-
-
Save asw456/f57cb28df931294c340c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from matplotlib import use | |
use('wx') | |
from pylab import * | |
from scipy.stats import beta, norm, uniform | |
from random import random | |
from numpy import * | |
import numpy as np | |
import os | |
# Input data | |
prior_params = [ (1, 1), (1,1) ] | |
threshold_of_caring = 0.001 | |
N = array([ 100, 104 ]) | |
s = array([ 13, 8 ]) | |
#N = [ 581, 583 ] | |
#s = [ 112, 75 ] | |
class ABTest(object): | |
def finish_test_index(self, data): | |
# return index of when test is finished | |
pass | |
def finish_test_value(self, index, cumsum): | |
# return 0 or 1 | |
pass | |
def gen_data(ctr, size=1024*2): | |
ctr = array(ctr) | |
rnd = uniform(0,1).rvs((2,size)) | |
data = zeros(shape=(2,size)) | |
data[where(rnd < ctr[:,newaxis])] = 1.0 | |
return data | |
def evaluate_test_procedure(ctr, data, proc): | |
ctr = array(ctr) | |
n = proc.finish_test_index(data) | |
choice = proc.finish_test_value(N=(n,n), s=sum(data[:,0:n-1], axis=1)) | |
lift = ctr[choice] - ctr[1-choice] | |
return (n, lift) | |
class ComputesNormalDistPValue(object): | |
def p_value(self, N, s): | |
empirical_ctr = s.astype(float) / N | |
std_error = sqrt(empirical_ctr[0]*(1.0-empirical_ctr[0])/N[0] + (empirical_ctr[1]*(1-empirical_ctr[1]))/N[1]) | |
if (std_error == 0): | |
return 1 | |
z_value = (empirical_ctr[1]-empirical_ctr[0])/std_error | |
p_value = 1 - norm().cdf(abs(z_value)) | |
return p_value | |
class GaussianFrequentistPValue(ABTest, ComputesNormalDistPValue): | |
def __init__(self, sample_size, cutoff): | |
self.sample_size = sample_size | |
self.cutoff = cutoff | |
def __str__(self): | |
return "GaussianFrequentistPValue(" + str(self.sample_size) + ", " + str(self.cutoff) + ")" | |
def finish_test_index(self, data): | |
return self.sample_size | |
def finish_test_value(self, N, s): | |
empirical_ctr = s.astype(float) / N | |
pv = self.p_value(N,s) | |
if (pv <= self.cutoff) and (empirical_ctr[1] > empirical_ctr[0]): | |
return 1 | |
else: | |
return 0 | |
class BayesianBetaAB(ABTest): | |
def __init__(self, prior, threshold_of_caring, stride=25): | |
self.prior = prior | |
self.threshold_of_caring = threshold_of_caring | |
self.xgrid_size = 1024*2 | |
self.stride = stride | |
self.x = mgrid[0:self.xgrid_size,0:self.xgrid_size] / float(self.xgrid_size) | |
self.x_1d = arange(0,1,1.0/self.xgrid_size) | |
#Precompute to avoid unnecessary work | |
self.loss = [maximum(self.x[0]-self.x[1],0.0), maximum(self.x[1]-self.x[0],0.0)] | |
# Pre-allocate to avoid GC | |
self.pdf = zeros(shape=(self.xgrid_size,self.xgrid_size), dtype=float) | |
self.work_arr = zeros(shape=(self.xgrid_size,self.xgrid_size), dtype=float) #Where loss * pdf is stored | |
def __str__(self): | |
return "BayesianBeta(" + str(self.prior) + ", " + str(self.threshold_of_caring) + ")" | |
def finish_test_value(self, N, s): | |
empirical_ctr = s.astype(float) / N | |
if s[1] > s[0]: | |
return 1 | |
else: | |
return 0 | |
def finish_test_index(self, data): | |
s = array([0,0]).astype(float) | |
old_n = 0 | |
sa = np.cumsum(data, axis=1) | |
for n in range(self.stride,data.shape[1],self.stride): | |
N = array([n,n]) | |
s = sa[:,n] | |
old_n = n | |
empirical_ctr = s.astype(float) / N.astype(float) | |
posteriors = [] | |
for i in range(2): | |
posteriors.append(beta(self.prior[0] + s[i] - 1, self.prior[1] + N[i] - s[i] - 1)) | |
self.pdf[:] = 1.0 | |
self.pdf[:] *= posteriors[0].pdf(self.x_1d)[newaxis,:] | |
self.pdf[:] *= posteriors[1].pdf(self.x_1d)[:,newaxis] | |
# The above 3 lines should be equivalent to (posteriors[0].pdf(self.x[0]) * posteriors[1].pdf(self.x[1])) | |
#print "delta: " + str(((posteriors[0].pdf(self.x[0]) * posteriors[1].pdf(self.x[1])) - self.pdf).sum()) | |
#self.pdf[:] = posteriors[0].pdf(self.x[0]) * posteriors[1].pdf(self.x[1]) | |
# Normalize at end | |
# self.pdf[:] /= self.pdf.sum() #We don't normalize until computing expected_loss as performance hack | |
if (empirical_ctr[0] > empirical_ctr[1]): | |
loss = self.loss[0] | |
else: | |
loss = self.loss[1] | |
self.work_arr[:] = 0.0 | |
self.work_arr[:] = loss[:] | |
self.work_arr[:] *= self.pdf | |
expected_loss = (self.work_arr).sum() / self.pdf.sum() | |
if (expected_loss < self.threshold_of_caring): | |
return n | |
return n | |
procedures = [BayesianBetaAB( (1,1), 0.01), | |
BayesianBetaAB( (1,1), 0.005), | |
BayesianBetaAB( (1,1), 0.001), | |
BayesianBetaAB( (1,1), 0.0001), | |
GaussianFrequentistPValue(500, 0.1), | |
GaussianFrequentistPValue(1000, 0.1), | |
GaussianFrequentistPValue(1500, 0.1), | |
GaussianFrequentistPValue(2000, 0.1), | |
GaussianFrequentistPValue(4000, 0.1), | |
GaussianFrequentistPValue(500, 0.05), | |
GaussianFrequentistPValue(1000, 0.05), | |
GaussianFrequentistPValue(1500, 0.05), | |
GaussianFrequentistPValue(2000, 0.05), | |
GaussianFrequentistPValue(4000, 0.05), | |
GaussianFrequentistPValue(500, 0.01), | |
GaussianFrequentistPValue(1000, 0.01), | |
GaussianFrequentistPValue(2000, 0.01), | |
GaussianFrequentistPValue(4000, 0.01), | |
] | |
procedure_lift = zeros(shape=(len(procedures),), dtype=float) | |
procedure_samples = zeros(shape=(len(procedures),), dtype=float) | |
ctr_dist = beta(0.5, 50) | |
#ctr_dist = beta(5, 100) | |
def print_table(oracle_lift, procedure_lift, procedure_samples, n): | |
print "<table>" | |
print "<tr><th>Method</th><th>Samples</th><th>Lift</th></tr>" | |
for j in range(len(procedure_samples)): | |
print "<tr><td>" + str(procedures[j]) + "</td><td>" + str(int(procedure_samples[j] / float(n))) + "</td><td>" + str((procedure_lift[j] / float(n)) / oracle_lift) + "</td></tr>" | |
print "</table>" | |
num_tests = 250 | |
absolute_lift = 0.0 | |
for i in range(num_tests): | |
ctr = ctr_dist.rvs(2) | |
absolute_lift += abs(ctr[1]-ctr[0]) | |
data = gen_data(ctr, size=1024*4) | |
print "Outer iteration: " + str(i) + ", ctr="+str(ctr) | |
for (j, proc) in enumerate(procedures): | |
nsamples, lift = evaluate_test_procedure(ctr, data, proc) | |
procedure_lift[j] += lift | |
procedure_samples[j] += nsamples | |
if (i % 10 == 0) and (i > 0): | |
oracle_lift = absolute_lift / float(i) | |
print_table(oracle_lift, procedure_lift, procedure_samples, i+1) | |
oracle_lift = absolute_lift / float(num_tests) | |
print_table(oracle_lift, procedure_lift, procedure_samples, num_tests) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment