Created
December 22, 2021 07:51
-
-
Save atemate/20c0c40068a254f36d159d5a54194beb to your computer and use it in GitHub Desktop.
Get BQML job statistics
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
from google.cloud.bigquery import magics | |
def get_job_statistics(job, model_name): | |
assert job.state == "DONE", job.state | |
m = client.get_model(f"{PROJECT_ID}.{DATASET}.{model_name}") | |
if len(m.training_runs) != 1: | |
print(f"WARNING: Multiple training runs (taking the first): {model}") | |
r = m.training_runs[0] | |
opts = r.training_options | |
metr = r.evaluation_metrics.regression_metrics | |
training_table = r.data_split_result.training_table | |
evaluation_table = r.data_split_result.evaluation_table | |
return { | |
"model": { | |
"training_time_minutes": (job.ended - job.started).total_seconds()/60, | |
"project": str(m.project), | |
"dataset_id": str(m.dataset_id), | |
"model_id": str(m.model_id), | |
"location": str(m.location), | |
"training": { | |
"training_options": { | |
"max_iterations": int(opts.max_iterations), | |
"max_tree_depth": int(opts.max_tree_depth), | |
"learn_rate": float(opts.learn_rate), | |
"subsample": float(opts.subsample), | |
"early_stop": bool(opts.early_stop.value), | |
# protobuf's DoubleValue -> float: | |
"l1_regularization": float(opts.l1_regularization.value), | |
"l2_regularization": float(opts.l2_regularization.value), | |
"min_relative_progress": float(opts.min_relative_progress.value), | |
}, | |
"evaluation_metrics": { | |
# protobuf's DoubleValue -> float: | |
"mean_absolute_error": float(metr.mean_absolute_error.value), | |
"mean_squared_error": float(metr.mean_squared_error.value), | |
"mean_squared_log_error": float(metr.mean_squared_log_error.value), | |
"median_absolute_error": float(metr.median_absolute_error.value), | |
"r_squared": float(metr.r_squared.value), | |
}, | |
"start_time_seconds": r.start_time.seconds, | |
"data_split_result": { | |
"training_table": { | |
"project_id": str(training_table.project_id), | |
"dataset_id": str(training_table.dataset_id), | |
"table_id": str(training_table.table_id), | |
}, | |
"evaluation_table": { | |
"project_id": str(evaluation_table.project_id), | |
"dataset_id": str(evaluation_table.dataset_id), | |
"table_id": str(evaluation_table.table_id), | |
}, | |
}, | |
}, | |
}, | |
"bigquery_job": job.to_api_repr(), | |
"total_mb_processed": (job.total_bytes_processed or 0) //(1024*1024), | |
"total_mb_billed": (job.total_bytes_billed or 0) //(1024*1024), | |
} | |
model_name = "..." | |
client = bigquery.Client(project=PROJECT_ID) | |
client.query(f"CREATE MODEL `{PROJECT_ID}.{DATASET}.{model_name}` ...") | |
while job.state != "DONE": | |
job.reload() | |
time.sleep(1) | |
print(job.state) | |
print(get_job_statistics(job, model_name)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment