Created
January 4, 2022 14:26
-
-
Save atennapel/28471645c5a1fb50437d590bc8277d7a to your computer and use it in GitHub Desktop.
Non-inductive datatype signatures
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# OPTIONS --type-in-type #-} | |
open import Agda.Builtin.Unit | |
open import Agda.Builtin.Sigma | |
open import Data.Product | |
data Ty : Set where | |
U : Ty | |
Pi : (A : Set) -> (A -> Ty) -> Ty | |
data Ctx : Set where | |
Nil : Ctx | |
Cons : Ty -> Ctx -> Ctx | |
data Var : Ctx -> Ty -> Set where | |
VZ : ∀ {C A} -> Var (Cons A C) A | |
VS : ∀ {C A B} -> Var C A -> Var (Cons B C) A | |
data Tm (C : Ctx) : Ty -> Set where | |
El : ∀ {A} -> Var C A -> Tm C A | |
App : ∀ {A B} -> Tm C (Pi A B) -> (a : A) -> Tm C (B a) | |
Data : Ctx -> Set | |
Data C = Tm C U | |
ElimTy : ∀ {C} (P : Data C -> Set) (A : Ty) -> Tm C A -> Set | |
ElimTy P U x = P x | |
ElimTy P (Pi A B) x = (a : A) -> ElimTy P (B a) (App x a) | |
Elim : ∀ {C'} (P : Data C' -> Set) (C : Ctx) -> (∀ {A} -> Var C A -> Var C' A) -> Set | |
Elim P Nil _ = ⊤ | |
Elim P (Cons ty ctx) k = ElimTy P ty (El (k VZ)) × Elim P ctx (λ x -> k (VS x)) | |
Elim' : (C : Ctx) (P : Data C -> Set) -> Set | |
Elim' C P = Elim P C (λ x -> x) | |
elimVar : ∀ {C'} (P : Data C' -> Set) -> ∀ {C A} (v : Var C A) (k : ∀ {A} -> Var C A -> Var C' A) -> Elim P C k -> ElimTy P A (El (k v)) | |
elimVar P VZ k (p , _) = p | |
elimVar P (VS v) k (_ , ps) = elimVar P v (λ x -> (k (VS x))) ps | |
elimTm : ∀ {C} (P : Data C -> Set) (ps : Elim' C P) -> ∀ {A} (x : Tm C A) -> ElimTy P A x | |
elimTm P ps (El v) = elimVar P v (λ x -> x) ps | |
elimTm P ps (App t a) = elimTm P ps t a | |
elim : (C : Ctx) (P : Data C -> Set) (x : Data C) -> Elim' C P -> P x | |
elim C P x ps = elimTm P ps x | |
-- testing | |
Fun : Set -> Ty -> Ty | |
Fun A B = Pi A λ _ -> B | |
SumCtx : Set -> Set -> Ctx | |
SumCtx A B = Cons (Fun A U) (Cons (Fun B U) Nil) | |
Sum : Set -> Set -> Set | |
Sum A B = Data (SumCtx A B) | |
Left : ∀ {A B} -> A -> Sum A B | |
Left x = App (El VZ) x | |
Right : ∀ {A B} -> B -> Sum A B | |
Right x = App (El (VS VZ)) x | |
indSum : ∀ {A B} (P : Sum A B -> Set) -> ((x : A) -> P (Left x)) -> ((x : B) -> P (Right x)) -> (x : Sum A B) -> P x | |
indSum {A} {B} P left right x = elim (SumCtx A B) P x (left , right , tt) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment