Created
July 26, 2022 17:55
-
-
Save ashhadulislam/f1d17cecaf0b3cb9bfbafd6cd26977f6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
PATH = './squeezenet1_0.pth' | |
# setup | |
model_ft = models.squeezenet1_0(pretrained=True,) | |
model_ft.classifier[1] = nn.Conv2d(512, len(classes), kernel_size=(1,1), stride=(1,1)) | |
model_ft = model_ft.to(device) | |
criterion = nn.CrossEntropyLoss() | |
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9) | |
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1) | |
# train | |
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, | |
num_epochs=num_epochs) | |
torch.save(model_ft.state_dict(), PATH) | |
# load | |
model_ft3 = models.squeezenet1_0(pretrained=True,) | |
model_ft3.classifier[1] = nn.Conv2d(512, len(classes), kernel_size=(1,1), stride=(1,1)) | |
model_ft3.to(device) | |
model_ft3.load_state_dict(torch.load(PATH,map_location=device)) | |
model_ft3.eval() | |
# test | |
print(accuracy(model_ft3, test_loader)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment