v7Rh2JXhcsK4+\nSyYLL+4fvHIvJISYkyQBcYmuvjCWBY01V/611tZbeN2wt3OYdFa2oxSiGCQJiEuc7HE2g2lYgWH7\nLhM6mkxSaYu+sfSVf0EhxGUkCQjgvZ3Djp8bBZaXBPITwvKTwuaaZ9DWaDprDI2kZXN6IYpAkoAA\nnAliL7xxitO9YVrqPXjdxvxPmkUyEeeVAxfY+85ZkqnUxXkG8UT8smTg8xhs39RAJG5xfihWiLci\nhFgESQLiogw+sha0NbmXNDt4Kn+gBn8gePG+1xeYddLZL9/YAsC+o7IJjRArTZKAuGhi0mmXHw+N\nLWl28ELMNOlMbaijxmtw8PQYsYT0DQixkiQJiIvCsQwAdYGVXVLKNAzWt3hIZ2zeODbzcFFZblqI\nK0OSgLgonwQCnpXvoF23yoNpwKuH+md8fPp+BEKIwpj3K59S6k7gQcALPKa1fmDa4x7gIeAOIATc\np7U+MeXxGuAo8KrW+gsFjF0UWDiWxuMy8LhW/rW9LrhmXRDdE+HE2X62XrUG07z0O4osNy1E4c1Z\nE1BKGcD3gc8CW4C7lVK3TSv2BcCntd4EfAP4zrTHvwG8Dsj4vxKWzlhE41lqAybG0gcGLVkyEcNI\nhwH44YvH6e/vlaYfIVbAfM1BO4CQ1vqI1joLPAp8ZlqZncDDudvPADuUUkEApdQNwFbgKaAIlxax\nUIPjCQDq/MVrIVzb7CPodzEYhudePS5NP0KsgPn+4tcBPVPud+eOzVhGa20DfUB7rhbxZ8B/KUyo\n4koaGIsDUOsvQltQjmkY7Li6jnQWImlf0eIQoprM1ycwvQlnIVcIE+db/5eAN7TWXUqpDy40oNbW\nuoUWLapKitOyLIbGnSTQ2uTFk13+8s7BoB/LSpNKzH2uQI1zsa8J+MAw2b6hjteOjTMQhpaWOhoa\nnPi9XouA34PHY7FqVfCy/oKVUg6/93KIESTOUjFfEugFOqbc7+DSmkG+zHrgUO7bfxtObeCDwK8p\npX4TCAIBpdRfaq1/b64XHB4u/SaA1ta6ioozHJ7g7aN9gAs3FpOx5c8R8E8msKzsvOeySAIQiydJ\nJJL8or+fel8dI2E4fHIIdZWZizHC2FiIHz49xOfuMamvb5j5fJZFNBqhtrau4ImiHH7v5RAjSJyF\ntpxENV8SOAQ0K6W2A8eB+4GvKaW2ASmt9UlgF/BF4Fmc/oFOrXUU+J38SZRS/wr4xHwJQBRPIuPC\n6zbweUyKuXiD1xegrT5LeNjk54eGUFetveTx/N4E0y/2+XkEkUiYl/ef41N37Zg1UQgh3jPnVyWt\ntQV8BXgCOAPs1lrvw7no35sr9giQVEp1A98EvjrL6WR0UIlKpS3i6eL2B0zVVGPj98A7J0eJxmee\nQTx93kA0GuHx599g154DGEVqKhKiHM07T0BrvQdnhM/UY1+fcjuDM0x0rnP8CPjREmMUV5BlWXT1\njgBQFyiNJGAY0NFscnrQ4pXOXn79tqtmLDd93oDf70cGoQmxOPKVqcpFoxFefOssAHWBlf84OM04\n4csWrGtvNPF5TF56p4fRicSKxyVEtZAkIEjZHqA4zUHJRJznXjl62YJ1bpfB3e9by8Rkij9+dD/9\no/EVj02IaiBJQBDPXX+DReoT8Pn9Mx7/6Pvb+PydWwhFkvzFk5quEZtYUrqWhCgkSQKCeAoMw8bv\nKb329Hs+uIGvfOJ6slmbcyPwxpkMf/ezk6Qz2WKHJkRFWNk1g0XJsW2beBr8bhvDMCjFHR5v27aW\nzWu9PPxsJxdGLd7tiuDafZY19SUYrBBlRmoCVW4ykSVrgb/Evw74vS7WNhhcvzZDnd/gwJkwx7oT\nsseAEMskSaDKjYSdGbv+IuwhMJf8ZvXTL/BuE27a4KK1wcv5kQx/+eRJxicmihSlEOVPkkCVG53I\nJQF3aSWBZCLO86/NvJKo123wWx9dR50fhqImf/PMaU71Rkhl7JJszhKilJV4I4C40oZzY/BLrSYA\n7y0RMZPagJubN8CxfoNTvRFO9TrJoqnGzY6a0nsvQpQqSQJVbjTXHOQrsZrAQrhMgxs7XGzcsIHe\n4RivHx0gFDPpDUkfgRALJc1BVW5kIokB+Erw68Bs/QLO8Qi25Yxo2rG5iV//0Dq2rweXaXNmyCIU\nWf5KqEJUA0kCVcyyLIbHE/g8YJbeFIFZ+wWSiTi739SXzTL2uQ2uanJGO/3olfPY0kEgxLwkCVSx\n0dA40UQWn6t0m09m6xfw+mY+3lpr0Rw0OHEhjL4wfiVDE6IiSBKoYhdHBpVgp/BSGQZsbHE+1vuO\nDBQ5GiFKnySBKjZcosNDl6uxxqCp1svbeohkWpaXEGIukgSqWH5kUKUlAcMw+IBqJpnKcvDUcLHD\nEaKkSRKoYiO5moDPU+RAroAPbF0FSJOQEPORJFDFRsqgJpAfJhqJXL7xzFzWNPnZ1FbP0a4xegZG\nZH0hIWYhSaCKjUwk8brBVcKfgmQizisHLrD3nbOXDQnNyyeK6Uni9m1rsW14+LnD9Pf3SiIQYgYl\n/OcvrqRM1iIUTREog6Ygf6AGfyA46+OTk1Ge+8WRy5LErdetxjRhcMKedR0iIaqdJIEqNRyKYdvg\nL4MksBD+abuTWZaFnYlz/YYGoklIM/PuZUJUO0kCVep8/xgAXjNT5EiWZ+oSElOPDQz089SeTrZt\ncCaVDUxIU5AQM5EkUKXeGx5a5ECWaaYlJPLHDNNEdQRxm04SsBbRsSxEtZAkUKXeGx5a/hfGmZaQ\nyB9zu0xW10Mqw8XlpoUQ75EkUKVGKnS28EzW1jv/v61HixuIECVIkkCVGgkncZvOdo2VKt9fUOeD\ngAcOnR0nFk/JvsRCTFHBlwAxG8u2GQ0nCXidBdcqVb5vIJVOsbbRJJWxeO1wN7tefleGiwqRI0mg\nCo1HkmSydlnMEViufN/A2gbno/7WiVH8c2xbKUS1mXdsiFLqTuBBwAs8prV+YNrjHuAh4A4gBNyn\ntT6hlFoLPA80ADbwV1rrPy1w/GIJBsYmgcqZI7AQPrfNVWsCnOmL0tFQU+xwhCgZc9YElFIG8H3g\ns8AW4G6l1G3Tin0B8GmtNwHfAL6TOz4GfDh3fAfwu0qprYUMXixNz4Cz2YrHKO85AouRTMSpcaUB\nuDCSKHI0QpSO+ZqDdgAhrfURrXUWeBT4zLQyO4GHc7efAXYopYJa65TWeiJ33AsYuX+iyPILx1XC\n8NDF2LCmFpcJA+OWbD0pRM58SWAd0DPlfnfu2IxltNY20Ae0Ayil1iilNNALPKS11oUIWixPNQ0P\nncrtMljT6CGehtN90WKHI0RJmK9PYPpVwrWAc15MLFrrQUAppdqAp5RSj2mtz8315NbWugW8RPGV\nc5zjsTSmAU113ktGBwWDfiwrTSrhXfbrLvZcwZrZyxUqrmDQz7XrLfrGJnjl0DD3/Mp1iz5HOfze\nyyFGkDhLxXxJoBfomHK/g0trBvky64FDuT6ENpzawEVa636l1DvAr+J0Is9qeLj0h+61ttaVbZy2\nbTMwGsfvgVj80lU3/ZMJLCvLZGzmJZsXYzHnCtZ45yxXqLj8kwn8LpumoMGRrhBvdPaweV0DlmUR\njUaora3DNGevHJfD770cYgSJs9CWk6jmaw46BDQrpbbnRgHdDzyplNo2pZN3F/DF3O2dQKfWelIp\ntVEp1QqglGoHPgocW3KkoiDCk0kSqWxVDA+dzVW5jeif3ncOgGg0InMHRNWaMwlorS3gK8ATwBlg\nt9Z6H85F/95csUeApFKqG/gm8NXc8fXAL5RSPcDPgb/QWr9e8HcgFuXi6qGu6t2AvSlosrm9lkNn\nRjk3EAaQuQOias07T0BrvQfYOu3Y16fczuAME53+vFeBawsQoyig0SrtFJ7uY+9v46/7TvHwz07w\nm3euubgU9UKbhoSoFPIprzLDE84YeV+VJ4GtHXX88o1tnB+M8pdPnSSedH4u0jQkqo0kgSpzcR+B\nKpsjMJ1hGPzmPQrVUUco7uLUwHsLyknTkKgmkgSqzMhEEgPwlflmMoXgdpl8+Z7NBH3QG7I4cSFc\n7JCEWHGSBKrMaDiJzwNmFc/dtiyLiYlxxsZGScYjXLvGOf7jV86RTFXPUhpCwAI6hkXlSKQyhGMZ\nmqp8/bRkIs6uPQcu3vf6AqytczEQgRfe7sa/kCmRQlQIqQlUkeFxp/MzsPwJwWXP6wtc/AewvimL\n1wWvHB5jMl69w2dF9ZEkUEWGQnGAqp4oNhu3CRuaMmQt6BqSVUZF9ZAkUEWGxmOA1ARmsypo4TJt\nBiYsslZ1j54S1UOSQBUZlprAnEwDWoIWqQzo7jCWZcl+xKLiSRKoEpZl0ZdbCMsvwwFmtbrWueC/\ndWJUJo6JqiCXgyoRjUY4PxjGbdpkMjIMcjZBr03QB4e7xplMZGTimKh4UhOoEpmsRTJjSFPQPAwD\n2hpMspbNwdNjxQ5HiCtOkkCVCEWctfirfeG4hVjTYGIaTpOQEJVOkkCVGJ6QNYMWyuOy2dJew4Wh\nGBGZMyAqnPQJVIn8wnGyZtD8kok4RjoFuOgdTRc7HCGuKKkJVIkRqQksSluzj4DXpHcsI3MGREWT\nJFAFLMuifzQKSJ/AQpmmwfZNdSQzNrpbVhcVlUuSQBWIRiNcGIziNm08sjjagt28uR6QDmJR2SQJ\nVIGsZZPMmFILWKT2Zh+1fpPDXeOEIslihyPEFSFJoAqEIilspD9gsQzDYNNqD1nL5qe/OFvscIS4\nIiQJVIH8vsKSBBavY5WHtmY/rx3qp6tvotjhCFFwkgSqQH5kUECGhy6aYRjsvL0DG/jB00dlQTlR\ncSQJVIHhcRkeuliWZRGJRLAtm+s2NHDDpmY6Tw7z0NMHZUE5UVEkCVQBaQ5avGQizu43NclUEsuy\n+MSta/G4DI73WpztGZHagKgYkgSqwPBEEo/L2T1LLFx+68nJyShvvnuCT/9SKxkLvvezcwyNhmS/\nAVER5LJQ4TJZi7FwUnYTW6J8sxCWRX/PBdrrsyTSBo+82EU4HJb9BkTZk67CCjc6kcCyoUaWkF6S\nfLOQ1xcgWONnQ1OKpOXmxIUwT7/RS0D2GxBlTmoCFW4wJPsKL1e+WQic/QZuWOdidaOPvZ2D9MgC\nc6LMLagmoJS6E3gQ8AKPaa0fmPa4B3gIuAMIAfdprU8opW4C/hpYD0wCD2itnyhg/GIeg2O5fYUl\nCRSM22Xw27+2hT974gRHLiQYDCWor28odlhCLMm8NQGllAF8H/gssAW4Wyl127RiXwB8WutNwDeA\n7+SOZ4B/r7VeD3wS+BulVH2hghfzy9cEaiQJFNTqRj+/cedGLBt++otz0jksytZCmoN2ACGt9RGt\ndRZ4FPjMtDI7gYdzt58Bdiilglrro1rrdwG01qdwagkthQldLMRQKFcTkD6BgnE6i8Nc3WrSEIAT\nPZO8euAk4+MhSQai7CwkCawDeqbc784dm7GM1toG+oD2qQWUUr8CxLXWsgjLChoMxaj1u3AZxY6k\nciQTcV45cIGX93exodHpE/jxy9088cLbMlJIlJ2F9AlMn2G0kMWIL0kuSqkNOE1Kn5/via2tdQs4\nffGVQ5zJdJaRiQQNAXC7we2eu00oGPRjWWlSieW3HS32XME52qsKFVchzpOPc1VLM5aVxjRGGI7B\nwISLOD5aWupoaCjuZ6McPpsgcZaKhSSBXqBjyv0OLq0Z5MusBw7l+hDacGoDKKVWAbuA38s3Dc1l\neLj0v0m1ttaVRZwTySy2DUEvTMZS85b3TyawrOyCyhbyXMEa75zlChXXcs8zNc6p52qvg4EJD6f6\nkwwPh0mlijforlw+mxJnYS0nUS3k03oIaFZKbc+NArofeFIptU0ptTVXZhfwxdztnUCn1npSKVUL\nPAv8b631i0uOUizJ+X5nR6ygr8iBVDifG5prbKIJODc4WexwhFiUeZOA1toCvgI8AZwBdmut9+Fc\n9O/NFXsESCqluoFvAl/NHf888D7gT5RS3bl/7y/sWxCzOSdJYMWsrcsC8Orh4SJHIsTiLGiegNZ6\nD7B12rGvT7mdwRkmOv15PwB+sMwYxRLlawK1PsjInKYrqt5vU+OFzjMhJiZTNARlTK4oDzJjuIKd\nHwjTVOvFLUODrjjDgHVNBlnL5pXO3mKHI8SCSRKoUNF4mrFwkrZmf7FDqRqNviSmYbNnfzfJVKbY\n4QixIJIEKlTvcBSAtlWywNlKcZuwps4iHMvw8oFzxQ5HiAWRJFCheoadUSqSBFZWe30W04CXDgyQ\nldnDogxIEqhQPbmaQHuzJIGV5HVDW6PJaDjFG0cHix2OEPOSJFCheoaimAa0NMgolZW2scXENOHZ\n189jWbKlpyhtkgQqkG3b9AxHqfEZJBOxYodTdfweg1u2rmJgLMau17qKHY4Qc5IkUIFGwwmSaYvG\noIdIJIIt30ZXlGVZ3LLJhd8Du147xxtHBwiHJ8hkMrInsSg5kgQqUPeQ0x9Q47XY/aYmmVr+WkBi\n4ZKJOK93nmL7ejc+j8kPnjvO3z9zkMHBfp7cc5D+/l5JBKJkSBKoQGd6nZnCjTXGJVsjipXj9QWo\n9Rt8/o61ZLIWnRcsXjgwgmVZPP/acVlyWpQMSQIV6HTvBIYBjUH59Rbb1nVBbt5g4PfAq0dD7D8H\nWdOPZVnSNCRKglwlKkwma9HVH6atOYBHlosoCY01Bh/c7ObWrQ1MpuCdrgxHzgyx6+V3pUYgik6S\nQIU5PxghnbHoWOXFtqVDuJicbSidjnmXafDJD65GrYVsFv7+pV4iSdnzUxSfJIEKc7pnAoCxsRFS\nqWSRo6luyUT8so759kaDHRtdmIZB57k4o2H5HYnikiRQYU73jAOwqk6+ZZaCmTrmGwLwq9vrSGfh\n7184SzqTLUJkQjgkCVQQ27Y51TOOx2VjWDIstJRMbRpKJuIMD3TT1mjQPRzjx3vOSEexKJoFbSoj\nysNQKEY4lqG11sCQPuGSkm8aytcMfP4AWxtdWIabPQd6uLoVTp/v51N37aC+vqHI0YpqIjWBCnLk\njLNgWdAra9mXoulNQy7T4JO3tmADP3y5B1sytygCSQIVpKvfmSlc55NRQeXAsiyaAxk2ralhMgkX\nRqQpSKw8SQIV5GRPBJcJNV5JAuUg30S0tc2Dz23QNWLR3T8q/QJiRUkSqBCDoRgj4STNNWBKq0LZ\n8PoCeNwm167zYdvwyItnZQKZWFGSBCrE4TOjADTXFjkQsSTtzR6CXovhqEn3sCz/LVaOJIEKcaRr\nDIDmYJEDEUtiGAYbm5z5Arv29chsb7FiJAlUgHQmy4nzIdY2+fF7pC2oXDUEbJqDBqd6I7x7ekTm\nDYgVIUmgApzsniCVsbhug4wvL3ebVxuYBjz6z5qf7umU/gFxxUkSqACHzzr9ARtb3bKLWJlz2wna\nGizGIim6x+TPU1x58imrAIfPjuJxGRzTZ2QXsQqwZa2XploPXUNpekakk1hcWZIEytxgKEb/aIxa\nbwaXS36dlcBlGuz8YCs28OiLXUTj6WKHJCrYgtYOUkrdCTwIeIHHtNYPTHvcAzwE3AGEgPu01ieU\nUi7gOeBW4FWt9ScLGbyAt44PAbCm0QXIapSVwLIs1tRZXNXq4dxwgm//w35+/zd2YGWS1NbWYZqS\n7EXhzPtpUkoZwPeBzwJbgLuVUrdNK/YFwKe13gR8A/hO7rgF/C/gS4UKWFzq7eODuEyDVpkfUDHy\nM4k3tdjcvLmOC0Mx/uxHB/nJEjqKZXVSMZ+FfKXYAYS01ke01lngUeAz08rsBB7O3X4G2KGUCmqt\nba31XmCyYBGLi/pGJukZnuS6DfW4ZSvJiuL1BTAMg099aA1rG92cG4xz6ILNZGJxiwNGoxHZxlLM\naSFJYB3QM+V+d+7YjGW01jbQB7QXIkAxu7dPOE1BO7Y0FTkScaW4TIPtG73csN7PeMzi//5UE4os\nbjcyv/9X4D4lAAATCElEQVTyjW2EyFtIEpg+5tBVoPOKJchX77PZLG8dH8TjMriqxSVDQytQfiOa\nVDyGLz1IR7PJQCjB/3z4bU6d67+kiWdqs480AYnFWEjHcC/QMeV+B5fWDPJl1gOHcn0IbTi1gbwF\nX6FaW+sWWrSoihXnxMQET+05wYfedy39ozHWrfLSeaoftxvcbu9l5YM1lx+bTTDox7LSpBILf06h\nzjVXnIWKqxDnyce5Mj+rLK8fOofP76e5uYG1Ph/XbvTz0sEQf/r4cf7ot2q46VrnTzP/ufhXLXX4\n/Ti3f+0W/P46gjU+WlrqaGgorb8t+VsvDQtJAoeAZqXUduA4cD/wNaXUNiCltT4J7AK+CDyL0z/Q\nqbWe2g+w4Abr4eHSb7tsba0rWpzhcIR0Bp55+QQAaxo8WLaLydjl8wOCNd4Zj8/GP5nAsrKLek4h\nzjVfnIWKa7nnmRrnyv2sTDK545OxFKnkAJuag3SNufnmDw7wqV8Ocft1jRjYZC2nAj4yEiFrmYyM\nRHLPSzIyEiGVKp0KejH/hhajnOJcqnmTgNbaUkp9BXgC8AOPaq33KaW+BQwDfwI8AtyplOoGRoB/\nnX++UuptYCNQm3v8t7TWLy45YkEiPsmBM1lMw2R1gwdnEJaoBl5fgLU+i9qgi64Rg3965SwvvAG3\nqGYikxkOnxmjfyhCz2iat/UIhpUik3E+H5ZlEY1GZJipuMSC5glorfcAW6cd+/qU2xmcYaIzPfeW\n5QQoLhdNQjLrYlVNFrfLQJp+q8+qIHzitg282BninZMh9h5yVpF958yhi2UOnT8PgNcN/uAAv7Qt\nywuvHWHnR26SfYzFRbLRfBkaytVOVwXl6l+tkok4L791grt2bKDBG6R9dQNvHB/hJtUOVpYTXYO0\nr/Jz7HyY/gnY9Xovb54Y5fp2X7FDFyVGkkCZsW2b4TCYhk1jQEYEVbvdb2oamlrYui7I6HiEe3/l\nKkZGIowO9TA6OMz6hgCbVtdguRt57egI4xGD998Q43qpCYgcaRgsMz0jceJpaKqxkKWChNcXuDiU\ndPowYa/PmR/gcRnc874mrmrKkMzY/N+fak52h4oRrihBchkpM52nnbbfVTXSFCQc+WUmkqmZJ5Hl\nk8RVrW6uac2QTGf58x+/y8nukMwnEJIEyolt2xw8HcJlQpM0BYkp8jWCiYkJIpHwJbWC95JEipag\nxbYON+mMxZ//+F0eeVY2rql2kgTKyNm+CcYiKVYFQUb4iemSiTgvvH6Gve+cvWxfiXzTEEBLLXzu\njrWksxadF7K8c7xfagNVTC4lZWTf4V4AmgKyvryYWSAQxB8IzlkmmYjT09PD/R9xlvd6bG8vL+w7\nIYmgSkkSKBO2bdOZawqSUUFiuTxeH231Fts7wDTg8Vf7eeWdk5IIqpAkgTJxti9MKJqitdb5oxVi\nOfL9BAFXimvXZDAMp0Zw5MzAJeVkMbrKJ0mgTLx1fBBANo8RBZPvJ6j322xtzWDbBt975hQ9w9GL\nZWQ/gsonSaAMWLad20HMpsYjG8mLwmuusbm23UUsmeVPfniA3imLpsl+BJVNkkAZOHF+jPHJNK21\nhjQFiSumrdHkk7e2Eo1n+NY/dDIwFpu1rDQTVQ5JAmXg5QPdAKyqkVFB4sqxLIvr2l2oNg/hWJo/\n/n/7OT84886w0kxUOSQJlLhYIs27Z0IEPFDnk1FB4srJdxY3+ybZ3JJlMpHmr546ydDEzPsaSzNR\nZZAkUOLeODpAOmuztgEMaQoSV1i+s3jjaj+/dc9mbNtm/5k4r3T2SNNPhZIkUOJe6ewFbJr90iEs\nVtaNmxr53Z1bcZnw032D/OTlk2QyWekLqDCylHQJ6x6K0j0cY1XQwCu/KbGCnEXnwrTUws3r4VAf\nPPdWH++cHKMlmOJzH7662CGKApFLSwl79vVzALQ1FjUMUYWSiTivHLiAZWVwGyk+cFUNWXcDb+lR\nhsbhj390hvoaE3/NEB+9tYZkIibbVpYpSQIl6ti5Md46PsTGNUFaaidJzrxKsBBXjD9Qg2Vlicfj\neFw293ygmV+9eQ2PvXSKeMpgcDzFT17tZveBftrqs/z2p27C7XJJMigz8psqQemMxaP/fBLDgH/5\nKxswpEdYFFkyEef5147jd6W5vsPP731yI3feUMOtW4KEY2lODNg8uOskj78kS1OXG0kCJej5N88z\nMBbj9utbWLfKX+xwhACcRecikQjZTNbZySwdIzvZx80daVbVGpzuj/H2WYv9p8awbGc4c35S2fh4\niPHxkHQolyBpDioxbx8f5MlXu/CYNqlwHwMD7su2DRSiGPLzCLy+ALvf7MfrC1wcUrp9vYtAsImf\n7R/m/73Yxe6Dg9x102quWVfLW0e7iceiJJNJPnfPB6mX/Y1LiiSBEmBZFtFohDMDSb739FEMbNSa\nDG4XF//ohCgF+c/i9M+kbdts63AxOgJdIxb9ozEe3X0OgLqAm/WrPLTWFr5ZM/+3I/0QSyc/tRIQ\njUb4u6cP8tdPHcWyba5dk7k4O1gSgCgH+VqCSYptG3x8dedGrmnzsGm1l1gyw7GeBK+fyvDakWFs\nu3A1W1m+YvkkCZSAg6fHONRtgW1zY7tBg1+af0T5uWQLy3ovHQ0Zml3D3HVjA5vXeMna8PjPL/Bn\nP+rkbPdgwfoHZPmK5ZEkUGR7D/byyD93YZpwdWOUoCwVLcqcM9Esgm3ZeH0BfB4Ttc7PrZtMrmmv\n4ei5EP/1L97gH188Tt/gaMGSgaxsujTSJzCHK9XeaFkW4UiYp1/vZW/nILUBN9euyeDBW7DXEKJY\npnYgXyKboM4KsaHBw+BkkJcODrK3cxC1vp5r1jfTWm+yutFHY60Ht8tFfX3DvH93kVia8cks3cMx\nvKEErx04xkdv3UJb2zrpI1ggSQKzsCyL/v5e9rx9lk/dtWPOEQ2LTRZDoyG+809HGRzP0FLv4f6P\ntPHuiQskpRIgKsRsfVk+f4B1frh+k59U1s0bOsqxC2GOXQhfLOMybBprbD7+wat537XtNNe/N0w6\na1mc7Qtz+Owoh8+McX7Q6QvYp4/nngvvntd8aFuUHVvX0Fpn0NgwfzKpZvMmAaXUncCDgBd4TGv9\nwLTHPcBDwB1ACLhPa30i99hvAP8Tp9np21rr7xY2/MKaejGPRiM894sjBGpqseYZopnvnNr5kZvm\nHf6mL4R48KmjTExmWFXrYl1glFffHpEOYFFVMqk4E6EJbr26mRs2NfPS273EMiaxtEE0YTI6afLD\nPef44Z5zNNf5aAi6SaZtxiIJEimnucdlGmxaE8DOpmlrCZJIWeieCBMJkxfe6eeFd/oxDdjcVsOO\nrW1c3V5PR2uQbDouo4mmmDMJKKUM4PvAvcBx4DWl1LNa69enFPsC4NNab1JKfRL4DvBxpVQd8G3g\nFiAKHFRK7dJa91yJN1II0WiEJ17qZOP69Zy4EOZYn49UJs2eYwdoqvVw9bpGrm6vZ4dajTsbZ1VT\n48UP0nydU4NjMXa91sUbxwaxbZut7QGuXuNhIhRfibcmRMnx+gIkE3He6DxNc22AZpyLu21nyZp+\ngjVBDp+LEEumGIsk8XsMXKbBukYDvxGlzpvBZYI3ECA1MYoJ3NQewPT42dC+hu7RNAdOjnCqL8ap\nvjMXXzfgga3rG+lorWHT2iAbVtfQ3NRUtUlhvprADiCktT4CoJR6FPgMMDUJ7AS+l7v9DPC3Sqla\n4G5gn9a6P/fcJ4FPAX9VuPCXL53JcORUP8e7w5y4EKZnJMurJ88B4DbB57Iw3RbRmM1+Pcx+Pczj\ne50PVMBr0lwfoNZvEo3FSdo9NASHWN1ch8ftAqB7OMqxsyOc7otg2RDwWFy9Ksum9gCWlS3W2xai\nZEyvBRsGuO0EkbEQW1udROH1BUin4rStuwrLyhIaSwKeGc9hpROcO3+eO3ZswJ2CcCxFKJohlnYR\nS7uIZ9y8e3acd8+O517P5qrVNWzbvJprNzRx9boGfB7Xirz3UjBfElgHTP3m3g3cPlsZrbWtlOoD\n2nP/eqc9d91cL5bNWoRjKWzLxrKdCSiWbWPbvPe/5RzLZm0ylkU2a5POZIlGoxiGQW1tEJdpYpoG\npmFgGAbZbJbQRBRcHpIpi3gyw/BEnO7BMN1DMeIp52JsGtAYgHp/hrt2rKGrZ5RU2tlVybYtXN5a\nJmIZQtEU0aRJKmsxGo7TO+J8g+kdG5z1vdW4s6ytTbC6wSObwwixAPkLu88/8wS1+eQ7p31uWNuY\nv9RZ2HaKyXgCT20bo5E0w+MJugZjdA2e5+l9553aRkuAtuYA121eg99t0Fjro8bvxmUauF2m87/b\npC7gKfu1veZLAtMbwxeSHmerU81b1/r9v/g5p3smFvAShdNQ46Lem6XWk8Brx6gJOCN03uk8js/v\nu6RsbW0dPrdBky9DLO4s65lMJLFqwPT4mUxkweUjY7nYsqGFk+eHMK0UTUEDj8v5UaZTTlJJxGNY\nVoZUcnnNQXOdx21apBax/GihYlrsueaLcyV+VgsxNc5i/azmE49PkohPllRcM51nsZ/NpcY0Wzmv\nC5oCGRp9WVrcETKWQShqMZnxEst4uDBkcWEoxpsnRuc8/6/ftpHPfnjzot9HKZkvCfQCHVPud3Bp\nzSBfZj1wKNeH0JY71gt8ZEq59cDpuV7sz7/2kfJOqUIIUWbm+3Z+CGhWSm3PjQK6H3hSKbVNKbU1\nV2YX8MXc7Z1Ap9Z6EtgN3KaUWqeUqsfpD9hV+LcghBBiqeZMAlprC/gK8ARwBtittd6Hc9G/N1fs\nESCplOoGvgl8NffcCPB14FXgMPDnpTwySAghqpFRyMWchBBClJfqHBgrhBACkCQghBBVTZKAEEJU\nsaItIJcbTvom0AoYwONa66/nRhL9I3AtznDUz2mtZ5+FtQKUUiawD0hrre8o0RiHgUTublRrfV2J\nxtmKs9bULUAMZwZ6FyUUp1JKAS9NObQK+CPgb4AfUSJxAiilfofcYAxA4yzjYlJCP08ApdR/An4n\nF9vfaq2/VezPZ24FhI8Bg1rrG3PHZo1JKfU14D8CFvAHWuufFDHO+4AHAAXcorU+MKX8ouIsWk1A\na20Dn9Bab8J5I7crpT4O/D5wWGt9NfA48D+KFeMU/w44y3uT50oxxozWen3u33W5Y6UY54M4y4m0\nAduBC5RYnNqR/1muB4aAn+KMdiuZOJVSTbkYPqS1vh4IA/+GEvt5KqW24SSqW4BtwKeVUtdT/Di/\nB/zatGMzxqSU2gz8B+BG4MPA/1FKrdSqjzPF2Ykz7H7f1INLibOozUFa66HcTdeUWHYCD+duPwx8\neqXjmkoptRr4PPCXODUWKLEY51BScSql1gK/BHwLQGs9qbUOUWJxTqWUugPnG9gZSi9OI/evRinl\nAgJAH6UX53XA21rrqNY6Dfwc+CxFjlNr/XNgfNrh2WLaCfwk95ntBd4C7ipWnFrrY1rrUzMUX3Sc\nRe8TUEodBUaAQ1rrF7h0LaIw4MlNVCuWbwP/DZi62lupxQjgUkqdVEodUUr929yxUotzC843/4eV\nUkeVUg8ppYIlGOdU9wE/zN0uqTi11mPAH+LMxO8F3Frrx0stTpx5QrcppVpzi0t+FGcFgVKLE2aO\nycsS1kIrkkXHWfQkoLW+AWepiS1KqQ/NUCT/bWfF5fZSsHIT5OaKoWgxTvEBrfVW4NeB/6qU+qUZ\nyhQ7TjfwPuC7OM0CWeAPZihX7DgBUEq5cb4J/uMsRYoaZy6Bfhmn/XodkFZK/e4MRYsaZ25/kf8O\nPA88C+zn0i9VeSXxe59mtpiKfu1coHnjLIk3orWeAF7AuYDl1yJCKdUApLTWxdpz6zbgbqVUF/AT\n4ANKqadKLEYAtNYXcv+fx1me4wOUXpw9wIDWel+uT+gnwE2546UUZ97HcdqH852VpfbzvB1nqfce\nrXUWeBKnua3U4kRr/QOt9fu11h/GGcBwkhKMk5ljSnL5OmrruXwdtVKw6DiLlgRyVcONuduNOJ0c\nx3AuYF/KFfsSzge7KLTWf6y17sh1Xn8aeEdrnV8D6Uu5Yl+iiDGC8/PL9V3k+zD+Bc66TyUVp9b6\nNDCilLoxd+hjOE0FT1NCcU4xtSkISuzniVPVf59SqiU32u7jlNjfUJ5SalPu/5tx+gMeoQTjZPaY\nnsHp0K5TSq3H+ZK1Z8Wjm9nUmsrTLDLOYu4x3Ag8oZRaBWSAR7XW/5AfoqWUugCcBz5XxBinMnhv\ndNC3Ka0Y24Cf5tpbU8CDWuu9Sqn9lFac4Iy0elQp5cdJVF8mN6SxlOJUStXgXFT//ZTDJfV711qf\nUEr9KfAGznDATuD/4Ay0KJk4c76vlLoBp4Pzy1rrUaVUUX+eSqmfAB8CWnJrn/0Rs/yOtdanlVLf\nBY7gNGV9TWudmPnMVzzOb+AMr/4W0AI8q5Q6qLX+F1rrM4uNU9YOEkKIKlYSfQJCCCGKQ5KAEEJU\nMUkCQghRxSQJCCFEFZMkIIQQVUySgBBCVDFJAkIIUcUkCQghRBX7/8Bo9fv5JxfEAAAAAElFTkSu\nQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x7f1c78400400>"
]
}
],
"prompt_number": 55
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# distribution of mean expected from_first probabilities.\n",
"# each value is a peptide\n",
"sns.distplot(special.expit(sampler.flatchain.T[4:]).mean(axis=1), bins=50, kde=False)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 59,
"text": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f1c0944edd8>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEDCAYAAADQunSaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGjJJREFUeJzt3X+M5PV93/HnfG9vb3dnZ/fM7aQFjjoIuLccczFpFZ2d\nlLikPluy0Jk4bSITYZwWZJFA1KDajpJUIFpocV2lVxEpMkYYQhQlWFdEcWNCg4vj0l5+IHRKat4Y\ncnXuQDl2tcvtzHf2drib6R8zd7szO7Pz/c5+Z3b3s6+HdNLsZz77mfd8bj6v+e53vvP95ur1OiIi\nEqZoswsQEZHBUciLiARMIS8iEjCFvIhIwBTyIiIBU8iLiARsJEknM4uAl4H33P3GtvvuBh4EFptN\nD7j7o5lWKSIifUkU8sDngb8B9ne4rw487O4PZVaViIhkoufuGjP7IeDngEeAXJdu3dpFRGQTJdkn\n/xXgN4AL6/S5x8xOmtkxM+u0tS8iIptg3ZA3s5uAmru/TPet9aeB9wPXAH8GPJ5phSIi0rfceueu\nMbNfB34JeA/YA7wPeN7db+nSfxI45e7vW+9B6/V6PZfTHh4RkZRSB+e6Ib+amR0CvuLuN5rZQWDZ\n3V83s+uAN9y93jzS5p+7+0d7DFefnS2lrTVIxWIBzUWD5mKF5mKF5mJFsVhIHfJpjpPP0TiSBuCz\nwMWt+buA02Z2qtl2R9oiRERkMBJvyWdMW/JN2kpZoblYoblYoblYMegteRER2WYU8iIiAVPIi4gE\nTCEvIhIwhbyISMAU8iIiAVPIi4gETCEvIhIwhbyISMAU8iIiAVPIi4gELOnl/0REtrxarUa5vPY8\nN5OTBaJoZ27TKuRFJBjlcokXjr/B+ET+UttSJebwoWuZmprexMo2j0JeRIIyPpFnIl/Y7DK2jJ35\n94uIyA6hkBcRCVii3TVmFgEvA++5+41t9+0GHgNuBBaAW939tawLFRGR9JJuyX8e+BtWLv+32m3A\nHne/GrgPOJpRbSIiskE9Q97Mfgj4OeAROl8p/AjwRPP2c8ANZpbv0E9ERIYsyZb8V4DfAC50uf9K\n4DSAu9eBt4ErMqlOREQ2ZN198mZ2E1Bz95fN7MMJx0y0C6hY1CFOF2kuVmguVmguViSdi9HRGpP5\nefKTY5faIqrMzBSYnt6Z89nrg9ePAB8zs5PAHuB9ZvaMu9+yqs9bwFXACTPLAZfT2Jpfl66+3qAr\n0a/QXKzQXKxIMxeLiyXK8TI1zl1qq8TLzM2VqFa3/8GE/bzxr/us3f0hd9/f/FD1Z4C/cPdbzOyg\nmR1odnsWuL15+wjwqrvHqSsREZHMpfnGa46Vo2s+C8wCXwaeBG4ys1PAHPCZTCsUEZG+JQ55d/8/\nwE81b39hVft5GodRiojIFrP9d1KJiEhXCnkRkYAp5EVEAqaQFxEJmEJeRCRgCnkRkYAp5EVEAqaQ\nFxEJmEJeRCRgCnkRkYAp5EVEAqaQFxEJmEJeRCRgCnkRkYAp5EVEAqaQFxEJWM+LhjSv23ocKNK4\nOtTTqy8a0uxzN/AgsNhsesDdH8241kzUajXK5bXXi6zVagBEUZSofXKysKZNRIaj2zoulRap1+od\nfmMwjwdbPwt6hry7183sZnd/x8z2AC+a2Sfc/flV3erAw+7+0MAqzUi5XOKF428wPpFvaZ+fO0MU\njbD3sn0925cqMYcPXcvU1PRQahaRVuut44n8FPnC1FAebztkQaLL/7n7O82bu2js4un0VpnLqqhB\nG5/IM5Fvvep5JS4TRbsSt4vI5uq2jof5eNtB4r8xzOyvaVyo+4S7/3GHLveY2UkzO2Zm+zOrUERE\n+pbmQt4fNLNp4JiZHXL346vufhr4GvAe8EXgceDweuMVi5vzjjg6WmMyP09+cqylfSkeJYp2U0jQ\nHlFlZqbA9HQ2z2Gz5mIr0lys0FysaJ+LNOs4i/Xa7fGyzoJBSBzyAO5+1syeB26m8WHsxfaLu3Mw\ns0eAL/Uaa3a284cYg7a4WKIcL1PjXEt7HFeJogvsGe/dXomXmZsrUa1u/MOWYrGwaXOx1WguVmgu\nVnSaizTrOIv12u3xssyCJPp54+9ZmZkVzez9zdt7gU8B/9fMrjezA83265pH4QB8DjiRuhIREclc\nkrefvcCzZnYaeBX4trv/PnA7cEuzz13AaTM71Wy7YxDFiohIOkkOofw+8KEO7V9Ydfte4N5sSxMR\nkY3aukfwi4jIhinkRUQCppAXEQmYQl5EJGAKeRGRgCnkRUQCppAXEQmYQl5EJGAKeRGRgCnkRUQC\nppAXEQmYQl5EJGAKeRGRgCnkRUQCppAXEQmYQl5EJGDrXjSkeUm/40ARyAFPr75YSLPPbuAx4EZg\nAbjV3V8bTLkiIpLGulvy7l4Hbnb3qwEDfsLMPtHW7TZgT7PPfcDRgVQqIiKp9dxd4+7vNG/uavav\nt3U5AjzRvP0ccIOZ5TOrUERE+pZon7yZ/TUwB5xw9z9uu/tK4DRc2vJ/G7giyyJFRKQ/PS/kDeDu\nHzSzaeCYmR1y9+PrdE/0xlEsFpJ025ALFy5QrVbb2kYYGxuhMDnW0r4UjxJFuxO1R1SZmSkwPd36\nHGq1GqVSaU0dtVqt8XtR69QUCo3fH8ZcbBeaixU7bS66rZ+zZ8+yb1+hZf2MjtaYzM+TT7KOa+fY\nvbvG6GhtzdiFQmHNuuxUx+7dNfITo0y2PV63LNhKEoU8gLufNbPngZtpfBh70VvAVcCJ5ge1l9PY\nml/X7Oza/8ysvXny//G9vy2Ry638J1biMmcWYq7/kfGWvnFcJYousGf8XM/2SrzM3FyJarX1xbG4\neJYXjr/B+ETr3qr5uTNE0Qh7L9t3qW2pEnP40LVcc83+oczFdlAsFjQXTTtxLrqtnyh3np+4/iqm\npqZX9S1Rjpep0Xu9zs0t8F//x9+1rD9YWYOrx+1Wx/zcGSbyU9Rze1r6dsuCQennjb/X0TVFYMLd\nf2Bme4FPAY+Y2fVA1d1fB54Fbge+SWP//KvuHqeuZEDyU+8jl8td+jm3axfR2XPr/MbGjE/kmci3\n/kdU4jJRtGtNu4i06rR+Iqpdeic3Nj6Rav2111GJyxuuYbP0evvZCzxrZqeBV4Fvu/vv0wj1W5p9\nngSWzewUcD/wKwOqVUREUlp3S97dvw98qEP7F1bdPk/jMEoREdli9I1XEZGAKeRFRAKmkBcRCZhC\nXkQkYAp5EZGAKeRFRAKmkBcRCZhCXkQkYAp5EZGAKeRFRAKmkBcRCZhCXkQkYAp5EZGAKeRFRAKm\nkBcRCVjPy/+Z2VXA44ABy8Bvuftvt/W5G3gQWGw2PeDuj2Zcq4iIpJTkGq914H53/27zcoCvmNmL\n7v69tj4Pu/tDA6lSRET60nN3jbufdvfvNm/PAk7jYt3tch3aRERkE6XaJ29mB4ADwPEOd99jZifN\n7JiZ7c+kOhER2ZDEIW9me4E/AO5097jt7qeB9wPXAH9GYx++iIhssiT75DGzMeAZ4Ki7P99+v7u/\ns6rvI8CXeo1ZLBZSlNmfhXfzLJzPkcut7EmKqDI+PkJhcqyl71I8ShTtTtQeUWVmpsD0dOtzGB2t\nMZmfJ59iDBjOXGwXmosVO20uuq2fuLx2vaVZa93Wdpp1nHaMrSTJ0TW7gD8EvuXuX1/VfhBYdvfX\nzew64A13rwOfA070Gnd2ttRvzYnNL8SUyiMtIV+Jl1laOk+pfK6lbxxXiaIL7Bnv3V6Jl5mbK1Gt\ntv4htLhYohwvUyP5GNPT00OZi+2gWCxoLpp24lx0Wz8RrFlvadZat7WdZh2nHWNQ+nnjT7Il/1Hg\nZuDHzOyXm233AD8JzAJfBu4Cft7MajQ+mL0jdSUiIpK5niHv7i/Sed/9M6v63Avcm2FdIiKSAX3j\nVUQkYIk+eJVWtVqNUmlxTXuptEi9Vt+EikREOlPI9+HcUoWXXllg72X7Wtrn584wkZ8iX5japMpE\nRFop5Ps0Nj7BRL71k+5KXN6kakREOtM+eRGRgCnkRUQCppAXEQmYQl5EJGAKeRGRgCnkRUQCppAX\nEQmYQl5EJGAKeRGRgCnkRUQCppAXEQmYQl5EJGDrnqDMzK6icVFuA5aB33L3327rsxt4DLgRWABu\ndffXBlOuiIik0WtLvg7c7+5XAR8Bfs3MPtDW5zZgj7tfDdwHHM2+TBER6ce6Ie/up939u83bszSu\n33p5W7cjwBPN288BN5hZPutCRUQkvcT75M3sAHAAON5215XAaQB3rwNvA1dkVaCIiPQvUcib2V7g\nD4A73T3OYkwRERm8nleGMrMx4BngqLs/36HLW8BVwAkzy9HYnfN2r3GLxUKvLhu28G6ehfM5crnc\npbaIKuPjIxQmx1r6LsWjRNHuRO1p+nZrj6gyM9OYg2HMxXahuVix0+ZidLTGZH6efNv6icuNtTI9\nXejZN816vbgGV4/bbey0Y2wlvY6u2QX8IfAtd//6qvaDwLK7vw48C9wOfJPG/vlXE2ztMztb2kDZ\nycwvxJTKIy0hX4mXWVo6T6l8rqVvHFeJogvsGe/dnqZvt/ZKvMzcXInp6emhzMV2UCwWNBdNO3Eu\nFhdLlONlarSunwiYmytRrUY9+6ZZrxfX4Opxu42ddoxB6eeNv9eW/EeBm4EfM7NfbrbdA/wkMAc8\nDDwJ3GRmp5ptn0ldhYiIDMS6Ie/uL9J5H/szq/qcp3EYpYiIbDH6kFREJGAKeRGRgCnkRUQCppAX\nEQmYQl5EJGA9vwwlg1Gr1SiVFjl79iyLi6WWdoAoan3/nZwsrGkTkf5dXIPtSqVF6rX6JlQ0GAr5\nTXJuqcJLryzw5ux5yvHypfb5uTNE0Qh7L9t3qW2pEnP40LVMTU1vRqkiQbq4BlevNWiswYn8FPnC\n1CZVli2F/CYaG58gPznV8s26SlwminYxkd+6X5MWCcXY+MSatVaJy5tUzWDo738RkYAp5EVEAqaQ\nFxEJmEJeRCRgCnkRkYAp5EVEAqaQFxEJmEJeRCRgSa7x+hTwceCMux/scP/dwIPAxe8HP+Duj2Za\npYiI9CXJN16/Cvxn4PEu99eBh939ocyqEhGRTPTcXePu3wHe7dEt1+N+ERHZBFntk7/HzE6a2TEz\n25/RmCIiskFZnKDsaeBrwHvAF2ns1jnc65eKxcGfgGvh3TwL53Pkcit/aERUGR8foTA51tJ3KR4l\ninYnak/Tt9cYQM+xI6rMzBSYng7/pGXDeF1sFzttLkZHa0zm58m3rZ+4vPb1363voNdre9/tsDY3\nHPLu/s7F22b2CPClJL83O1vq3WmD5hdiSuWRlpCvxMssLZ2nVD7X0jeOq0TRBfaM925P07fXGDNF\nWmrp1LcSLzM3V6JaDftgqGKxMJTXxXawE+dicbFEOV5uOSsrNHY3tL/+u/Ud9Hpt7zvstdnPG39f\nlZnZQTM70Lx9nZldTNHPASf6GVNERLKX5BDKY8CHgRkzOwXcB3wAmAW+DNwF/LyZ1QAH7hhcuSIi\nkkbPkHf3T/e4/17g3swqEhGRzIS9k1dEZIdTyIuIBEwhLyISMIW8iEjAFPIiIgFTyIuIBEwhLyIS\nMIW8iEjAFPIiIgFTyIuIBCyLUw2LyBZTq9Uol9eexbJWqwEQRa3bd5OThTVtW0WtVqNUWmxpK5UW\nqdfqm1TR9qKQFwlQuVziheNvMD6Rb2mfnztDFI2w97J9l9qWKjGHD13L1NT0sMtMZGkp5qVX/q6l\n5vm5M0zkp8gXpjaxsu1BIS8SqPGJPBP51vOPV+IyUbRrTftWNzY+0VJzJS5vYjXby9b8+0xERDKh\nkBcRCZhCXkQkYEmuDPUU8HHgjLsf7HD/buAx4EZgAbjV3V/LulAREUkvyZb8V4FPrnP/bcAed7+a\nxqUBj2ZRmIiIbFzPkHf37wDvrtPlCPBE8/ZzwA1mll+nv4iIDEkW++SvBE4DuHsdeBu4IoNxRURk\ngwZxnHyiN45icfDH6S68m2fhfI5cLnepLaLK+PgIhcmxlr5L8ShRtDtRe5q+vcYAeo4dUWVmpsD0\n9PY6trkfw3hdbBcbmYvR0RqT+XnyCV6LW+X11b1myOfH+l6DWa7X9r5bZe7Wk0XIvwVcBZwwsxxw\nOY2t+XXNzq79ynXW5hdiSuWRlpCvxMssLZ2nVD7X0jeOq0TRBfaM925P07fXGDNFWmrp1LcSLzM3\nV6JaDftgqGKxMJTXxXaw0blYXCxRjpep0fu1uFVeX91qBojjc32vwSzXa3vfYc9dP2/8fVVmZgfN\n7EDzx2eB25u3jwCvunvcz7giIpKtJIdQHgM+DMyY2SkaR9B8AJgDHgaeBG5q3jcHfGZw5YqISBo9\nQ97dP93j/vM0DqMUEZEtJuydvCIiO5xCXkQkYAp5EZGAKeRFRAKmkBcRCZhCXkQkYAp5EZGAKeRF\nRAKmkBcRCZhCXkQkYAp5EZGAKeRFRAKmkBcRCZhCXkQkYIO4/J9krFarUSotdmwHiKKoZ3uavhdN\nThY6tm+2Wq1Gubz2qklpnjckf35pHi/NuFtdp+eddj7TjFEqLVKv1Tdct7RSyG8D55YqvPTKAnsv\n29fSPj93higaSdSepi/AUiXm8KFrmZqazvjZbFy5XOKF428wPpFvaU/zvNM8vzSPt5XnLa1Ozzvt\nfKYZY37uDBP5KfKFqQE8m50rUcib2U3A7wCjwO+5+2+23X838CBwcXPzAXd/NMtCd7qx8Qkm8q3X\nd6zEZaJoV6L2NH23g/GJ/Iae96AeLzTtz7uf55x0jEpc3njBskaSy//lgEeBW4DvAf/LzL7p7v97\nVbc68LC7PzSYMkVEpB9JdhzeACy4+1+5+wXgKaDTJQFzmVYmIiIbliTkrwROr/r5VLOt3T1mdtLM\njpnZ/kyqExGRDUmyT7794+5dHfo8DXwNeA/4IvA4cHi9QYvFwe/HXHg3z8L5HLncyh8ZEVXGx0co\nTI619F2KR4mi3Yna0/TtNQbQc+wsHy/pGBFVZmYKTE8Pd39zktfF6GiNyfw8+Q087zTPL83jZTlv\nG1kjWdTcaYy085lmjO7tkM+P9f16HuT62ax1kkaSkH8LWL1lvp/WLXvc/Z2Lt83sEeBLvQadnV17\nSFrW5hdiSuWRlpCvxMssLZ2nVD7X0jeOq0TRBfaM925P07fXGDNFWmoZ9OMlHaMSLzM3V6JaHd6h\ngMViIdHrYnGxRDlepkb/zzvN80vzeFnNW9K56CaLmjuNkXY+04zRrb1x37m+X8+DXD/DXif9vPEn\nCfkTwGVm9qM0Pnj9BeBXzex6oOrur5vZdcAb7l4HPtf8HRER2WQ9337cvQbcCXwDeBP4E3d/Gbid\nxhE3AHcBp83sVLPtjsGUKyIiaSQ6Tt7dXwQOtLV9YdXte4F7sy1NREQ2avt/91pERLpSyIuIBEwh\nLyISMIW8iEjAFPIiIgFTyIuIBEwhLyISMIW8iEjAFPIiIgFTyIuIBEwhLyISMIW8iEjAFPIiIgFT\nyIuIBEwhLyISsJ7nkzezm4DfAUaB33P332y7fzfwGHAjsADc6u6vDaBWERFJad0teTPLAY8CPwtc\nC3zMzD7S1u02YI+7Xw3cBxwdRKEiIpJer901NwAL7v5X7n4BeAr4dFufI8ATzdvPATeYWT7bMkVE\npB+9Qv5K4PSqn0812zr2aV7I+23giqwKFBGR/vXaJ19v+3lXgjG3zIe5u3IRS2ffgVzuUlslLrO8\nVKISl1r6nluKiaKRRO1p+vYaIy4vUomXh/Z4ScdYqsSUSosM0+hojcXFUs9+pdIiS5V4TXua553m\n+aV5vKzmLelcdJNFzZ3GSDufacbo2l6pcO7chb5fz4NcP53meKvpFfJvAftX/byf1i37i32uAk40\n9+FfTmNrfj25YrGQps6+FIsf5Md/fOAPIxmanp5O1O+GG35kwJVs7uNB8rnoJouat8oY0r9eW90n\ngMvM7EebR9H8AvCMmV1vZgeafZ4Fbm/ePgK86u5b/+1NRGQHWDfk3b0G3Al8A3gT+BN3f5lGqN/S\n7PYksGxmp4D7gV8ZWLUiIpJKrl5v3+0uIiKh2DIfkoqISPYU8iIiAVPIi4gErOe5azZC571ZkWAu\n/hVwN43/k+8Dv+ju7YerBqHXXKzq90ka36L+mLu/OMQShybJXJjZ7TROGTIK/JG73zncKgcvwfr4\n+zS+cf/3gBxwv7t/Y+iFDoGZPQV8HDjj7gc73J8qNwe2Ja/z3qxIOBevA//I3X8Y+DbwlaEWOSQJ\n5wIzGwd+DfjT4VY4PEnmwsw+BPwb4B+7+37g3w290AFL+Jr4IvBSM/Q+BXx1uFUO1VeBT65zf6rc\nHOTuGp33ZkXPuXD3/+7uZ5s//ilrTx8RiiSvC2gE238BKjS23EKUZC4+Dxx197cB3P0HQ65xGJLM\nQw2YbN6epPElzCC5+3eAd9fpkio3BxnyOu/NiiRzsdovAv9toBVtnp5zYWYfAA6u+nM81ON8k7wu\nrgOuNrM/b/77xNCqG54k8/DvgX9qZm8BL9F489upUuXmIEN+W5/3JmOJ58LM7gTeD/yngVa0eZLM\nxVHgX6/6OdQt+SRzsRu4BvgIjT/Tv25mkx36bWdJ5uFngRfc/Urgp4Hfbe6blh65OchQTXPem4v7\n5ZKc92Y7SjIXmNkRGlsotzT/bA3RunNhZruAfwh8y8xOAh8FnjKzfzLMIockyeviFPCsu59vfrj2\nAxqhH5Ik8/BZGt+8x91fAc7T2BjaiVLl5iCPrrl03hvgezTOe/OrZnY9UHX311k57803Cfu8Nz3n\nwsx+CvgPwE+7e/+nH9z6krwuZi52NrM/Av6ju//PzSh2wJLMxTPAPwMeM7P9wD8ATm5WwQPSbR4O\nAsvNefhbGh9G/mVzd94+Gm+AO0LbXKTKzYFtyeu8NysSzsW/pfGO/OdmdsrMXtqUYgcs4VzsCAnn\n4hiwYGZvAs8Dv+Tuwz0H9ICtMw+fZWUefp3GPnlv9vuX7r7cabztzsyOAd9p3LRTZvYvaMzFzzS7\npMpNnbtGRCRgoX7QKSIiKORFRIKmkBcRCZhCXkQkYAp5EZGAKeRFRAKmkBcRCZhCXkQkYP8fiJYv\nvfA8R2kAAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x7f1c0871d3c8>"
]
}
],
"prompt_number": 59
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment