Last active
May 14, 2017 05:36
-
-
Save at15/d452c2bd8d6b978352e57dc48d346b39 to your computer and use it in GitHub Desktop.
Use GPU to compute cube of a float array. A example from Udacity Intro to Parallel Programming
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* Example from Udacity Intro to Parallel Programming https://www.udacity.com/course/intro-to-parallel-programming--cs344 | |
* nvcc -ccbin clang-3.8 cube.cu | |
*/ | |
#include <stdio.h> | |
__global__ void cube(float * d_out, float * d_in){ | |
int idx = threadIdx.x; | |
float f = d_in[idx]; | |
d_out[idx] = f * f * f; | |
} | |
int main(int argc, char ** argv) { | |
const int ARRAY_SIZE = 64; | |
const int ARRAY_BYTES = ARRAY_SIZE * sizeof(float); | |
// generate the input array on the host | |
float h_in[ARRAY_SIZE]; | |
for (int i = 0; i < ARRAY_SIZE; i++) { | |
h_in[i] = float(i); | |
} | |
float h_out[ARRAY_SIZE]; | |
// declare GPU memory pointers | |
float * d_in; | |
float * d_out; | |
// allocate GPU memory | |
cudaMalloc((void**) &d_in, ARRAY_BYTES); | |
cudaMalloc((void**) &d_out, ARRAY_BYTES); | |
// transfer the array to the GPU | |
cudaMemcpy(d_in, h_in, ARRAY_BYTES, cudaMemcpyHostToDevice); | |
// launch the kernel | |
cube<<<1, ARRAY_SIZE>>>(d_out, d_in); | |
// copy back the result array to the CPU | |
cudaMemcpy(h_out, d_out, ARRAY_BYTES, cudaMemcpyDeviceToHost); | |
// print out the resulting array | |
for (int i =0; i < ARRAY_SIZE; i++) { | |
printf("%f", h_out[i]); | |
printf(((i % 4) != 3) ? "\t" : "\n"); | |
} | |
cudaFree(d_in); | |
cudaFree(d_out); | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment