Created
May 4, 2015 21:58
-
-
Save astro313/ac81b262a075d78271e7 to your computer and use it in GitHub Desktop.
Matched-filtering
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
# from statsmodels.tsa.stattools import ccf | |
import scipy | |
from scipy import optimize | |
def template_fun(x, x_0, W_FWHM, A): | |
return A * np.exp(-0.5 * (x - x_0)**2 * (2.35/W_FWHM)**2) | |
## Assignment ## | |
x_0 = 423.7 | |
SNR = 5.0 | |
x = np.array(range(1024)) | |
Nr = 100 | |
W_d = 20.7 | |
W_1 = .5 * W_d | |
W_2 = W_d | |
W_3 = 1.5 * W_d | |
amp = 1. | |
tx = x | |
T_1 = template_fun(tx, x_0, W_1, amp) | |
T_2 = template_fun(tx, x_0, W_2, amp) | |
T_3 = template_fun(tx, x_0, W_3, amp) | |
def answer(realization, template, verbose=False): | |
import matplotlib.pyplot as plt | |
cc_loc = [] | |
for i in range(realization): | |
np.random.seed(i) | |
noise = np.random.normal(0, 0.5, size=(len(x)))/SNR | |
data = amp * np.exp(-0.5 * ((x - x_0)**2) * (2.35/W_d)**2) + noise | |
if i == 1 and verbose: | |
plt.plot(data) | |
plt.show() | |
dum = np.correlate(data, template, mode='same') | |
_x = np.linspace(-len(dum)/2, len(dum)/2-1, len(dum)) | |
guess = [0, W_d, 1] # center of correlation should be around 0 instead of 423.7 because data and template are both centered on 423.7, so their correlation will have ~ 0 lag. | |
result = optimize.curve_fit(template_fun, _x, dum, p0=guess)[0] | |
if i == 1 and verbose: | |
plt.plot(_x, dum) | |
plt.plot(_x, template_fun(_x, *result)) | |
plt.show() | |
cc_loc.append(result[0]) | |
cc_loc = np.array(cc_loc) | |
_mean = cc_loc.mean() | |
_std = cc_loc.std() | |
print "mean: ", _mean | |
print "rms ", np.sqrt(_std**2 + _mean**2) | |
answer(Nr, T_1) | |
answer(Nr, T_2) | |
answer(Nr, T_3) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment