Created
January 4, 2022 15:39
-
-
Save atennapel/1f139d7cf2a7558a9d844941749c5e11 to your computer and use it in GitHub Desktop.
Infinitary indexed datatypes signatures with uncurried index
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# OPTIONS --type-in-type #-} | |
open import Agda.Builtin.Unit | |
open import Agda.Builtin.Sigma | |
open import Data.Product | |
data Ix : Set where | |
U : Ix | |
Pi : (A : Set) -> (A -> Ix) -> Ix | |
data IxTm (I : Ix) : Ix -> Set where | |
End : IxTm I I | |
App : ∀ {A B} -> IxTm I (Pi A B) -> (x : A) -> IxTm I (B x) | |
IxData : Ix -> Set | |
IxData I = IxTm I U | |
data Ind (I : Ix) : Set where | |
U : IxData I -> Ind I | |
Pi : (A : Set) -> (A -> Ind I) -> Ind I | |
data Ty (I : Ix) : Set where | |
U : IxData I -> Ty I | |
Pi : (A : Set) -> (A -> Ty I) -> Ty I | |
PiInd : Ind I -> Ty I -> Ty I | |
data Ctx (I : Ix) : Set where | |
Nil : Ctx I | |
Cons : Ty I -> Ctx I -> Ctx I | |
data Var {I : Ix} : Ctx I -> Ty I -> Set where | |
VZ : ∀ {C A} -> Var (Cons A C) A | |
VS : ∀ {C A B} -> Var C A -> Var (Cons B C) A | |
ElInd : ∀ {I} -> Ind I -> (IxData I -> Set) -> Set | |
ElInd (U i) X = X i | |
ElInd (Pi A B) X = (x : A) -> ElInd (B x) X | |
data Tm {I : Ix} (C : Ctx I) : Ty I -> Set where | |
El : ∀ {A} -> Var C A -> Tm C A | |
App : ∀ {A B} -> Tm C (Pi A B) -> (a : A) -> Tm C (B a) | |
AppInd : ∀ {A B} -> Tm C (PiInd A B) -> ElInd A (λ i -> Tm C (U i)) -> Tm C B | |
Data : ∀ {I} -> Ctx I -> IxData I -> Set | |
Data C i = Tm C (U i) | |
ElimInd : ∀ {I} {C : Ctx I} (P : {i : IxData I} -> Data C i -> Set) (A : Ind I) -> ElInd A (Data C) -> Set | |
ElimInd P (U i) t = P t | |
ElimInd P (Pi A B) f = (x : A) -> ElimInd P (B x) (f x) | |
ElimTy : ∀ {I} {C : Ctx I} (P : {i : IxData I} -> Data C i -> Set) (A : Ty I) -> Tm C A -> Set | |
ElimTy P (U i) x = P x | |
ElimTy P (Pi A B) x = (a : A) -> ElimTy P (B a) (App x a) | |
ElimTy {C = C} P (PiInd A B) x = (a : ElInd A (Data C)) -> ElimInd P A a -> ElimTy P B (AppInd x a) | |
Elim : ∀ {I} {C' : Ctx I} (P : {i : IxData I} -> Data C' i -> Set) (C : Ctx I) -> (∀ {A} -> Var C A -> Var C' A) -> Set | |
Elim P Nil _ = ⊤ | |
Elim P (Cons ty ctx) k = ElimTy P ty (El (k VZ)) × Elim P ctx (λ x -> k (VS x)) | |
Elim' : ∀ {I} (C : Ctx I) (P : {i : IxData I} -> Data C i -> Set) -> Set | |
Elim' C P = Elim P C (λ x -> x) | |
elimVar : ∀ {I} {C' : Ctx I} (P : {i : IxData I} -> Data C' i -> Set) -> ∀ {C A} (v : Var C A) (k : ∀ {A} -> Var C A -> Var C' A) -> Elim P C k -> ElimTy P A (El (k v)) | |
elimVar P VZ k (p , _) = p | |
elimVar P (VS v) k (_ , ps) = elimVar P v (λ x -> (k (VS x))) ps | |
elimInd : ∀ {I} {C : Ctx I} (P : {i : IxData I} -> Data C i -> Set) -> (A : Ind I) -> (f : ElInd A (Data C)) -> ({i : IxData I} -> (x : Data C i) -> ElimTy P (U i) x) -> ElimInd P A f | |
elimInd P (U i) x ind = ind x | |
elimInd P (Pi A B) f ind x = elimInd P (B x) (f x) ind | |
{-# TERMINATING #-} | |
elimTm : ∀ {I} {C : Ctx I} (P : {i : IxData I} -> Data C i -> Set) (ps : Elim' C P) -> ∀ {A} (x : Tm C A) -> ElimTy P A x | |
elimTm P ps (El v) = elimVar P v (λ x -> x) ps | |
elimTm P ps (App t a) = elimTm P ps t a | |
elimTm P ps (AppInd {A} t a) = elimTm P ps t a (elimInd P A a (elimTm P ps)) -- I cannot erase A, this is bad! | |
elim : ∀ {I} (C : Ctx I) (P : {i : IxData I} -> Data C i -> Set) {i : IxData I} (x : Data C i) -> Elim' C P -> P x | |
elim C P x ps = elimTm P ps x | |
-- testing | |
NatCtx : Ctx U | |
NatCtx = Cons (U End) (Cons (PiInd (U End) (U End)) Nil) | |
Nat : Set | |
Nat = Data NatCtx End | |
Z : Nat | |
Z = El VZ | |
S : Nat -> Nat | |
S n = AppInd (El (VS VZ)) n | |
FinCtx : Ctx (Pi Nat λ _ -> U) | |
FinCtx = Cons (Pi Nat λ n -> U (App End (S n))) (Cons (Pi Nat λ n -> PiInd (U (App End n)) (U (App End (S n)))) Nil) | |
Fin : Nat -> Set | |
Fin n = Data FinCtx (App End n) | |
FZ : {n : Nat} -> Fin (S n) | |
FZ {n} = App (El VZ) n | |
FS : {n : Nat} -> Fin n -> Fin (S n) | |
FS {n} x = AppInd (App (El (VS VZ)) n) x | |
indFin : | |
(P : {n : IxData (Pi Nat λ _ -> U)} -> Data FinCtx n -> Set) -- Ugly motive because index is uncurried! | |
(z : {n : Nat} -> P {App End (S n)} FZ) | |
(s : {n : Nat} -> (x : Fin n) -> P x -> P (FS x)) | |
{n : Nat} (x : Fin n) -> P x | |
indFin P z s x = elim _ P x ((λ n -> z {n}) , (λ n -> s {n}) , tt) | |
finToNat : ∀ {n} -> Fin n -> Nat | |
finToNat = indFin (λ _ -> Nat) Z (λ _ ind -> S ind) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment