Skip to content

Instantly share code, notes, and snippets.

@ashhadulislam
Last active June 6, 2023 15:46
Show Gist options
  • Save ashhadulislam/837626b460b4b5bf24bda41483be29eb to your computer and use it in GitHub Desktop.
Save ashhadulislam/837626b460b4b5bf24bda41483be29eb to your computer and use it in GitHub Desktop.
from llama_index import SimpleDirectoryReader
from llama_index import GPTListIndex
from llama_index import GPTVectorStoreIndex
from llama_index import LLMPredictor, PromptHelper
from llama_index import ServiceContext, load_graph_from_storage
from llama_index import StorageContext, load_index_from_storage
from langchain import OpenAI
import gradio as gr
import sys
import os
os.environ["OPENAI_API_KEY"] = 'Your Open AI key'
# data/pdfs has all the pdf files you want to train your chatbot on
documents = SimpleDirectoryReader('data/pdfs').load_data()
index = GPTVectorStoreIndex.from_documents(documents)
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="text-davinci-003"))
from llama_index import GPTVectorStoreIndex
max_input_size = 4096
num_output = 256
max_chunk_overlap = 0.7 # now takes a value between 0 and 1, before, ints
prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap)
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
index = GPTVectorStoreIndex.from_documents(
documents, service_context=service_context
)
# save index
index.storage_context.persist("indices/ch1")
# rebuild storage context
storage_context = StorageContext.from_defaults(persist_dir='./indices/ch1')
# load index
index = load_index_from_storage(storage_context)
query_engine = index.as_query_engine()
response = query_engine.query("What are the prohibitions in currency dealing?")
# replace above with your question
print(response)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment