Created
October 11, 2018 12:02
-
-
Save atamborrino/6d6ce9748dd442b560fa60e739dad8dd to your computer and use it in GitHub Desktop.
U-net
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from tensorflow import keras | |
from tensorflow.keras.preprocessing.image import load_img | |
from tensorflow.keras import Model | |
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.optimizers import Adam | |
from tensorflow.keras.preprocessing.image import ImageDataGenerator | |
from tensorflow.keras.layers import Input, Conv2D, Conv2DTranspose, MaxPooling2D, concatenate, Dropout,BatchNormalization | |
from tensorflow.keras.layers import Conv2D, Concatenate, MaxPooling2D | |
from tensorflow.keras.layers import UpSampling2D, Dropout, BatchNormalization | |
def conv_block(m, dim, acti, bn, res, do=0): | |
n = Conv2D(dim, 3, activation=acti, padding='same')(m) | |
n = BatchNormalization()(n) if bn else n | |
n = Dropout(do)(n) if do else n | |
n = Conv2D(dim, 3, activation=acti, padding='same')(n) | |
n = BatchNormalization()(n) if bn else n | |
return Concatenate()([m, n]) if res else n | |
def level_block(m, dim, depth, inc, acti, do, bn, mp, up, res): | |
if depth > 0: | |
n = conv_block(m, dim, acti, bn, res) | |
m = MaxPooling2D()(n) if mp else Conv2D(dim, 3, strides=2, padding='same')(n) | |
m = level_block(m, int(inc*dim), depth-1, inc, acti, do, bn, mp, up, res) | |
if up: | |
m = UpSampling2D()(m) | |
m = Conv2D(dim, 2, activation=acti, padding='same')(m) | |
else: | |
m = Conv2DTranspose(dim, 3, strides=2, activation=acti, padding='same')(m) | |
n = Concatenate()([n, m]) | |
m = conv_block(n, dim, acti, bn, res) | |
else: | |
m = conv_block(m, dim, acti, bn, res, do) | |
return m | |
def UNet(img_shape, out_ch=1, start_ch=64, depth=4, inc_rate=2., activation='relu', | |
dropout=0.5, batchnorm=False, maxpool=True, upconv=True, residual=False): | |
i = Input(shape=img_shape) | |
o = level_block(i, start_ch, depth, inc_rate, activation, dropout, batchnorm, maxpool, upconv, residual) | |
o = Conv2D(out_ch, 1, activation='sigmoid')(o) | |
return Model(inputs=i, outputs=o) | |
from tensorflow.keras.losses import binary_crossentropy | |
from tensorflow.keras import backend as K | |
def dice_coef(y_true, y_pred): | |
y_true_f = K.flatten(y_true) | |
y_pred = K.cast(y_pred, 'float32') | |
y_pred_f = K.cast(K.greater(K.flatten(y_pred), 0.5), 'float32') | |
intersection = y_true_f * y_pred_f | |
score = 2. * K.sum(intersection) / (K.sum(y_true_f) + K.sum(y_pred_f)) | |
return score | |
def dice_loss(y_true, y_pred): | |
smooth = 1. | |
y_true_f = K.flatten(y_true) | |
y_pred_f = K.flatten(y_pred) | |
intersection = y_true_f * y_pred_f | |
score = (2. * K.sum(intersection) + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth) | |
return 1. - score | |
def bce_dice_loss(y_true, y_pred): | |
return binary_crossentropy(y_true, y_pred) + dice_loss(y_true, y_pred) | |
model = UNet((img_size_target,img_size_target,1),start_ch=16,depth=5,batchnorm=True) | |
model.compile(loss=bce_dice_loss, optimizer="adam") | |
model.summary() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment