Last active
July 26, 2022 15:41
-
-
Save ashhadulislam/15337cdfa3b83682f4a678fc2e448f7a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
num_epochs=30 | |
def train_model(model, criterion, optimizer, scheduler, num_epochs=25): | |
since = time.time() | |
best_model_wts = copy.deepcopy(model.state_dict()) | |
best_acc = 0.0 | |
for epoch in range(num_epochs): | |
print(f'Epoch {epoch}/{num_epochs - 1}') | |
print('-' * 10) | |
# Each epoch has a training and validation phase | |
for phase in ['train', 'val']: | |
if phase == 'train': | |
model.train() # Set model to training mode | |
else: | |
model.eval() # Set model to evaluate mode | |
running_loss = 0.0 | |
running_corrects = 0 | |
# Iterate over data. | |
for inputs, labels in dataloaders[phase]: | |
inputs = inputs.repeat(1, 3, 1, 1) | |
inputs = inputs.to(device) | |
labels = labels.to(device) | |
# zero the parameter gradients | |
optimizer.zero_grad() | |
# forward | |
# track history if only in train | |
with torch.set_grad_enabled(phase == 'train'): | |
outputs = model(inputs) | |
_, preds = torch.max(outputs, 1) | |
loss = criterion(outputs, labels) | |
# backward + optimize only if in training phase | |
if phase == 'train': | |
loss.backward() | |
optimizer.step() | |
# statistics | |
running_loss += loss.item() * inputs.size(0) | |
running_corrects += torch.sum(preds == labels.data) | |
if phase == 'train': | |
scheduler.step() | |
epoch_loss = running_loss / dataset_sizes[phase] | |
epoch_acc = running_corrects.double() / dataset_sizes[phase] | |
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}') | |
# deep copy the model | |
if phase == 'val' and epoch_acc > best_acc: | |
best_acc = epoch_acc | |
best_model_wts = copy.deepcopy(model.state_dict()) | |
print() | |
time_elapsed = time.time() - since | |
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s') | |
print(f'Best val Acc: {best_acc:4f}') | |
# load best model weights | |
model.load_state_dict(best_model_wts) | |
return model | |
def accuracy(model, test_loader) : | |
model.eval() | |
with torch.no_grad(): | |
running_corrects=0 | |
for inputs, labels in test_loader: | |
inputs = inputs.repeat(1, 3, 1, 1) | |
inputs = inputs.to(device) | |
labels = labels.to(device) | |
outputs = model(inputs) | |
_, preds = torch.max(outputs, 1) | |
running_corrects += torch.sum(preds == labels.data) | |
acc = running_corrects.double() / dataset_sizes["val"] | |
return acc | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment