Created
November 6, 2014 02:26
-
-
Save astanway/c21e3d2d8e96ea053dfd to your computer and use it in GitHub Desktop.
random forest
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.naive_bayes import MultinomialNB | |
from sklearn.linear_model import LogisticRegression | |
from sklearn.feature_extraction import DictVectorizer | |
from sklearn.ensemble import RandomForestClassifier | |
from sklearn import metrics | |
from operator import itemgetter | |
from sklearn.metrics import classification_report | |
from random import shuffle | |
from scipy.stats import mode | |
import numpy as np | |
import os | |
import re | |
import flask | |
def gather_data(): | |
""" | |
Iterate through data files on disk and return a shuffled array of strings, | |
ready to be vectorized and split into training and test sets | |
""" | |
data = [] | |
with open('train', 'r') as f: | |
for index, line in enumerate(f): | |
if index == 0: | |
continue | |
line = line.replace('YES', '1') | |
line = line.replace('NO', '-1') | |
line = line.split(',') | |
newline = [] | |
for x in line: | |
try: | |
newline.append(float(x)) | |
except: | |
newline.append(10000) | |
data.append(newline) | |
return data | |
def classify(algorithm, **kwargs): | |
""" | |
Run data through any classifier, printing out results as well. | |
""" | |
print "\n" + algorithm.__name__ | |
classifier = algorithm(**kwargs).fit(data_train, label_train) | |
label_predicted = classifier.predict(data_test) | |
print classification_report(label_test, label_predicted) | |
# Prepare the data and vectorize | |
labels = [] | |
with open('trainLabels', 'r') as f: | |
for index, line in enumerate(f): | |
if index == 0: | |
continue | |
line = line.split(',') | |
line = [int(x) for x in line] | |
line.pop(0) | |
labels.append(line) | |
data = gather_data() | |
zipped = [] | |
for index, d in enumerate(data): | |
label = labels[index] | |
entry = {} | |
for i, field in enumerate(d): | |
entry[i] = field | |
zipped.append(entry) | |
training_size = int(round(len(zipped) * 0.35)) | |
print 'Training set size: ' + str(training_size) | |
data_train_orig = np.array( [x for x in zipped[0:training_size]] ) | |
label_train = np.array( [x for x in labels[0:training_size]] ) | |
data_test_orig = np.array( [x for x in zipped[training_size + 1 : len(zipped)]] ) | |
label_test = np.array( [x for x in labels[training_size + 1 : len(zipped)]] ) | |
v = DictVectorizer(sparse=False) | |
data_train = v.fit_transform(data_train_orig) | |
data_test = v.transform(data_test_orig) | |
# Run the classifiers | |
# classify(MultinomialNB) | |
#classify(LinearSVC) | |
classify(RandomForestClassifier, n_jobs=8) | |
# classify(LogisticRegression) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment