-
-
Save ashishrana160796/6571e538ebbb4d2d570267d12a1296b6 to your computer and use it in GitHub Desktop.
Data loading for the UCSD pedestrian counting(http://www.svcl.ucsd.edu/projects/peoplecnt/) dataset for images with their respective count from matlab scripts provided along.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import glob | |
import os | |
import scipy.io as sio | |
import numpy as np | |
import numpy as np | |
from PIL import * | |
class UCSD(): | |
"""UCSD pedestrian counting data.""" | |
def __init__(self, data_dir, annotation_dir, transform=None): | |
# stores name of files and their respective counts in two different lists. | |
self.file_list = [] | |
self.file_cnts = [] | |
files = glob.glob( | |
os.path.join( | |
annotation_dir, | |
'*count_roi_mainwalkway.mat')) | |
for f in files: | |
tmp = sio.loadmat(f) | |
l_count = tmp['count'][0][0].ravel() | |
r_count = tmp['count'][0][1].ravel() | |
t_count = l_count + r_count | |
[self.file_cnts.append(c) for c in t_count] | |
file_parts = os.path.basename(f).split('_') | |
seq_id = "_".join(file_parts[0:3]) | |
for i in np.arange(len(t_count)): | |
self.file_list.append( | |
os.path.join( | |
data_dir, | |
seq_id + ".y", | |
"{}_f{:03d}.png".format(seq_id,i+1))) | |
self.transform = transform | |
def __len__(self): | |
return len(self.file_list) | |
def __getitem__(self, idx): | |
img_name = os.path.join(self.file_list[idx]) | |
img = Image.open(img_name) | |
img = img.resize((128,128)) | |
if self.transform: | |
img = self.transform(img) | |
return img, self.file_cnts[idx] | |
# For loading the dataset into an object. | |
X = UCSD('ucsdpeds/', 'vidf-cvpr/') | |
dict_imgs = dict(zip(X.file_list, X.file_cnts)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment