Skip to content

Instantly share code, notes, and snippets.

@asterix24
Last active December 30, 2024 14:17
Show Gist options
  • Save asterix24/2b729a8dd0ec83ec0ccad49979e58154 to your computer and use it in GitHub Desktop.
Save asterix24/2b729a8dd0ec83ec0ccad49979e58154 to your computer and use it in GitHub Desktop.
Python script to plota data using mathplotlib. De data could be read from csv file and filtered
#!/usr/bin/env python3
from collections import defaultdict
import os
import sys
import csv
from optparse import OptionParser
import numpy
import pylab
from matplotlib import style
style.use("bmh")
parser = OptionParser()
parser.add_option("--ylimit-up", dest="y_up",
default=None, help="Y axis upper limts")
parser.add_option("--ylimit-down", dest="y_down",
default=None, help="Y axis lower limits")
parser.add_option("--xlimit-up", dest="x_up",
default=None, help="X axis upper limts")
parser.add_option("--xlimit-down", dest="x_down",
default=None, help="X axis lower limits")
parser.add_option("-d", "--csv-separator", dest="csv_sep",
default=";", help="Separator for csv file.")
parser.add_option("-f", "--data-file", dest="data_file",
default=None, help="Data file")
parser.add_option("-n", "--module-max", dest="module_max", action="store_true",
default=False, help="Plot normalizided samples.")
parser.add_option("-m", "--show-limits-lines", dest="limit_line", nargs=2, type="float",
default=[], help="Plot limit horizontal lines.")
parser.add_option("-s", "--show-limits", dest="show_limits",
action="store_true", default=False,
help="Show avg and sigma limtis on gaussian curve")
parser.add_option("-x", "--x-series", dest="x_series", default=None,
help="Column for x axis.")
parser.add_option("-a", "--filter-head", dest="filter_head", default=None,
help="Select column by header name")
parser.add_option("-c", "--filter-col", dest="filter_col", default=None,
help="Skip line with col > filter_col")
parser.add_option("--only-extra", dest="only_extra_column", default=False,
action="store_true",
help="Show only extra computed column")
parser.add_option("-k", "--scatter-plot", dest="scatter_plot",
action="store_true",
default=False,
help="Show scatter plot")
(options, args) = parser.parse_args()
if options.data_file is None:
print(f"{sys.argv[0]} -f <file.csv> [colum]")
print(parser.print_help())
sys.exit(1)
select = False
if args:
select = True
PROCESS = {
0: lambda x: x*1/60,
# 4: lambda x: x*100,
# 5: lambda x: x*100,
# 1: 1/9.8,
# 2: 1/9.8,
# 3: 1/9.8,
# 6: lambda x: x*1.9,
# 5: lambda x: x*2.5,
}
data = defaultdict(list)
hdr = []
with open(options.data_file, newline='') as csvfile:
for row in csv.reader(csvfile, delimiter=options.csv_sep):
if not hdr:
print(row)
hdr = row
for n, v in enumerate(row):
try:
v = v.replace(',', '.')
v = float(v)
if n in PROCESS:
v = PROCESS[n](v)
data[n].append(v)
except ValueError as e:
print(">>>", v, e)
continue
except TypeError as e:
print(">>>", v, e)
continue
plot_col = range(len(data))
if select:
plot_col = map(int, args)
plot_col = list(plot_col)
def pulse_width(c, th=100, tl=50, scale=1.0, peak_max=1000.0):
st = False
count = 0
v = 0
diffs = []
for i in c:
v = 0
if i <= tl and not st:
st = True
count = 0
if i > th and st:
st = False
v = min(count/scale, peak_max/scale)
if st:
count += 1
diffs.append(v)
#print(f"<0.5:{len(list(filter(lambda x: x <= 0.5, df)))}")
#print(f">0.5:{len(list(filter(lambda x: x > 0.5 and x < 1.1, df)))}")
#print(f"<2:{len(list(filter(lambda x: x > 1.1 and x < 2, df)))}")
return diffs
EXTRA = {
# 5: pulse_width,
5: (pulse_width, "Off det.")
}
extra_colum = []
last_column = len(data)
count = 0
for m in range(last_column):
if not data[m]:
continue
if m in EXTRA:
callback, extra_colum_label = EXTRA[m]
data[last_column+count] = callback(data[m],
th=1.1, tl=0.5, scale=100)
extra_colum.append(last_column+count)
plot_col.append(last_column+count)
hdr.append(f"{extra_colum_label}#{last_column+count}")
count += 1
label_hand = []
raw_data = []
for n, m in enumerate(plot_col):
if not data[m]:
continue
skip_col = False
if options.filter_head is not None:
for i in options.filter_head.split(" "):
skip_col = True
if i in hdr[m]:
print(hdr[m], options.filter_head)
skip_col = False
break
if skip_col:
continue
label = f"C{m}"
if hdr:
label = f"{hdr[m]}"
avg = numpy.mean(data[m])
sigma = numpy.std(data[m], axis=0)
s2 = sigma * sigma
s_min = min(data[m])
s_max = max(data[m])
rms = numpy.sqrt(sum([x * x for x in data[m]]) / len(data[m]))
lw_width = '3'
ls_style = '-'
if m in extra_colum:
lw_width = '2'
ls_style = ':'
if options.only_extra_column:
if m in extra_colum:
raw_data = data[m]
else:
raw_data = data[m]
if options.module_max:
raw_data = [(x - s_min) / (s_max - s_min)
for x in data[m]]
print(f"Col[{m:5d}] min[{s_min:8.5f}] max[{s_max:8.5f}] sg[{sigma:8.5f}]"
"rms[{rms: 8.5f}] avg[{avg: 8.5f}] Nomal[{options.module_max}]")
pylab.title(f"{os.path.basename(options.data_file)}")
# Plot raw data
l = None
if options.x_series is not None:
pylab.title(f"{options.data_file}")
x_ser = int(options.x_series)
if x_ser > len(data):
print("Wrong column num for x axie.")
sys.exit(1)
pylab.xlabel(hdr[x_ser])
n = min(len(data[x_ser]), len(raw_data))
if options.scatter_plot:
l = pylab.scatter(data[x_ser][:n], raw_data[:n], s=[12], marker='x', label=label)
else:
l, = pylab.plot(data[x_ser][:n], raw_data[:n], ls=ls_style, lw=lw_width, label=label)
else:
if options.scatter_plot:
l = pylab.scatter(raw_data, raw_data[:n], s=[12], marker='x', label=label)
else:
l, = pylab.plot(raw_data, ls=ls_style, lw=lw_width, label=label)
label_hand.append(l)
if options.x_up is not None:
pylab.xlim(xmax=float(options.x_up))
if options.x_down is not None:
pylab.xlim(xmin=float(options.x_down))
if options.y_up is not None:
pylab.ylim(ymax=float(options.y_up))
if options.y_down is not None:
pylab.ylim(ymin=float(options.y_down))
pylab.grid(which='major', color='#666666', linestyle='-')
pylab.minorticks_on()
pylab.grid(which='minor', color='#999999', linestyle='-', alpha=0.2)
for lmt in options.limit_line:
pylab.axhline(y=lmt, color='r', linestyle='-')
# pylab.axhline(y=100, color='b', linestyle=':')
# pylab.axhline(y=200, color='g', linestyle=':')
# pylab.axhline(y=300, color='grey', linestyle=':')
#pylab.tight_layout()
pylab.legend(loc='upper left', bbox_to_anchor=(0.75, 1), fancybox=True)
pylab.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment