-
-
Save asw456/ad0e7305b8de6e5a261c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib | |
matplotlib.use("WXAgg") | |
from pylab import * | |
from scipy.stats import beta, uniform, norm | |
class BetaBandit(object): | |
def __init__(self, num_options=2, prior=(1.0,1.0)): | |
self.trials = zeros(shape=(num_options,), dtype=int) | |
self.successes = zeros(shape=(num_options,), dtype=int) | |
self.num_options = num_options | |
self.prior = prior | |
def add_result(self, trial_id, success): | |
self.trials[trial_id] = self.trials[trial_id] + 1 | |
if (success): | |
self.successes[trial_id] = self.successes[trial_id] + 1 | |
def get_recommendation(self): | |
sampled_theta = [] | |
for i in range(self.num_options): | |
#Construct beta distribution for posterior | |
dist = beta(self.prior[0]+self.successes[i], | |
self.prior[1]+self.trials[i]-self.successes[i]) | |
#Draw sample from beta distribution | |
sampled_theta += [ dist.rvs() ] | |
# Return the index of the sample with the largest value | |
return sampled_theta.index( max(sampled_theta) ) | |
prior = beta(1,20) | |
def evaluate(N): | |
p = prior.rvs( (2,) ) | |
b = BetaBandit() | |
u = uniform() | |
successes = 0.0 | |
for i in range(N): | |
choice = b.get_recommendation() | |
if uniform.rvs() < p[choice]: | |
b.add_result(choice, True) | |
successes += 1 | |
else: | |
b.add_result(choice, False) | |
return float(successes) / float(N) | |
def p_value(N, s): | |
empirical_ctr = s.astype(float) / N | |
std_error = sqrt(empirical_ctr[0]*(1.0-empirical_ctr[0])/N[0] + (empirical_ctr[1]*(1-empirical_ctr[1]))/N[1]) | |
if (std_error == 0): | |
return 1 | |
z_value = (empirical_ctr[1]-empirical_ctr[0])/std_error | |
p_value = 1 - norm().cdf(abs(z_value)) | |
return p_value | |
def eighty_twenty(N): | |
p = prior.rvs( (2,) ) | |
choices = array([0.0,0.0]) | |
successes = 0.0 | |
for i in range(N/10): | |
for k in range(2): | |
if uniform.rvs() < p[k]: | |
choices[k] = choices[k] + 1 | |
successes += 1 | |
if p_value((N/10,N/10), choices) < 0.05: | |
r = argmax(choices) | |
else: | |
r = 0 | |
for i in range(8*N/10): | |
if uniform.rvs() < p[r]: | |
successes += 1 | |
return float(successes) / float(N) | |
mmax = 11 | |
results = zeros(shape=(3,mmax-1), dtype=float) | |
for M in arange(1,mmax)*50: | |
bandit_success = 0.0 | |
eighty_twenty_success = 0.0 | |
random_success = 0.0 | |
nmax = 1000 | |
for i in range(nmax): | |
bandit_success += evaluate(M) | |
random_success += prior.rvs() | |
eighty_twenty_success += eighty_twenty(M) | |
bandit_success /= nmax | |
eighty_twenty_success /= nmax | |
random_success /= nmax | |
results[0,M/50-1] = bandit_success | |
results[1,M/50-1] = eighty_twenty_success | |
results[2,M/50-1] = random_success | |
print "M = " + str(M) | |
print "Bandit success: " + str(bandit_success) | |
print "80/20 success: " + str(eighty_twenty_success) | |
print "Random success: " + str(random_success) | |
samples = arange(1,mmax)*50 | |
clf() | |
plot(samples, results[0], label="Bandit") | |
plot(samples, results[1], label="80/20") | |
plot(samples, results[2], label="Random") | |
legend() | |
xlabel("number of samples") | |
ylabel("CTR") | |
show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment