-
-
Save asmeurer/a9d7bc2842eaac30f5e4 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(mgcv) | |
library(ggplot2) | |
library(dplyr) | |
library(XML) | |
library(weatherData) | |
us.airports.url <- 'http://www.world-airport-codes.com/us-top-40-airports.html' | |
us.airports <- readHTMLTable(us.airports.url)[[1]] %>% | |
filter(!is.na(IATA)) %>% | |
select(City, IATA) | |
## Cartestian product | |
airport.years <- merge(us.airports, data.frame(year = 2010:2014)) %>% | |
mutate(City = as.character(City), IATA = as.character(IATA)) %>% | |
# For some reason San Diego doesn't work, so add the 'K'. | |
mutate(IATA = ifelse(IATA == 'SAN', 'KSAN', IATA)) | |
temp.data <- airport.years %>% | |
group_by(City, IATA, year) %>% do({ | |
df <- getWeatherForYear(.$IATA, .$year) %>% | |
mutate(Date = as.character(Date)) | |
# Anyone know of a coalesce function?? | |
if(is.null(df)) data.frame() else df | |
}) %>% | |
mutate(Date = as.Date(Date)) | |
write.csv(temp.data, 'data/temp_data.csv', row.names = FALSE) | |
for.fit <- temp.data %>% | |
group_by(year) %>% | |
mutate(doy = as.numeric( Date - min(Date)), | |
# 0-1 scale for leap years. | |
doy.scaled = doy / as.numeric(max(Date) - min(Date))) | |
# Splines FTW! | |
m <- gam(Mean_TemperatureF ~ s(doy.scaled, bs = 'cc', by = factor(City)), | |
data = for.fit) | |
yhat <- predict(m, newdata = for.fit) | |
for.fit$yhat <- as.numeric(yhat) | |
# Typical year plot | |
cool.cities <- for.fit %>% filter(IATA %in% c('SFO', 'JFK', 'PHL', 'DCA', 'ORD', 'LAX', 'KSAN')) | |
ggplot(cool.cities, aes(x = Date, y = Mean_TemperatureF, colour = City, group = City)) + | |
geom_point(size = 1) + | |
geom_line(aes(y = yhat), size = 1) + | |
theme_bw() + | |
scale_colour_brewer(palette = 'Spectral') + | |
ylab('Mean Temp (F)') | |
# P(good day) plot. | |
temp.data %>% | |
group_by(City) %>% | |
mutate(good.day = (Min_TemperatureF > 70)) %>% | |
summarise(perc.good = mean(good.day)) %>% | |
ungroup %>% | |
ggplot(aes(x = reorder(City, perc.good), y = perc.good)) + | |
geom_bar(stat = 'identity') + | |
theme_bw() + | |
coord_flip() + | |
xlab('City') + ylab('P(Good Day)') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment