Last active
October 30, 2019 09:25
-
-
Save athomason/650eaa8deacbc412f8ec7d226ba8e23e to your computer and use it in GitHub Desktop.
Cardinality estimator
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// An implementation of https://arxiv.org/abs/1512.07901 | |
// | |
// Simple set cardinality estimation through random sampling | |
// | |
// We present a simple algorithm that estimates the cardinality n of a set V | |
// when allowed to sample elements of V uniformly and independently at random. | |
// Our algorithm with probability (1−δ) returns a (1±ε)−approximation of n... | |
package main | |
import ( | |
"flag" | |
"fmt" | |
"math" | |
"math/rand" | |
"time" | |
) | |
// ApproximateCardinality estimates the cardinality of the set that is probed | |
// by sampler. With error rate δ, it returns a value within a factor 1±ε of the | |
// actual cardinality. | |
func ApproximateCardinality(sampler func() int, ε float64, δ float64, realN int) int { | |
var ( | |
seen = make(map[int]struct{}) // 1: 𝑆 ← ∅ | |
weightedSamples = 0 // 2: 𝑤 ← 0 | |
repeats = 0 // 3: 𝑟 ← 0 | |
threshold = int(math.Ceil((2 + 4.4*ε) / (ε * ε) * math.Log(3/δ))) // 4: 𝑘 ← ⌈(2+4.4𝜖)/𝜖²⋅ln(3/δ)⌉ | |
) | |
for i := 0; ; i++ { // 5: 𝐫𝐞𝐩𝐞𝐚𝐭 | |
weightedSamples += len(seen) // 6: 𝑤 ← 𝑤 + |𝑆| | |
e := sampler() // 7: 𝑒 ← 𝐒𝐀𝐌𝐏𝐋𝐄(𝑉) | |
if _, ok := seen[e]; ok { | |
repeats++ // 8: 𝑟 ← 𝑟 + |𝑆 ∩ 𝑒| | |
} else { | |
seen[e] = struct{}{} // 9: 𝑆 ← 𝑆 ∪ 𝑒 | |
} | |
if repeats >= threshold { // 10: 𝐮𝐧𝐭𝐢𝐥 𝑟≥𝑘 | |
if false { | |
// CARDAPPROX... invokes 𝐒𝐀𝐌𝐏𝐋𝐄(𝑉) at most min(𝑛, 2⌈√𝑘𝑛⌉) + 𝑘 times | |
maxSamples := int( | |
math.Min( | |
float64(realN), | |
2*math.Ceil(math.Sqrt(float64(threshold*realN))), | |
), | |
) + threshold | |
fmt.Printf("took %d, expected %d\n", i, maxSamples) | |
} | |
return int(float64(weightedSamples) / float64(repeats)) // 11: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑤/𝑟 | |
} | |
} | |
} | |
func main() { | |
var ( | |
maxN = flag.Int("n", 64, "maximum cardinality") | |
trials = flag.Int("trials", 1000, "trials") | |
ε = flag.Float64("epsilon", 1./64, "epsilon") // accurate to one host in a mega64 | |
δ = flag.Float64("delta", .01, "probability bound") // with 99% probability | |
) | |
flag.Parse() | |
rand.Seed(time.Now().UnixNano()) | |
mispredictions := 0 // count errors | |
for i := 0; i < *trials; i++ { // through many attempts | |
n := 1 + rand.Intn(*maxN) // pick N≥1 | |
sampler := func() int { return rand.Intn(n) } // returns N distinct values | |
guess := ApproximateCardinality(sampler, *ε, *δ, n) | |
fmt.Printf("actual=%d -> guess=%d (%d)\n", n, guess, n-guess) | |
if n != guess { | |
mispredictions++ | |
} | |
} | |
// error rate should be less than δ | |
fmt.Printf("error rate: %d/%d = %.1f%%\n", | |
mispredictions, *trials, 100*float64(mispredictions)/float64(*trials)) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment