Skip to content

Instantly share code, notes, and snippets.

@atodev
Created March 26, 2023 21:37
Show Gist options
  • Save atodev/21f17c3a482d71e807e9b78dccd597cd to your computer and use it in GitHub Desktop.
Save atodev/21f17c3a482d71e807e9b78dccd597cd to your computer and use it in GitHub Desktop.
[Plots]
import matplotlib.pyplot as plt
# Define the color scheme based on the values
colors = ['red' if x < 15 else 'Yellow' if x >= 15 and x < 25 else 'green' for x in df1['TrustScore']]
# Create the bar chart with the defined colors
plt.bar(range(len(df1)), df1['TrustScore'], color=colors)
# Add labels and titles to the chart
plt.xticks(range(len(df1)), df1.index)
plt.xlabel('Index')
plt.ylabel('TrustScore')
plt.title('Trust Score overall')
# Define the legend
legend_dict = {'red': 'Weak', 'Yellow': 'Medium', 'green': 'Strong'}
legend_labels = [legend_dict[color] for color in colors]
plt.legend(labels=legend_labels)
plt.show()
------------------------------
# Define a function to map TrustScore values to colors
def color_map(x):
if x < 15:
return 'red'
elif x < 25:
return 'yellow'
else:
return 'green'
# Create a new column using the color_map function
df1['TrustScoreColor'] = df1['TrustScore'].apply(color_map)
---
import matplotlib.pyplot as plt
# Create the bar chart with color coding based on the new column
plt.bar(range(len(df1)), df1['TrustScore'], color=df1['TrustScoreColor'])
# Add labels and titles to the chart
plt.xticks(range(len(df1)), df1.index)
plt.xlabel('Index')
plt.ylabel('TrustScore')
plt.title('Trust Score overall')
plt.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment